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Abstract

Language models pretrained on text from a

wide variety of sources form the foundation

of today’s NLP. In light of the success of

these broad-coverage models, we investigate

whether it is still helpful to tailor a pretrained

model to the domain of a target task. We

present a study across four domains (biomedi-

cal and computer science publications, news,

and reviews) and eight classification tasks,

showing that a second phase of pretraining in-

domain (domain-adaptive pretraining) leads

to performance gains, under both high- and

low-resource settings. Moreover, adapting

to the task’s unlabeled data (task-adaptive

pretraining) improves performance even after

domain-adaptive pretraining. Finally, we show

that adapting to a task corpus augmented us-

ing simple data selection strategies is an effec-

tive alternative, especially when resources for

domain-adaptive pretraining might be unavail-

able. Overall, we consistently find that multi-

phase adaptive pretraining offers large gains in

task performance.

1 Introduction

Today’s pretrained language models are trained on

massive, heterogeneous corpora (Raffel et al., 2019;

Yang et al., 2019). For instance, ROBERTA (Liu

et al., 2019) was trained on over 160GB of uncom-

pressed text, with sources ranging from English-

language encyclopedic and news articles, to literary

works and web content. Representations learned

by such models achieve strong performance across

many tasks with datasets of varying sizes drawn

from a variety of sources (e.g., Wang et al., 2018,

2019). This leads us to ask whether a task’s textual

domain—a term typically used to denote a distribu-

tion over language characterizing a given topic or

genre (such as “science” or “mystery novels”)—is

still relevant. Do the latest large pretrained mod-

els work universally or is it still helpful to build

Figure 1: An illustration of data distributions. Task

data is comprised of an observable task distribution,

usually non-randomly sampled from a wider distribu-

tion (light grey ellipsis) within an even larger target do-

main, which is not necessarily one of the domains in-

cluded in the original LM pretraining domain – though

overlap is possible. We explore the benefits of contin-

ued pretraining on data from the task distribution and

the domain distribution.

separate pretrained models for specific domains?

While some studies have shown the benefit of

continued pretraining on domain-specific unlabeled

data (e.g., Lee et al., 2019), these studies only con-

sider a single domain at a time and use a language

model that is pretrained on a smaller and less di-

verse corpus than the most recent language mod-

els. Moreover, it is not known how the benefit of

continued pretraining may vary with factors like

the amount of available labeled task data, or the

proximity of the target domain to the original pre-

training corpus (see Figure 1).

We address this question for one such high-

performing model, ROBERTA (Liu et al., 2019)

(§2). We consider four domains (biomedical and

computer science publications, news, and reviews;

§3) and eight classification tasks (two in each do-

main). For targets that are not already in-domain

for ROBERTA, our experiments show that contin-
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ued pretraining on the domain (which we refer to as

domain-adaptive pretraining or DAPT) consistently

improves performance on tasks from the target do-

main, in both high- and low-resource settings.

Above, we consider domains defined around gen-

res and forums, but it is also possible to induce a

domain from a given corpus used for a task, such

as the one used in supervised training of a model.

This raises the question of whether pretraining on

a corpus more directly tied to the task can fur-

ther improve performance. We study how domain-

adaptive pretraining compares to task-adaptive pre-

training, or TAPT, on a smaller but directly task-

relevant corpus: the unlabeled task dataset (§4),

drawn from the task distribution. Task-adaptive

pretraining has been shown effective (Howard and

Ruder, 2018), but is not typically used with the

most recent models. We find that TAPT provides

a large performance boost for ROBERTA, with or

without domain-adaptive pretraining.

Finally, we show that the benefits from task-

adaptive pretraining increase when we have addi-

tional unlabeled data from the task distribution that

has been manually curated by task designers or an-

notators. Inspired by this success, we propose ways

to automatically select additional task-relevant un-

labeled text, and show how this improves perfor-

mance in certain low-resource cases (§5). On all

tasks, our results using adaptive pretraining tech-

niques are competitive with the state of the art.

In summary, our contributions include:

• a thorough analysis of domain- and task-

adaptive pretraining across four domains and

eight tasks, spanning low- and high-resource

settings;

• an investigation into the transferability of

adapted LMs across domains and tasks; and

• a study highlighting the importance of pre-

training on human-curated datasets, and a sim-

ple data selection strategy to automatically

approach this performance.

Our code as well as pretrained models for multiple

domains and tasks are publicly available.1

2 Background: Pretraining

Learning for most NLP research systems since

2018 consists of training in two stages. First, a

neural language model (LM), often with millions

of parameters, is trained on large unlabeled cor-

1https://github.com/allenai/
dont-stop-pretraining

pora. The word (or wordpiece; Wu et al. 2016)

representations learned in the pretrained model are

then reused in supervised training for a downstream

task, with optional updates (fine-tuning) of the rep-

resentations and network from the first stage.

One such pretrained LM is ROBERTA (Liu

et al., 2019), which uses the same transformer-

based architecture (Vaswani et al., 2017) as its

predecessor, BERT (Devlin et al., 2019). It is

trained with a masked language modeling objec-

tive (i.e., cross-entropy loss on predicting randomly

masked tokens). The unlabeled pretraining corpus

for ROBERTA contains over 160 GB of uncom-

pressed raw text from different English-language

corpora (see Appendix §A.1). ROBERTA attains

better performance on an assortment of tasks than

its predecessors, making it our baseline of choice.

Although ROBERTA’s pretraining corpus is de-

rived from multiple sources, it has not yet been

established if these sources are diverse enough to

generalize to most of the variation in the English

language. In other words, we would like to un-

derstand what is out of ROBERTA’s domain. To-

wards this end, we explore further adaptation by

continued pretraining of this large LM into two

categories of unlabeled data: (i) large corpora of

domain-specific text (§3), and (ii) available unla-

beled data associated with a given task (§4).

3 Domain-Adaptive Pretraining

Our approach to domain-adaptive pretraining

(DAPT) is straightforward—we continue pretrain-

ing ROBERTA on a large corpus of unlabeled

domain-specific text. The four domains we focus

on are biomedical (BIOMED) papers, computer sci-

ence (CS) papers, newstext from REALNEWS, and

AMAZON reviews. We choose these domains be-

cause they have been popular in previous work, and

datasets for text classification are available in each.

Table 1 lists the specifics of the unlabeled datasets

in all four domains, as well as ROBERTA’s training

corpus.1

3.1 Analyzing Domain Similarity

Before performing DAPT, we attempt to quantify

the similarity of the target domain to ROBERTA’s

pretraining domain. We consider domain vocab-

ularies containing the top 10K most frequent uni-

grams (excluding stopwords) in comparably sized

1For BIOMED and CS, we used an internal version of
S2ORC that contains papers that cannot be released due to
copyright restrictions.

https://github.com/allenai/dont-stop-pretraining
https://github.com/allenai/dont-stop-pretraining
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Domain Pretraining Corpus # Tokens Size LROB. LDAPT

BIOMED 2.68M full-text papers from S2ORC (Lo et al., 2020) 7.55B 47GB 1.32 0.99
CS 2.22M full-text papers from S2ORC (Lo et al., 2020) 8.10B 48GB 1.63 1.34
NEWS 11.90M articles from REALNEWS (Zellers et al., 2019) 6.66B 39GB 1.08 1.16
REVIEWS 24.75M AMAZON reviews (He and McAuley, 2016) 2.11B 11GB 2.10 1.93

ROBERTA (baseline) see Appendix §A.1 N/A 160GB ‡1.19 -

Table 1: List of the domain-specific unlabeled datasets. In columns 5 and 6, we report ROBERTA’s masked LM

loss on 50K randomly sampled held-out documents from each domain before (LROB.) and after (LDAPT) DAPT

(lower implies a better fit on the sample). ‡ indicates that the masked LM loss is estimated on data sampled from

sources similar to ROBERTA’s pretraining corpus.

PT News Reviews BioMed CS

PT

News

Reviews

BioMed

CS

100.0 54.1 34.5 27.3 19.2

54.1 100.0 40.0 24.9 17.3

34.5 40.0 100.0 18.3 12.7

27.3 24.9 18.3 100.0 21.4

19.2 17.3 12.7 21.4 100.0

Figure 2: Vocabulary overlap (%) between do-

mains. PT denotes a sample from sources similar to

ROBERTA’s pretraining corpus. Vocabularies for each

domain are created by considering the top 10K most

frequent words (excluding stopwords) in documents

sampled from each domain.

random samples of held-out documents in each do-

main’s corpus. We use 50K held-out documents

for each domain other than REVIEWS, and 150K

held-out documents in REVIEWS, since they are

much shorter. We also sample 50K documents from

sources similar to ROBERTA’s pretraining corpus

(i.e., BOOKCORPUS, STORIES, WIKIPEDIA, and

REALNEWS) to construct the pretraining domain

vocabulary, since the original pretraining corpus

is not released. Figure 2 shows the vocabulary

overlap across these samples. We observe that

ROBERTA’s pretraining domain has strong vocab-

ulary overlap with NEWS and REVIEWS, while

CS and BIOMED are far more dissimilar to the

other domains. This simple analysis suggests the

degree of benefit to be expected by adaptation of

ROBERTA to different domains—the more dissim-

ilar the domain, the higher the potential for DAPT.

3.2 Experiments

Our LM adaptation follows the settings prescribed

for training ROBERTA. We train ROBERTA on

each domain for 12.5K steps, which amounts to

single pass on each domain dataset, on a v3-8 TPU;

see other details in Appendix B. This second phase

of pretraining results in four domain-adapted LMs,

one for each domain. We present the masked LM

loss of ROBERTA on each domain before and after

DAPT in Table 1. We observe that masked LM loss

decreases in all domains except NEWS after DAPT,

where we observe a marginal increase. We discuss

cross-domain masked LM loss in Appendix §E.

Under each domain, we consider two text clas-

sification tasks, as shown in Table 2. Our tasks

represent both high- and low-resource (≤ 5K la-

beled training examples, and no additional unla-

beled data) settings. For HYPERPARTISAN, we use

the data splits from Beltagy et al. (2020). For RCT,

we represent all sentences in one long sequence for

simultaneous prediction.

Baseline As our baseline, we use an off-the-shelf

ROBERTA-base model and perform supervised

fine-tuning of its parameters for each classification

task. On average, ROBERTA is not drastically be-

hind the state of the art (details in Appendix §A.2),

and serves as a good baseline since it provides a

single LM to adapt to different domains.

Classification Architecture Following standard

practice (Devlin et al., 2019) we pass the final layer

[CLS] token representation to a task-specific feed-

forward layer for prediction (see Table 14 in Ap-

pendix for more hyperparameter details).

Results Test results are shown under the DAPT

column of Table 3 (see Appendix §C for valida-

tion results). We observe that DAPT improves

over ROBERTA in all domains. For BIOMED,

CS, and REVIEWS, we see consistent improve-
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Domain Task Label Type Train (Lab.) Train (Unl.) Dev. Test Classes

BIOMED
CHEMPROT relation classification 4169 - 2427 3469 13
†RCT abstract sent. roles 18040 - 30212 30135 5

CS
ACL-ARC citation intent 1688 - 114 139 6
SCIERC relation classification 3219 - 455 974 7

NEWS
HYPERPARTISAN partisanship 515 5000 65 65 2
†AGNEWS topic 115000 - 5000 7600 4

REVIEWS

†HELPFULNESS review helpfulness 115251 - 5000 25000 2
†IMDB review sentiment 20000 50000 5000 25000 2

Table 2: Specifications of the various target task datasets. † indicates high-resource settings. Sources: CHEMPROT

(Kringelum et al., 2016), RCT (Dernoncourt and Lee, 2017), ACL-ARC (Jurgens et al., 2018), SCIERC (Luan

et al., 2018), HYPERPARTISAN (Kiesel et al., 2019), AGNEWS (Zhang et al., 2015), HELPFULNESS (McAuley

et al., 2015), IMDB (Maas et al., 2011).

Dom. Task ROBA. DAPT ¬DAPT

BM
CHEMPROT 81.91.0 84.20.2 79.41.3
†RCT 87.20.1 87.60.1 86.90.1

CS
ACL-ARC 63.05.8 75.42.5 66.44.1
SCIERC 77.31.9 80.81.5 79.20.9

NEWS
HYP. 86.60.9 88.25.9 76.44.9
†AGNEWS 93.90.2 93.90.2 93.50.2

REV.
†HELPFUL. 65.13.4 66.51.4 65.12.8
†IMDB 95.00.2 95.40.2 94.10.4

Table 3: Comparison of ROBERTA (ROBA.) and

DAPT to adaptation to an irrelevant domain (¬
DAPT). Reported results are test macro-F1, except for

CHEMPROT and RCT, for which we report micro-F1,

following Beltagy et al. (2019). We report averages

across five random seeds, with standard deviations as

subscripts. † indicates high-resource settings. Best task

performance is boldfaced. See §3.3 for our choice of

irrelevant domains.

ments over ROBERTA, demonstrating the benefit

of DAPT when the target domain is more distant

from ROBERTA’s source domain. The pattern is

consistent across high- and low- resource settings.

Although DAPT does not increase performance on

AGNEWS, the benefit we observe in HYPERPAR-

TISAN suggests that DAPT may be useful even for

tasks that align more closely with ROBERTA’s

source domain.

3.3 Domain Relevance for DAPT

Additionally, we compare DAPT against a setting

where for each task, we adapt the LM to a domain

outside the domain of interest. This controls for the

case in which the improvements over ROBERTA

might be attributed simply to exposure to more data,

regardless of the domain. In this setting, for NEWS,

we use a CS LM; for REVIEWS, a BIOMED LM;

for CS, a NEWS LM; for BIOMED, a REVIEWS

LM. We use the vocabulary overlap statistics in

Figure 2 to guide these choices.

Our results are shown in Table 3, where the last

column (¬DAPT) corresponds to this setting. For

each task, DAPT significantly outperforms adapting

to an irrelevant domain, suggesting the importance

of pretraining on domain-relevant data. Further-

more, we generally observe that ¬DAPT results

in worse performance than even ROBERTA on

end-tasks. Taken together, these results indicate

that in most settings, exposure to more data with-

out considering domain relevance is detrimental

to end-task performance. However, there are two

tasks (SCIERC and ACL-ARC) in which ¬DAPT

marginally improves performance over ROBERTA.

This may suggest that in some cases, continued pre-

training on any additional data is useful, as noted

in Baevski et al. (2019).

3.4 Domain Overlap

Our analysis of DAPT is based on prior intuitions

about how task data is assigned to specific domains.

For instance, to perform DAPT for HELPFULNESS,

we only adapt to AMAZON reviews, but not to any

REALNEWS articles. However, the gradations in

Figure 2 suggest that the boundaries between do-

mains are in some sense fuzzy; for example, 40%

of unigrams are shared between REVIEWS and

NEWS. As further indication of this overlap, we

also qualitatively identify documents that overlap

cross-domain: in Table 4, we showcase reviews

and REALNEWS articles that are similar to these

reviews (other examples can be found in Appendix

§D). In fact, we find that adapting ROBERTA to
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IMDB review REALNEWS article

“The Shop Around the Corner“ is one of the great films from director

Ernst Lubitsch . In addition to the talents of James Stewart and Margaret Sullavan ,

it’s filled with a terrific cast of top character actors such as Frank Morgan and Felix

Bressart. [...] The makers of “You’ve Got Mail“ claim their film to be a remake , but
that’s just nothing but a lot of inflated self praise. Anyway, if you have an affection for

romantic comedies of the 1940 ’s, you’ll find “The Shop Around the Corner“ to be

nothing short of wonderful. Just as good with repeat viewings.

[...] Three great festive films... The Shop Around
the Corner (1940) Delightful Comedy by Ernst
Lubitsch stars James Stewart and Margaret Sulla-
van falling in love at Christmas. Remade as
You’ve Got Mail. [...]

HELPFULNESS review REALNEWS article

Simply the Best! I’ve owned countless Droids and iPhones, but this one destroys them

all. Samsung really nailed it with this one, extremely fast , very pocketable, gorgeous

display , exceptional battery life , good audio quality, perfect GPS & WiFi

performance, transparent status bar, battery percentage, ability to turn off soft key

lights, superb camera for a smartphone and more! [...]

We’re living in a world with a new Samsung.
[...] more on battery life later [...] Exposure is
usually spot on and focusing is very fast. [...]
The design, display, camera and performance
are all best in class, and the phone feels smaller
than it looks. [...]

Table 4: Examples that illustrate how some domains might have overlaps with others, leading to unexpected

positive transfer. We highlight expressions in the reviews that are also found in the REALNEWS articles.

NEWS not as harmful to its performance on RE-

VIEWS tasks (DAPT on NEWS achieves 65.52.3 on

HELPFULNESS and 95.00.1 on IMDB).

Although this analysis is by no means compre-

hensive, it indicates that the factors that give rise to

observable domain differences are likely not mu-

tually exclusive. It is possible that pretraining be-

yond conventional domain boundaries could result

in more effective DAPT; we leave this investiga-

tion to future work. In general, the provenance of

data, including the processes by which corpora are

curated, must be kept in mind when designing pre-

training procedures and creating new benchmarks

that test out-of-domain generalization abilities.

4 Task-Adaptive Pretraining

Datasets curated to capture specific tasks of inter-

est tend to cover only a subset of the text avail-

able within the broader domain. For example,

the CHEMPROT dataset for extracting relations be-

tween chemicals and proteins focuses on abstracts

of recently-published, high-impact articles from

hand-selected PubMed categories (Krallinger et al.,

2017, 2015). We hypothesize that such cases where

the task data is a narrowly-defined subset of the

broader domain, pretraining on the task dataset

itself or data relevant to the task may be helpful.

Task-adaptive pretraining (TAPT) refers to pre-

training on the unlabeled training set for a given

task; prior work has shown its effectiveness (e.g.

Howard and Ruder, 2018). Compared to domain-

adaptive pretraining (DAPT; §3), the task-adaptive

approach strikes a different trade-off: it uses a far

smaller pretraining corpus, but one that is much

more task-relevant (under the assumption that the

training set represents aspects of the task well).

This makes TAPT much less expensive to run than

DAPT, and as we show in our experiments, the per-

formance of TAPT is often competitive with that of

DAPT.

4.1 Experiments

Similar to DAPT, task-adaptive pretraining consists

of a second phase of pretraining ROBERTA, but

only on the available task-specific training data. In

contrast to DAPT, which we train for 12.5K steps,

we perform TAPT for 100 epochs. We artificially

augment each dataset by randomly masking differ-

ent words (using the masking probability of 0.15)

across epochs. As in our DAPT experiments, we

pass the final layer [CLS] token representation to

a task-specific feedforward layer for classification

(see Table 14 in Appendix for more hyperparameter

details).

Our results are shown in the TAPT column of Ta-

ble 5. TAPT consistently improves the ROBERTA

baseline for all tasks across domains. Even on the

news domain, which was part of ROBERTA pre-

training corpus, TAPT improves over ROBERTA,

showcasing the advantage of task adaptation. Par-

ticularly remarkable are the relative differences be-

tween TAPT and DAPT. DAPT is more resource in-

tensive (see Table 9 in §5.3), but TAPT manages to

match its performance in some of the tasks, such as

SCIERC. In RCT, HYPERPARTISAN, AGNEWS,

HELPFULNESS, and IMDB, the results even ex-

ceed those of DAPT, highlighting the efficacy of

this cheaper adaptation technique.
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Additional Pretraining Phases

Domain Task ROBERTA DAPT TAPT DAPT + TAPT

BIOMED
CHEMPROT 81.91.0 84.20.2 82.60.4 84.40.4
†RCT 87.20.1 87.60.1 87.70.1 87.80.1

CS
ACL-ARC 63.05.8 75.42.5 67.41.8 75.63.8
SCIERC 77.31.9 80.81.5 79.31.5 81.31.8

NEWS
HYPERPARTISAN 86.60.9 88.25.9 90.45.2 90.06.6
†AGNEWS 93.90.2 93.90.2 94.50.1 94.60.1

REVIEWS

†HELPFULNESS 65.13.4 66.51.4 68.51.9 68.71.8
†IMDB 95.00.2 95.40.1 95.50.1 95.60.1

Table 5: Results on different phases of adaptive pretraining compared to the baseline ROBERTA (col. 1). Our

approaches are DAPT (col. 2, §3), TAPT (col. 3, §4), and a combination of both (col. 4). Reported results follow the

same format as Table 3. State-of-the-art results we can compare to: CHEMPROT (84.6), RCT (92.9), ACL-ARC

(71.0), SCIERC (81.8), HYPERPARTISAN (94.8), AGNEWS (95.5), IMDB (96.2); references in §A.2.

BIOMED RCT CHEMPROT

TAPT 87.70.1 82.60.5
Transfer-TAPT 87.10.4 (↓0.6) 80.40.6 (↓2.2)

NEWS HYPERPARTISAN AGNEWS

TAPT 89.99.5 94.50.1
Transfer-TAPT 82.27.7 (↓7.7) 93.90.2 (↓0.6)

CS ACL-ARC SCIERC

TAPT 67.41.8 79.31.5
Transfer-TAPT 64.12.7 (↓3.3) 79.12.5 (↓0.2)

REVIEWS HELPFULNESS IMDB

TAPT 68.51.9 95.70.1
Transfer-TAPT 65.02.6 (↓3.5) 95.00.1 (↓0.7)

Table 6: Though TAPT is effective (Table 5), it is harmful when applied across tasks. These findings illustrate

differences in task distributions within a domain.

Combined DAPT and TAPT We investigate the

effect of using both adaptation techniques together.

We begin with ROBERTA and apply DAPT then

TAPT under this setting. The three phases of pre-

training add up to make this the most computation-

ally expensive of all our settings (see Table 9). As

expected, combined domain- and task-adaptive pre-

training achieves the best performance on all tasks

(Table 5).2

Overall, our results show that DAPT followed by

TAPT achieves the best of both worlds of domain

and task awareness, yielding the best performance.

While we speculate that TAPT followed by DAPT

would be susceptible to catastrophic forgetting of

the task-relevant corpus (Yogatama et al., 2019), al-

ternate methods of combining the procedures may

result in better downstream performance. Future

work may explore pretraining with a more sophisti-

cated curriculum of domain and task distributions.

2Results on HYPERPARTISAN match those of TAPT, within
a standard deviation arising from the five seeds.

Cross-Task Transfer We complete the compari-

son between DAPT and TAPT by exploring whether

adapting to one task transfers to other tasks in the

same domain. For instance, we further pretrain

the LM using the RCT unlabeled data, fine-tune it

with the CHEMPROT labeled data, and observe the

effect. We refer to this setting as Transfer-TAPT.

Our results for tasks in all four domains are shown

in Table 6. We see that TAPT optimizes for single

task performance, to the detriment of cross-task

transfer. These results demonstrate that data distri-

butions of tasks within a given domain might differ.

Further, this could also explain why adapting only

to a broad domain is not sufficient, and why TAPT

after DAPT is effective.

5 Augmenting Training Data for

Task-Adaptive Pretraining

In §4, we continued pretraining the LM for task

adaptation using only the training data for a super-

vised task. Inspired by the success of TAPT, we

next investigate another setting where a larger pool

of unlabeled data from the task distribution exists,
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Pretraining
BIOMED NEWS REVIEWS

RCT-500 HYP. IMDB †

TAPT 79.81.4 90.45.2 95.50.1
DAPT + TAPT 83.00.3 90.06.6 95.60.1

Curated-TAPT 83.40.3 89.99.5 95.70.1
DAPT + Curated-TAPT 83.80.5 92.13.6 95.80.1

Table 7: Mean test set macro-F1 (for HYP. and

IMDB) and micro-F1 (for RCT-500), with Curated-

TAPT across five random seeds, with standard devia-

tions as subscripts. † indicates high-resource settings.

typically curated by humans.

We explore two scenarios. First, for three tasks

(RCT, HYPERPARTISAN, and IMDB) we use this

larger pool of unlabeled data from an available

human-curated corpus (§5.1). Next, we explore

retrieving related unlabeled data for TAPT, from a

large unlabeled in-domain corpus, for tasks where

extra human-curated data is unavailable (§5.2).

5.1 Human Curated-TAPT

Dataset creation often involves collection of a large

unlabeled corpus from known sources. This corpus

is then downsampled to collect annotations, based

on the annotation budget. The larger unlabeled cor-

pus is thus expected to have a similar distribution

to the task’s training data. Moreover, it is usually

available. We explore the role of such corpora in

task-adaptive pretraining.

Data We simulate a low-resource setting RCT-

500, by downsampling the training data of the RCT

dataset to 500 examples (out of 180K available),

and treat the rest of the training data as unlabeled.

The HYPERPARTISAN shared task (Kiesel et al.,

2019) has two tracks: low- and high-resource. We

use 5K documents from the high-resource setting as

Curated-TAPT unlabeled data and the original low-

resource training documents for task fine-tuning.

For IMDB, we use the extra unlabeled data man-

ually curated by task annotators, drawn from the

same distribution as the labeled data (Maas et al.,

2011).

Results We compare Curated-TAPT to TAPT and

DAPT + TAPT in Table 7. Curated-TAPT further

improves our prior results from §4 across all three

datasets. Applying Curated-TAPT after adapting to

the domain results in the largest boost in perfor-

mance on all tasks; in HYPERPARTISAN, DAPT

+ Curated-TAPT is within standard deviation of

Curated-TAPT. Moreover, curated-TAPT achieves

Figure 3: An illustration of automated data selec-

tion (§5.2). We map unlabeled CHEMPROT and 1M

BIOMED sentences to a shared vector space using the

VAMPIRE model trained on these sentences. Then,

for each CHEMPROT sentence, we identify k nearest

neighbors, from the BIOMED domain.

Pretraining
BIOMED CS

CHEMPROT RCT-500 ACL-ARC

ROBERTA 81.91.0 79.30.6 63.05.8
TAPT 82.60.4 79.81.4 67.41.8

RAND-TAPT 81.90.6 80.60.4 69.73.4
50NN-TAPT 83.30.7 80.80.6 70.72.8
150NN-TAPT 83.20.6 81.20.8 73.32.7
500NN-TAPT 83.30.7 81.70.4 75.51.9

DAPT 84.20.2 82.50.5 75.42.5

Table 8: Mean test set micro-F1 (for CHEMPROT

and RCT) and macro-F1 (for ACL-ARC), across five

random seeds, with standard deviations as subscripts,

comparing RAND-TAPT (with 50 candidates) and kNN-

TAPT selection. Neighbors of the task data are selected

from the domain data.

95% of the performance of DAPT + TAPT with the

fully labeled RCT corpus (Table 5) with only 0.3%

of the labeled data. These results suggest that curat-

ing large amounts of data from the task distribution

is extremely beneficial to end-task performance.

We recommend that task designers release a large

pool of unlabeled task data for their tasks to aid

model adaptation through pretraining.

5.2 Automated Data Selection for TAPT

Consider a low-resource scenario without access to

large amounts of unlabeled data to adequately bene-

fit from TAPT, as well as absence of computational

resources necessary for DAPT (see Table 9 for de-

tails of computational requirements for different

pretraining phases). We propose simple unsuper-
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vised methods to retrieve unlabeled text that aligns

with the task distribution, from a large in-domain

corpus. Our approach finds task-relevant data from

the domain by embedding text from both the task

and domain in a shared space, then selects candi-

dates from the domain based on queries using the

task data. Importantly, the embedding method must

be lightweight enough to embed possibly millions

of sentences in a reasonable time.

Given these constraints, we employ VAMPIRE

(Gururangan et al., 2019; Figure 3), a lightweight

bag-of-words language model. We pretrain VAM-

PIRE on a large deduplicated3 sample of the do-

main (1M sentences) to obtain embeddings of the

text from both the task and domain sample. We

then select k candidates of each task sentence from

the domain sample, in embeddings space. Candi-

dates are selected (i) via nearest neighbors selection

(kNN-TAPT)4, or (ii) randomly (RAND-TAPT). We

continue pretraining ROBERTA on this augmented

corpus with both the task data (as in TAPT) as well

as the selected candidate pool.

Results Results in Table 8 show that kNN-TAPT

outperforms TAPT for all cases. RAND-TAPT is gen-

erally worse than kNN-TAPT, but within a standard

deviation arising from 5 seeds for RCT and ACL-

ARC. As we increase k, kNN-TAPT performance

steadily increases, and approaches that of DAPT.

Appendix F shows examples of nearest neighbors

of task data. Future work might consider a closer

study of kNN-TAPT, more sophisticated data selec-

tion methods, and the tradeoff between the diversity

and task relevance of selected examples.

5.3 Computational Requirements

The computational requirements for all our adap-

tation techniques on RCT-500 in the BIOMED do-

main in Table 9. TAPT is nearly 60 times faster

to train than DAPT on a single v3-8 TPU and stor-

age requirements for DAPT on this task are 5.8M

times that of TAPT. Our best setting of DAPT +

TAPT amounts to three phases of pretraining, and at

first glance appears to be very expensive. However,

once the LM has been adapted to a broad domain, it

can be reused for multiple tasks within that domain,

with only a single additional TAPT phase per task.

While Curated-TAPT tends to achieve the best cost-

3We deduplicated this set to limit computation, since dif-
ferent sentences can share neighbors.

4We use a flat search index with cosine similarity between
embeddings with the FAISS (Johnson et al., 2019) library.

Pretraining Steps Docs. Storage F1

ROBERTA - - - 79.30.6

TAPT 0.2K 500 80KB 79.81.4

50NN-TAPT 1.1K 24K 3MB 80.80.6

150NN-TAPT 3.2K 66K 8MB 81.20.8

500NN-TAPT 9.0K 185K 24MB 81.70.4

Curated-TAPT 8.8K 180K 27MB 83.40.3

DAPT 12.5K 25M 47GB 82.50.5

DAPT + TAPT 12.6K 25M 47GB 83.00.3

Table 9: Computational requirements for adapting to

the RCT-500 task, comparing DAPT (§3) and the vari-

ous TAPT modifications described in §4 and §5.

benefit ratio in this comparison, one must also take

into account the cost of curating large in-domain

data. Automatic methods such as kNN-TAPT are

much cheaper than DAPT.

6 Related Work

Transfer learning for domain adaptation

Prior work has shown the benefit of continued

pretraining in domain (Alsentzer et al., 2019;

Chakrabarty et al., 2019; Lee et al., 2019).5 We

have contributed further investigation of the effects

of a shift between a large, diverse pretraining

corpus and target domain on task performance.

Other studies (e.g., Huang et al., 2019) have

trained language models (LMs) in their domain

of interest, from scratch. In contrast, our work

explores multiple domains, and is arguably more

cost effective, since we continue pretraining an

already powerful LM.

Task-adaptive pretraining Continued pretrain-

ing of a LM on the unlabeled data of a given task

(TAPT) has been show to be beneficial for end-

task performance (e.g. in Howard and Ruder, 2018;

Phang et al., 2018; Sun et al., 2019). In the pres-

ence of domain shift between train and test data

distributions of the same task, domain-adaptive pre-

training (DAPT) is sometimes used to describe what

we term TAPT (Logeswaran et al., 2019; Han and

Eisenstein, 2019). Related approaches include lan-

guage modeling as an auxiliary objective to task

classifier fine-tuning (Chronopoulou et al., 2019;

Radford et al., 2018) or consider simple syntactic

structure of the input while adapting to task-specific

5In contrast, Peters et al. (2019) find that the Jensen-
Shannon divergence on term distributions between BERT’s
pretraining corpora and each MULTINLI domain (Williams
et al., 2018) does not predict its performance, though this
might be an isolated finding specific to the MultiNLI dataset.
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Training Data

Domain

(Unlabeled)

Task

(Unlabeled)

Task

(Labeled)

ROBERTA X

DAPT X X

TAPT X X

DAPT + TAPT X X X

kNN-TAPT (Subset) X X

Curated-TAPT (Extra) X

Table 10: Summary of strategies for multi-phase pre-

training explored in this paper.

data (Swayamdipta et al., 2019). We compare DAPT

and TAPT as well as their interplay with respect to

dataset size for continued pretraining (hence, ex-

pense of more rounds of pretraining), relevance to

a data sample of a given task, and transferability to

other tasks and datasets. See Table 11 in Appendix

§A for a summary of multi-phase pretraining strate-

gies from related work.

Data selection for transfer learning Selecting

data for transfer learning has been explored in NLP

(Moore and Lewis, 2010; Ruder and Plank, 2017;

Zhang et al., 2019, among others). Dai et al. (2019)

focus on identifying the most suitable corpus to

pretrain a LM from scratch, for a single task: NER,

whereas we select relevant examples for various

tasks in §5.2. Concurrent to our work, Aharoni and

Goldberg (2020) propose data selection methods

for NMT based on cosine similarity in embedding

space, using DISTILBERT (Sanh et al., 2019) for

efficiency. In contrast, we use VAMPIRE, and

focus on augmenting TAPT data for text classifi-

cation tasks. Khandelwal et al. (2020) introduced

kNN-LMs that allows easy domain adaptation of

pretrained LMs by simply adding a datastore per

domain and no further training; an alternative to

integrate domain information in an LM. Our study

of human-curated data §5.1 is related to focused

crawling (Chakrabarti et al., 1999) for collection of

suitable data, especially with LM reliance (Remus

and Biemann, 2016).

What is a domain? Despite the popularity of

domain adaptation techniques, most research and

practice seems to use an intuitive understanding of

domains. A small body of work has attempted to

address this question (Lee, 2001; Eisenstein et al.,

2014; van der Wees et al., 2015; Plank, 2016; Ruder

et al., 2016, among others). For instance, Aharoni

and Goldberg (2020) define domains by implicit

clusters of sentence representations in pretrained

LMs. Our results show that DAPT and TAPT com-

plement each other, which suggests a spectra of

domains defined around tasks at various levels of

granularity (e.g., Amazon reviews for a specific

product, all Amazon reviews, all reviews on the

web, the web).

7 Conclusion

We investigate several variations for adapting pre-

trained LMs to domains and tasks within those do-

mains, summarized in Table 10. Our experiments

reveal that even a model of hundreds of millions of

parameters struggles to encode the complexity of

a single textual domain, let alone all of language.

We show that pretraining the model towards a spe-

cific task or small corpus can provide significant

benefits. Our findings suggest it may be valuable

to complement work on ever-larger LMs with par-

allel efforts to identify and use domain- and task-

relevant corpora to specialize models. While our

results demonstrate how these approaches can im-

prove ROBERTA, a powerful LM, the approaches

we studied are general enough to be applied to

any pretrained LM. Our work points to numerous

future directions, such as better data selection for

TAPT, efficient adaptation large pretrained language

models to distant domains, and building reusable

language models after adaptation.
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Appendix Overview

In this supplementary material, we provide: (i)

additional information for producing the results in

the paper, and (ii) results that we could not fit into

the main body of the paper.

Appendix A. A tabular overview of related work

described in Section §6, a description of the corpus

used to train ROBERTA in Liu et al. (2019), and

references to the state of the art on our tasks.

Appendix B. Details about the data preprocessing,

training, and implementation of domain- and task-

adaptive pretraining.

Appendix C. Development set results.

Appendix D. Examples of domain overlap.

Appendix E. The cross-domain masked LM loss

and reproducibility challenges.

Appendix F. Illustration of our data selection

method and examples of nearest neighbours.

A Related Work

Table 11 shows which of the strategies for contin-

ued pretraining have already been explored in the

prior work from the Related Work (§6). As evident

from the table, our work compares various strate-

gies as well as their interplay using a pretrained

language model trained on a much more heteroge-

neous pretraining corpus.

A.1 ROBERTA’s Pretraining Corpus

ROBERTA was trained on data from BOOKCOR-

PUS (Zhu et al., 2015),6 WIKIPEDIA,7 a portion of

the CCNEWS dataset (Nagel, 2016),8 OPENWEB-

TEXT corpus of Web content extracted from URLs

shared on Reddit (Gokaslan and Cohen, 2019),9

and a subset of CommonCrawl that it is said to

resemble the “story-like” style of WINOGRAD

schemas (STORIES; Trinh and Le, 2018).10

A.2 State of the Art

In this section, we specify the models achieving

state of the art on our tasks. See the caption of

6https://github.com/soskek/bookcorpus
7https://github.com/google-research/

bert
8https://github.com/fhamborg/

news-please
9https://github.com/jcpeterson/

openwebtext
10https://github.com/tensorflow/models/

tree/master/research/lm_commonsense

Table 5 for the reported performance of these mod-

els. For ACL-ARC, that is SCIBERT (Beltagy

et al., 2019), a BERT-base model for trained from

scratch on scientific text. For CHEMPROT and SCI-

ERC, that is S2ORC-BERT (Lo et al., 2020), a

similar model to SCIBERT. For AGNEWS and

IMDB, XLNet-large, a much larger model. For

RCT, Cohan et al. (2019). For HYPERPARTISAN,

LONGFORMER, a modified Transformer language

model for long documents (Beltagy et al., 2020).

Thongtan and Phienthrakul (2019) report a higher

number (97.42) on IMDB, but they train their word

vectors on the test set. Our baseline establishes the

first benchmark for the HELPFULNESS dataset.

B Experimental Setup

Preprocessing for DAPT The unlabeled corpus

in each domain was pre-processed prior to lan-

guage model training. Abstracts and body para-

graphs from biomedical and computer science

articles were used after sentence splitting using

scispaCy (Neumann et al., 2019). We used sum-

maries and full text of each news article, and the

entire body of review from Amazon reviews. For

both news and reviews, we perform sentence split-

ting using spaCy (Honnibal and Montani, 2017).

Training details for DAPT We train ROBERTA

on each domain for 12.5K steps. We focused on

matching all the domain dataset sizes (see Table

1) such that each domain is exposed to the same

amount of data as for 12.5K steps it is trained for.

AMAZON reviews contain more documents, but

each is shorter. We used an effective batch size

of 2048 through gradient accumulation, as recom-

mended in Liu et al. (2019). See Table 13 for more

hyperparameter details.

Training details for TAPT We use the same pre-

training hyperparameters as DAPT, but we artifi-

cially augmented each dataset for TAPT by ran-

domly masking different tokens across epochs, us-

ing the masking probability of 0.15. Each dataset

was trained for 100 epochs. For tasks with less

than 5K examples, we used a batch size of 256

through gradient accumulation. See Table 13 for

more hyperparameter details.

Optimization We used the Adam optimizer

(Kingma and Ba, 2015), a linear learning rate sched-

uler with 6% warm-up, a maximum learning rate

of 0.0005. When we used a batch size of 256, we

https://github.com/soskek/bookcorpus
https://github.com/google-research/bert
https://github.com/google-research/bert
https://github.com/fhamborg/news-please
https://github.com/fhamborg/news-please
https://github.com/jcpeterson/openwebtext
https://github.com/jcpeterson/openwebtext
https://github.com/tensorflow/models/tree/master/research/lm_commonsense
https://github.com/tensorflow/models/tree/master/research/lm_commonsense
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DAPT Domains

(if applicable)
Tasks Model DAPT TAPT

DAPT

+ TAPT

kNN-

TAPT

Curated-

TAPT

This Paper

biomedical & computer

science papers, news,

reviews

8 classification

tasks
ROBERTA X X X X X

Aharoni and Goldberg (2020) - NMT
DISTILBERT +

Transformer NMT
- - - similar -

Alsentzer et al. (2019) clinical text
NER, NLI,

de-identification
(BIO)BERT X - - - -

Chakrabarty et al. (2019)
opinionated claims from

Reddit
claim detection ULMFIT X X - - -

Chronopoulou et al. (2019) -
5 classification

tasks
ULMFIT† - similar - - -

Han and Eisenstein (2019) -
NER in historical

texts
ELMO, BERT - X - - -

Howard and Ruder (2018) -
6 classification

tasks
ULMFIT - X - - -

Khandelwal et al. (2020) - language modeling Transformer LM - - - similar -

Lee et al. (2019) biomedical papers
NER, QA, relation

extraction
BERT X - - - -

Logeswaran et al. (2019) -
zero-shot entity

linking in Wikia
BERT - X - - -

Mitra et al. (2020) - commonsense QA BERT - X - - -

Phang et al. (2018) - GLUE tasks
ELMO, BERT,

GPT
- X - - -

Radford et al. (2018) -

NLI, QA,

similarity,

classification

GPT - similar - - -

Sun et al. (2019)
sentiment, question,

topic

7 classification

tasks
BERT X X - - -

Swayamdipta et al. (2019) -
NER, parsing,

classification
ELMO - similar - - -

Xu et al. (2019a) reviews

RC, aspect extract.,

sentiment

classification

BERT X X X - -

Xu et al. (2019b)
restaurant reviews,

laptop reviews
conversational RC BERT X X - - -

Table 11: Overview of prior work across strategies for continued pre-training summarized in Table 10. ULMFIT is

pretrained on English Wikipedia; ULMFIT† on English tweets; ELMO on the 1BWORDBENCHMARK (newswire;

Chelba et al., 2014); GPT on BOOKCORPUS; BERT on English Wikipedia and BOOKCORPUS. In comparison to

these pretraining corpora, ROBERTA’s pretraining corpus is substantially more diverse (see Appendix §A.1).

used a maximum learning rate of 0.0001, as rec-

ommended in Liu et al. (2019). We observe a high

variance in performance between random seeds

when fine-tuning ROBERTA to HYPERPARTISAN,

because the dataset is extremely small. To produce

final results on this task, we discard and resample

degenerate seeds. We display the full hyperparam-

eter settings in Table 13.

Implementation Our LM implementation uses

the HuggingFace transformers library

(Wolf et al., 2019)11 and PyTorch XLA for TPU

compatibility.12 Each adaptive pretraining exper-

11https://github.com/huggingface/

transformers
12https://github.com/pytorch/xla

iment was performed on a single v3-8 TPU from

Google Cloud.13 For the text classification tasks,

we used AllenNLP (Gardner et al., 2018). Fol-

lowing standard practice (Devlin et al., 2019) we

pass the final layer [CLS] token representation to

a task-specific feedforward layer for prediction.

C Development Set Results

Adhering to the standards suggested by Dodge et al.

(2019) for replication, we report our development

set results in Tables 15, 17, and 18.

13http://github.com/allenai/

tpu-pretrain

https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
https://github.com/pytorch/xla
http://github.com/allenai/tpu-pretrain
http://github.com/allenai/tpu-pretrain
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D Analysis of Domain Overlap

In Table 20 we display additional examples that

highlight the overlap between IMDB reviews and

REALNEWS articles, relevant for analysis in §3.1.

E Analysis of Cross-Domain Masked LM

Loss

In Section §3.2, we provide ROBERTA’s masked

LM loss before and after DAPT. We display cross-

domain masked-LM loss in Table 12, where we

evaluate masked LM loss on text samples in other

domains after performing DAPT.

We observe that the cross-domain masked-LM

loss mostly follows our intuition and insights from

the paper, i.e. ROBERTA’s pretraining corpus and

NEWS are closer, and BIOMED to CS (relative to

other domains). However, our analysis in §3.1 il-

lustrates that REVIEWS and NEWS also have some

similarities. This is supported with the loss of

ROBERTA that is adapted to NEWS, calculated

on a sample of REVIEWS. However, ROBERTA

that is adapted to REVIEWS results in the highest

loss for a NEWS sample. This is the case for all

domains. One of the properties that distinguishes

REVIEWS from all other domains is that its doc-

uments are significantly shorter. In general, we

find that cross-DAPT masked-LM loss can in some

cases be a noisy predictor of domain similarity.

F k-Nearest Neighbors Data Selection

In Table 21, we display nearest neighbor docu-

ments in the BIOMED domain identified by our

selection method, on the RCT dataset.
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Data Sample Unseen During DAPT

PT BIOMED CS NEWS REVIEWS

ROBERTA 1.19 1.32 1.63 1.08 2.10

DAPT











BIOMED 1.63 0.99 1.63 1.69 2.59
CS 1.82 1.43 1.34 1.92 2.78
NEWS 1.33 1.50 1.82 1.16 2.16
REVIEWS 2.07 2.23 2.44 2.27 1.93

Table 12: ROBERTA’s (row 1) and domain-adapted ROBERTA’s (rows 2–5) masked LM loss on randomly sam-

pled held-out documents from each domain (lower implies a better fit). PT denotes a sample from sources similar

to ROBERTA’s pretraining corpus. The lowest masked LM for each domain sample is boldfaced.

Computing Infrastructure Google Cloud v3-8 TPU

Model implementations https://github.com/allenai/tpu_pretrain

Hyperparameter Assignment

number of steps 100 epochs (TAPT) or 12.5K steps (DAPT)

batch size 256 or 2058

maximum learning rate 0.0001 or 0.0005

learning rate optimizer Adam

Adam epsilon 1e-6

Adam beta weights 0.9, 0.98

learning rate scheduler None or warmup linear

Weight decay 0.01

Warmup proportion 0.06

learning rate decay linear

Table 13: Hyperparameters for domain- and task- adaptive pretraining.

Computing Infrastructure Quadro RTX 8000 GPU

Model implementation https://github.com/allenai/dont-stop-pretraining

Hyperparameter Assignment

number of epochs 3 or 10

patience 3

batch size 16

learning rate 2e-5

dropout 0.1

feedforward layer 1

feedforward nonlinearity tanh

classification layer 1

Table 14: Hyperparameters for ROBERTA text classifier.

https://github.com/allenai/tpu_pretrain
https://github.com/allenai/dont-stop-pretraining
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Additional Pretraining Phases
Domain Task ROBERTA DAPT TAPT DAPT + TAPT

BIOMED
CHEMPROT 83.21.4 84.10.5 83.00.6 84.10.5

†RCT 88.10.05 88.50.1 88.30.1 88.50.1

CS
ACL-ARC 71.32.8 73.21.5 73.23.6 78.62.9

SCIERC 83.81.1 88.41.7 85.90.8 88.01.3

NEWS
HYPERPARTISAN 84.01.5 79.13.5 82.73.3 80.82.3

†AGNEWS 94.30.1 94.30.1 94.70.1 94.90.1

REVIEWS

†HELPFULNESS 65.53.4 66.51.4 69.22.4 69.42.1

†IMDB 94.80.1 95.30.1 95.40.1 95.70.2

Table 15: Results on different phases of adaptive pretraining compared to the baseline ROBERTA (col. 1). Our

approaches are DAPT (col. 2, §3), TAPT (col. 3, §4), and a combination of both (col. 4). Reported results are devel-

opment macro-F1, except for CHEMPROT and RCT, for which we report micro-F1, following Beltagy et al. (2019).

We report averages across five random seeds, with standard deviations as subscripts. † indicates high-resource set-

tings. Best task performance is boldfaced. State-of-the-art results we can compare to: CHEMPROT (84.6), RCT

(92.9), ACL-ARC (71.0), SCIERC (81.8), HYPERPARTISAN (94.8), AGNEWS (95.5), IMDB (96.2); references

in §A.2.

Dom. Task ROB. DAPT ¬DAPT

BM
CHEMPROT 83.21.4 84.10.5 80.90.5

†RCT 88.10.0 88.50.1 87.90.1

CS
ACL-ARC 71.32.8 73.21.5 68.15.4

SCIERC 83.81.1 88.41.7 83.90.9

NEWS
HYP. 84.01.5 79.13.5 71.64.6

†AGNEWS 94.30.1 94.30.1 94.00.1

REV.
†HELPFUL. 65.53.4 66.51.4 65.53.0

†IMDB 94.80.1 95.30.1 93.80.2

Table 16: Development comparison of ROBERTA (ROBA.) and DAPT to adaptation to an irrelevant domain (¬
DAPT). See §3.3 for our choice of irrelevant domains. Reported results follow the same format as Table 5.

BIOMED RCT CHEMPROT

TAPT 88.30.1 83.00.6

Transfer-TAPT 88.00.1 (↓ 0.3) 81.10.5 (↓ 1.9)

NEWS HYPERPARTISAN AGNEWS

TAPT 82.73.3 94.70.1

Transfer-TAPT 77.63.6 (↓ 5.1) 94.40.1 (↓ 0.4)

CS ACL-ARC SCIERC

TAPT 73.23.6 85.90.8

Transfer-TAPT 74.04.5 (↑ 1.2) 85.51.1 (↓ 0.4)

AMAZON reviews HELPFULNESS IMDB

TAPT 69.22.4 95.40.1

Transfer-TAPT 65.42.7 (↓ 3.8) 94.90.1 (↓ 0.5)

Table 17: Development results for TAPT transferability.

Pretraining BIOMED NEWS REVIEWS

RCT-500 HYPERPARTISAN
†IMDB

TAPT 80.51.3 82.73.3 95.40.1

DAPT + TAPT 83.90.3 80.82.3 95.70.2

Curated-TAPT 84.40.3 84.91.9 95.80.1

DAPT + Curated-TAPT 84.50.3 83.13.7 96.00.1

Table 18: Mean development set macro-F1 (for HYPERPARTISAN and IMDB) and micro-F1 (for RCT-500), with

Curated-TAPT across five random seeds, with standard deviations as subscripts. † indicates high-resource settings.
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Pretraining BIOMED CS
CHEMPROT RCT-500 ACL-ARC

ROBERTA 83.21.4 80.30.5 71.32.8

TAPT 83.00.6 80.51.3 73.23.6

RAND-TAPT 83.30.5 81.60.6 78.74.0

50NN-TAPT 83.30.8 81.70.5 70.13.5

150NN-TAPT 83.30.9 81.90.8 78.52.2

500NN-TAPT 84.50.4 82.60.4 77.42.3

DAPT 84.10.5 83.50.8 73.21.5

Table 19: Mean development set macro-F1 (for HYP. and IMDB) and micro-F1 (for RCT), across five random

seeds, with standard deviations as subscripts, comparing RAND-TAPT (with 50 candidates) and kNN-TAPT selec-

tion. Neighbors of the task data are selected from the domain data.

IMDB review REALNEWS article

Spooks is enjoyable trash, featuring some well directed sequences,
ridiculous plots and dialogue, and some third rate acting. Many have
described this is a UK version of “24“, and one can see the similarities.
The American version shares the weak silly plots, but the execution is so
much slicker, sexier and I suspect, expensive. Some people describe
weak comedy as “gentle comedy“. This is gentle spy story hour, the
exact opposite of anything created by John Le Carre. Give me Smiley
any day.

[...] Remember poor Helen Flynn from Spooks? In 2002, the headlong
BBC spy caper was in such a hurry to establish the high-wire stakes of its
morally compromised world that Lisa Faulkner’s keen-as-mustard MI5
rookie turned out to be a lot more expendable than her prominent billing
suggested. [...] Functioning as both a shocking twist and rather callous
statement that No-One Is Safe, it gave the slick drama an instant patina
of edginess while generating a record-breaking number of complaints.
[...]

The Sopranos is perhaps the most mind-opening series you could
possibly ever want to watch. It’s smart, it’s quirky, it’s funny - and it
carries the mafia genre so well that most people can’t resist watching.
The best aspect of this show is the overwhelming realism of the
characters, set in the subterranean world of the New York crime families.
For most of the time, you really don’t know whether the wise guys will
stab someone in the back, or buy them lunch. Further adding to the
realistic approach of the characters in this show is the depth of their
personalities - These are dangerous men, most of them murderers, but
by God if you don’t love them too. I’ve laughed at their wisecracks,
been torn when they’ve made err in judgement, and felt scared at the
sheer ruthlessness of a serious criminal. [...]

The drumbeat regarding the “Breaking Bad” finale has led to the in-
evitable speculation on whether the final chapter in this serialized gem
will live up to the hype or disappoint (thank you, “Dexter,” for setting that
bar pretty low), with debate, second-guessing and graduate-thesis-length
analysis sure to follow. The Most Memorable TV Series Finales of All-
Time [...] No ending in recent years has been more divisive than “The
Sopranos” – for some, a brilliant flash (literally, in a way) of genius;
for others (including yours truly), a too-cute copout, cryptically leaving
its characters in perpetual limbo. The precedent to that would be “St.
Elsewhere,” which irked many with its provocative, surreal notion that
the whole series was, in fact, conjured in the mind of an autistic child.
[...]

The Wicker Man, starring Nicolas Cage, is by no means a good movie,
but I can’t really say it’s one I regret watching. I could go on and on
about the negative aspects of the movie, like the terrible acting and the
lengthy scenes where Cage is looking for the girl, has a hallucination,
followed by another hallucination, followed by a dream sequence- with
a hallucination, etc., but it’s just not worth dwelling on when it comes to
a movie like this. Instead, here’s five reasons why you SHOULD watch
The Wicker Man, even though it’s bad: 5. It’s hard to deny that it has
some genuinely creepy ideas to it, the only problem is in its cheesy,
unintentionally funny execution. If nothing else, this is a movie that may
inspire you to see the original 1973 film, or even read the short story on
which it is based. 4. For a cheesy horror/thriller, it is really aesthetically
pleasing. [...] NOTE: The Unrated version of the movie is the best to
watch, and it’s better to watch the Theatrical version just for its little
added on epilogue, which features a cameo from James Franco.

[...] What did you ultimately feel about ”The Wicker Man” movie
when all was said and done? [...] I’m a fan of the original and I’m
glad that I made the movie because they don’t make movies like that
anymore and probably the result of what ”Wicker Man” did is the reason
why they don’t make movies like that anymore. Again, it’s kind of that
’70’s sensibility, but I’m trying to do things that are outside the box.
Sometimes that means it’ll work and other times it won’t. Again though
I’m going to try and learn from anything that I do. I think that it was a
great cast, and Neil La Bute is one of the easiest directors that I’ve ever
worked with. He really loves actors and he really gives you a relaxed
feeling on the set, that you can achieve whatever it is that you’re trying to
put together, but at the end of the day the frustration that I had with ‘The
Wicker Man,’ which I think has been remedied on the DVD because I
believe the DVD has the directors original cut, is that they cut the horror
out of the horror film to try and get a PG-13 rating. I mean, I don’t know
how to stop something like that. So I’m not happy with the way that the
picture ended, but I’m happy with the spirit with which it was made. [...]

Dr. Seuss would sure be mad right now if he was alive. Cat in the Hat
proves to show how movie productions can take a classic story and turn
it into a mindless pile of goop. We have Mike Myers as the infamous
Cat in the Hat, big mistake! Myers proves he can’t act in this film. He
acts like a prissy show girl with a thousand tricks up his sleeve. The kids
in this movie are all right, somewhere in between the lines of dull and
annoying. The story is just like the original with a couple of tweaks and
like most movies based on other stories, never tweak with the original
story! Bringing in the evil neighbor Quin was a bad idea. He is a stupid
villain that would never get anywhere in life. [...]

The Cat in the Hat, [...] Based on the book by Dr. Seuss [...] From the
moment his tall, red-and-white-striped hat appears at their door, Sally
and her brother know that the Cat in the Hat is the most mischievous
cat they will ever meet. Suddenly the rainy afternoon is transformed
by the Cat and his antics. Will their house ever be the same? Can
the kids clean up before mom comes home? With some tricks (and a
fish) and Thing Two and Thing One, with the Cat in The Hat, the fun’s
never done!Dr. Seuss is known worldwide as the imaginative master of
children’s literature. His books include a wonderful blend of invented
and actual words, and his rhymes have helped many children and adults
learn and better their understanding of the English language. [...]

Table 20: Additional examples that highlight the overlap between IMDB reviews and REALNEWS articles.
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Source During median follow-up of 905 days ( IQR 773-1050 ) , 49 people died and 987 unplanned admissions were recorded (
totalling 5530 days in hospital ) .

Neighbor 0 Of this group, 26% died after discharge from hospital, and the median time to death was 11 days (interquartile range,
4.0-15.0 days) after discharge.

Neighbor 1 The median hospital stay was 17 days (range 8-26 days), and all the patients were discharged within 1 month.
Neighbor 2 The median hospital stay was 17 days (range 8-26 days).
Neighbor 3 The median time between discharge and death was 25 days (mean, 59.1 days) and no patient was alive after 193 days.
Neighbor 4 The length of hospital stay after colostomy formation ranged from 3 days to 14 days with a median duration of 6 days

(+IQR of 4 to 8 days).

Source Randomized , controlled , parallel clinical trial .

Neighbor 0 Design: Unblinded, randomised clinical controlled trial.
Neighbor 1 These studies and others led to the phase III randomized trial RTOG 0617/NCCTG 0628/ CALGB 30609.
Neighbor 2 -Definitive randomized controlled clinical trial (RCT):

Neighbor 3 RCT 1

4
randomized controlled trial.

Neighbor 4 randomized controlled trial [ Fig. 3(A)].

Source Forty primary molar teeth in 40 healthy children aged 5-9 years were treated by direct pulp capping .

Neighbor 0 In our study, we specifically determined the usefulness of the Er:YAG laser in caries removal and cavity preparation of
primary and young permanent teeth in children ages 4 to 1 8 years.

Neighbor 1 Males watched more TV than females, although it was only in primary school-aged children and on weekdays.
Neighbor 2 Assent was obtained from children and adolescents aged 7-17 years.
Neighbor 3 Cardiopulmonary resuscitation was not applied to children aged ¡5 years (Table 2).
Neighbor 4 It measures HRQoL in children and adolescents aged 2 to 25 years.

Table 21: 5 nearest neighbors of sentences from the RCT dataset (Source) in the BIOMED domain (Neighbors

0–4).


