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Abstract

BACKGROUND—Dr. Athina Markou sought treatments for a common neural substrate shared 

by depression and drug dependence. Antagonists of corticotropin-releasing factor (CRF) receptors, 

a target of interest to her, have not reached the clinic despite strong preclinical rationale and 

sustained translational efforts.

METHODS—We explore potential causes for the failure of CRF1 antagonists and review recent 

findings concerning CRF-CRF1 systems in psychopathology.

RESULTS—Potential causes for negative outcomes include: 1) poor safety and efficacy of initial 

drug candidates due to bad pharmacokinetic and physicochemical properties 2) specificity 

problems with preclinical screens, 3) the acute nature of screens vs late-presenting patients, 4.) 

positive preclinical results were limited to certain models and conditions with dynamic CRF-CRF1 

activation not homologous to tested patients, 5) repeated CRF1 activation-induced plasticity that 

reduces the importance of ongoing CRF1 agonist stimulation, 6) therapeutic silencing may need to 

address CRF2 receptor or CRF-BP molecules, constitutive CRF1 activity, or molecules that 

influence agonist-independent activity or to target structural regions other than the allosteric site 

bound by all drug candidates We describe potential markers of activation towards individualized 

treatment, human genetic and functional data that still implicate CRF1 systems in emotional 

disturbance, sex differences, and suggestive clinical findings for CRF1 antagonists in food craving 

and CRF-driven HPA-axis overactivation.

CONCLUSION—The therapeutic scope of selective CRF1 antagonists now appears narrower 

than had been hoped. Yet, much remains to be learned about CRF’s role in the neurobiology of 

dysphoria and addiction and the potential for novel anti-CRF therapies therein.
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In an early, influential contribution, Dr. Athina Markou, with Drs. Kosten and Koob, cited 

comorbidity data, preclinical findings on the neurobiological consequences of substances of 

abuse, and similar neurotransmitter alterations to propose that drug dependence and major 

depression share a common neurobiological substrate. In this conceptual model, drug use is 

motivated by negative reinforcement mechanisms to relieve depression-like symptoms – the 

so-called “self-medication” hypothesis (Markou et al 1998; Paterson et al 2007). From that 

time on, a thrust of research in their and other laboratories has been to identify novel 

compounds with antidepressant and anxiolytic activity (Markou and Cryan 2012) in order to 

reduce the suffering of emotional disorders and of the abstinent state in drug-dependent 

individuals. Relatedly, novel compounds (e.g., mGluR5 antagonists; Markou 2007; Stoker et 

al 2012) and recognized antidepressants, such as fluoxetine, bupropion and desipramine (Lin 

et al 1999; Harrison and Markou 2001; Harrison et al 2001; Cryan et al 2003a; Bruijnzeel 

and Markou 2003; Takamatsu et al 2006, 2011; Paterson et al 2008a, b; Paterson et al 2007) 

have been used as pharmacological tools to understand better the neurobiology of drug 

dependence.

At the same time that the “shared neurobiology and self-medication hypothesis” was 

published, there was mounting interest in the therapeutic potential of corticotropin-releasing 

factor (CRF) receptor antagonists to treat stress-related psychiatric disorders. Preclinical 

studies during the previous 15 years had strongly supported the hypothesis that CRF was a 

key physiological mediator of not only neuroendocrine, but also behavioral, responses to 

psychosocial stress, and stress was a known etiologic factor in depression, anxiety disorders 

and addiction. The cloning of a second CRF receptor subtype in 1995 (CRF2) raised 

uncertainty as to the roles of each subtype in mediating the actions of CRF (Lovenberg et al 

1995), including vis-à-vis the “depressed” neural substrate hypothesized to be common to 

major depression and drug dependence (Macey et al 2000).

In this context, there was much interest to determine the role of each CRF receptor subtype 

(CRF1, CRF2) in mediating dysphoria and, by inference, the anti-dysphoria therapeutic 

potential of subtype-selective CRF receptor antagonists (Zorrilla et al 2002; Henry et al 

2006; Cryan et al 2003b). In one project, Dr. Markou organized a collaboration between 

colleagues at The Scripps Research Institute and a pharmaceutical partner at Novartis-Basel 

to determine whether antalarmin, a recently identified, first-generation, small molecule 

CRF1 antagonist (see Figure 1), had anxiolytic-like activity in the rat. The findings were 

among the first to show that selective CRF1 antagonists reduced naturally-occurring anxiety-

like behavior (Zorrilla et al 2002), joining reports that a structurally-related CRF1 antagonist, 

CP-154,526, had antidepressant-and anxiolytic-like activity in rodent models (Mansbach et 

al 1997; Kehne et al 2000).

In the intervening 15 years, an enormity of medicinal chemistry, preclinical testing, and 

clinical trials concerning CRF1 antagonists has been performed. Unfortunately, since initial 

promising results of an open-label Phase IIa trial of the CRF1 antagonist R121919 for the 

treatment of major depression reported in 2000 (Zobel et al 2000; see Figure 1), a series of 

disappointing clinical failures have followed. Table 1 summarizes the many drug-like, small 

molecule CRF1 antagonists that have failed to successfully complete double-blind, placebo-

controlled trials for a wide range of stress-related psychiatric disorders. We and others have 
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reviewed details of these trials previously (Zorrilla et al 2013; Shaham and De Wit 2016; 

Sanders and Nemeroff 2016). In light of these setbacks, a recent commentary noted that 

CRF1 receptor antagonists, which were considered by many to have some of the strongest 

preclinical evidence of recent therapeutic candidates for psychiatric disorders, appeared to 

have been lost in translation from the laboratory to the bedside (Shaham and De Wit 2016). 

Here, we analyze, and in some cases revisit (Zorrilla and Koob 2010; Koob and Zorrilla 

2012; Zorrilla et al 2013; Shaham and De Wit 2016), possible explanations for the negative 

outcomes, in order to assess constructively the most current state of the field. In the spirit of 

avoiding translational obstacles, we also review recent (2014 to present) findings in humans 

and non-human primates, many of which continue to implicate a role for CRF1 receptors in 

psychiatric conditions.

Performance in animal models

Given the perception that CRF1 antagonists performed well in preclinical models but have 

performed poorly in the clinic, one might prematurely conclude that existing preclinical 

models are invalid predictors of clinical efficacy in psychiatric disorders (see also Hyman 

2012) This alarmist interpretation is not well-supported. In the alcohol research literature, 

for example, Shaham and De Wit (2016) noted that other drugs that were effective in animal 

models of stress-induced reinstatement (e.g., alpha-2 adrenoceptor agonists such as 

clonidine and lofexidine) translated to showing efficacy against stress-induced drug craving 

in human laboratory studies (Mantsch et al 2016; Sinha et al 2011). Similarly, acamprosate 

and the opioid receptor antagonists naltrexone and nalmefene reduce operant oral ethanol 

self-administration in rats under a variety of conditions (Rassnick et al 1992; Heyser et al 

1998; Heyser et al 2003; Sabino et al 2006; Ji et al 2008; Gilpin et al 2008; Walker and 

Koob 2008) and, analogously, show some efficacy to mitigate alcohol use disorders (see 

Stevenson et al 2015; Keating 2013; Rösner et al 2010; Plosker 2015; but see Palpacuer et al 

2015). Gabapentin reduced both the anxiogenic-like behavior and the increased ethanol self-

administration observed in withdrawn, ethanol dependent rats, but not non-dependent rats 

(Roberto et al 2008; Besheer et al 2016; Watson et al 1997) and was found to improve 

emotional function and reduce insomnia and alcohol use in abstinent alcoholics (Bonnet et al 

2007; Malcolm et al 2007; Brower et al 2008; Myrick et al 2009; Mason et al 2014). Most 

recently, the glucocorticoid receptor antagonist mifepristone, which like CRF1 antagonists 

more efficaciously reduces ethanol intake in dependent rodents during abstinence than in 

non-dependent rodents (Yang et al 2008; Simms et al 2012; Vendruscolo et al 2012; 

Vendruscolo et al 2015), was found to reduce alcohol-cued craving in the laboratory as well 

as naturalistic measures of alcohol use in a double-blind, placebo-controlled study of 56 

alcohol-dependent human subjects (NCT01548417; Vendruscolo et al 2015). Thus, the 

preclinical models do show predictive sensitivity to detect effective treatments.

On the other hand, Haller et al., have pointed out that, like CRF1 antagonists, 40% of 

compounds that showed activity in so-called “classical” or “popular” animal models of 

anxiety-like behavior (which are used in ~90% of anxiety studies), ultimately failed to show 

therapeutic activity in humans (Haller et al 2013). Accordingly, many neurokinin, 

cholecystokinin, and 5-hydroxytryptamine type 3 receptor antagonists that showed activity 

in these preclinical models and were developed contemporaneously with CRF1 receptor 
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antagonists also were then found to be ineffective to treat anxiety disorders. Thus, even 

when preclinical models show predictive sensitivity to detect therapeutic compounds (i.e., 

~60% of compounds that advanced to human trials based on promising results in anxiety 

models did ultimately show efficacy), they may have suboptimal specificity. Identical issues 

hamper preclinical models of antidepressant activity. Solutions to improve not only the 

sensitivity, but also specificity, of preclinical anxiety and depression models have been 

proposed and apply similarly to all psychiatric domains in which CRF1 antagonists have yet 

to show clinical efficacy (Haller et al 2013; Griebel et al 2013; Stewart et al 2015; Belzung 

2014).

The concept of predictive, validity, in the literature currently is often used to refer, to 

whether an effective treatment is detected by a model In reality, however, predictive validity 

refers to whether a model distinguishes effective vs, ineffective, treatments, which jointly 

reflects the identification of true positives and true negatives in a summary measure of 

accuracy. Analogous to how positive and negative predictive value jointly determine the 

accuracy of diagnostic tests in receiver-operating-characteristics (ROC) analyses, both 

sensitivity and specificity must be considered to determine the predictive validity of animal 

models. From a screening perspective, the joint use of an animal model with high predictive 

sensitivity with another having high predictive specificity may yield better outcomes than 

current screening approaches that focus more on predictive sensitivity (see Abruzzo et al 

2015 for analogous approaches with diagnostic tests). The suboptimal specificiiy of 

commonly used models of depression and anxiety disorders may reflect an incomplete 

implementation of the pathognomonic constructs and pathophysiological bases of these 

disorders, in contrast with more recently developed models for alcohol use disorder.

Another consideration is the reality that CRF1 antagonists did not show activity in some 

models or conditions under which some clinically efficacious treatments do. For example, 

CRF1 antagonists did not reduce substance- or cue-induced reinstatement of substance-

seeking in animal models, so it is not surprising that they did not reduce alcohol cue-induced 

craving in human laboratory studies (Schwandt et al 2016; Kwako et al 2015). Similarly, 

CRF1 antagonists did not reduce and even exacerbated fear-potentiated acoustic startle 

responses in rat models (Walker et al 2009). Accordingly, the CRF1 antagonist GSK561679 

ultimately increased fear-potentiated acoustic startle reactivity in 31 healthy women (Grillon 

et al 2015). Thus, for a few endpoints, the “negative” clinical results may actually translate 

from the preclinical findings.

Along the same lines, whereas several clinically effective treatments like naltrexone, 

nalmefene, and acamprosate reduce alcohol self-administration in rat models of non-

dependent alcohol self-administration, including in rats genetically selected for high alcohol 

preference or in outbred rats receiving alcohol under intermittent schedules of alcohol access 

(Rassnick et al 1992; Heyser et al 1998; Heyser et al 2003; Sabino et al 2006; Ji et al 2008; 

Gilpin et al 2008; Walker and Koob 2008), CRF1 antagonists frequently did not (Sabino et al 

2006; Gilpin et al 2008; Sabino et al 2013). Rather, they differentially or more strongly 

showed effects in rats that had been made dependent on alcohol due to chronic intermittent 

exposure (but, see also some positive findings in non-dependent rat (Simms et al 2014; 

Cippitelli et al 2012) and mouse models (Lowery et al 2010; Sparta et al 2009; Lowery et al 
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2008; Sparta et al 2008)). Similarly, unlike benzodiazepines, CRF1 antagonists did not 

typically show activity under baseline conditions in most models of anxiety-like behavior, 

including the elevated plus-maze (see Zorrilla and Koob 2004). Likewise, unlike tricyclic 

antidepressants and noradrenergic- or serotonergic-reuptake inhibitors, CRF1 antagonists did 

not consistently show activity under baseline conditions in rodent forced swim tests and 

several other models that have been used to screen for antidepressant-like compounds 

Rather, they required environmental, pharmacological, or genetic manipulation to induce a 

stress-like phenotype during testing (or, for some antidepressant-predictive models, did not 

show activity even under those conditions; see Zorrilla and Koob 2010). One skeptical 

interpretation of these results might have been that, even though the forced swim test is 

subject to false positive results (specificity issue, low PPV+), perhaps the predictive value of 

a negative result in the model is high (sensitivity issue, high NPV+) CRF1 antagonists might 

thereby have not been expected to show antidepressant-like activity. Instead, the collective 

findings were regarded as being conceptually appealing and heralded as evidence that 

pathological substance use and dysphoria are associated with recruitment of otherwise 

quiescent CRF-CRF1 synaptic transmission, a hypothesis also supported by molecular and 

electrophysiological studies in preclinical models.

Revisionist hypotheses and their implications

In light of the negative findings to date in clinical studies, revised hypotheses concerning the 

manner of “CRF-CRF1 recruitment” needed for therapeutic activity have been offered For 

example, CRF1 antagonists were proposed to be effective in “specific psychiatric disorders 

in which stress was a dynamic rather than chronic condition” (to include, for example, 

PTSD, panic and addiction disorders and exclude major depression and generalized anxiety 

disorder; Koob and Zorrilla 2012) or, in which central CRF overactivation was explicitly 

present. Neither of these hypotheses has been fully evaluated yet, but they raise several 

testable predictions.

One interpretation of the “dynamic” revision is not only that only certain types of stress-

related disorders may be treatable by CRF1 antagonists, but also that a given patient may be 

more sensitive to CRF1 antagonist treatment earlier in the course of their disorder (before 

CRF activation has become chronic). The “dynamic” revision also suggests that sensitivity 

to CRF1 antagonists might decrease with greater chronicity in preclinical models and that 

repeated CRF1 activation (as in chronic stress) may lead to plasticity within or downstream 

of CRF1 receptor signaling that comes to perpetuate the maladaptive behavior comparatively 

less dependent on subsequent acute CRF1 agonist stimulation. Possible mechanisms for such 

plasticity have been described, including kindling, priming, heterologous sensitization, 

altered G-protein coupling, altered splicing, and long-term potentiation (Lee et al 2008; Ray 

et al 2011; Sajdyk et al 1999; Rainnie et al 2004; Narla et al 2016; Zmijewski and Slominski 

2010; Dunn et al 2016; Magalhaes et al 2010; Bunson et al 1998; Rajbhandari et al 2015; 

Huang et al 2010; Krishnan et al 2010). It may be that patients present for treatment later in 

their disease course, after more such plasticity has occurred, as compared to preclinical 

models, which are designed for expeditious testing. Finally, the “dynamic” revision suggests 

that patients may be more responsive to CRF1 antagonists during particular circumstances or 

stages of their disorder during which stress responses play a greater role in driving 
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symptoms. In support of the final proposition, oral CRF1 antagonist emicerfont 

administration (and not placebo) selectively reduced BOLD fMRI signal in the 

hypothalamus, amygdala, hippocampus, insula, anterior cingulate, and orbitomedial 

prefrontal cortices in patients with irritable bowel disease who were actively experiencing 

anxiety in anticipation of visceral pain (Hubbard et al 2011). Similarly, the CRF1 antagonist 

R317573/JNJ19567470/CRA5626 decreased regional glucose utilization in the amygdala 

(Schmidt et al., 2010) and anxiety responses to 7.5% acute CO2 inhalation challenge in a 

double-blind, placebo-controlled trial with healthy men (Bailey et al 2011).

Relatedly, the “CRF overactivation” revision suggests that CRF1 antagonists may be 

effective in patients who show high activity in CRF-CRF1 systems (on either a trait or state 

basis). This could be probed via biochemical (e.g., high CSF CRF), neuroimaging (e.g., 

altered CRF1 receptor availability), endophenotypic (e.g., increased REM sleep/pressure 

signs of high CRF drive; see also. Heilig et al 2016, and Heilig and Leggio 2016), or genetic 

means (e.g., functional single nucleotide polymorphisms [SNPs] in CRF system molecules; 

Holsboer and Ising 2010; Zorrilla et al 2013; Sanders and Nemeroff 2016, Treutlein et al 

2006, Barr et al 2008, Nelson, et al 2010, Heilig et al 2011) Significant limitations of the 

often cited initial clinical study that obtained promising results with R121919 in. patients 

with major depression (Zobel et al 2000) include that it was small, not double-blind, and did 

not show a significant cross-sectional difference between subjects treated with the high-

versus low-escalating dose schedule. With regard to potential markers of treatment response, 

however, a reanalysis of the study found that patients with increased rapid eye movement 

(REM) sleep density during the first half of the baseline night showed a greater reduction of 

Hamilton-Depression scores with high-dose R121919 treatment than those that did not. 

Low-dose R121919 treatment was ineffective in all groups (Held et al 2004). On the other 

hand, several SNPs for CRF1 and CRF-binding protein (CRF-BP) did not predict treatment 

response to pexacerfont in patients with generalized anxiety disorder (Coric et al 2010). 

Thus, validating therapeutically prognostic markers of CRF-CRF1 activation in double-

blind, placebo-controlled studies may be key.

Targeting and validating drug action in humans

Clinical trial failures alternatively might reflect the inadequacy of prioritized drug candidates 

to quiet central CRF1 signaling in humans. Indeed, early CRF1 antagonists had unacceptably 

high lipophilicities and other physiochemical properties not characteristic of successful CNS 

drugs, leading to high toxicity potential and poor bioavailability (see Zorrilla and Koob, 

2010). Some compounds were suggested to yield negative results because they had lower 

CRF1 affinity than R121919 (e.g., CP 316,311; Holsboer and Ising 2010). More recently, it 

was proposed that a long duration of receptor residency may be key for efficacy (Fleck et al 

2012; Zorrilla et al 2013), because R121919 had slower receptor dissociation rates than 

compounds that had failed clinically. In support of the importance of this property for 

antagonist action in vivo, verucerfont (NBI-77860; see Figure 1), a high-affinity, drug-like 

(Zorrilla and Koob, 2010), CRF1 antagonist with long receptor residence, was found, like 

R121919, and unlike the faster-dissociating compounds pexacerfont and CP316,311, to 

reduce circulating adrencocorticotropic hormone (ACTH) in adrenalectomized rats. In 

anxious individuals with alcohol use disorder, verucerfont also reduced ACTH and cortisol 
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responses to dexamethasone/CRF challenge and blunted right amygdala fMRI activation 

responses to fearful faces, activities that had not been seen for the faster-dissociating 

pexacerfont (Schwandt et al 2016; Kwako et al 2015). These findings validate the drug’s 

pharmacological action Also, as expected, verucerfont did not reduce alcohol cue-induced 

craving or anxiety, negative findings consistent with the lack of action of CRF1 antagonists 

in animal models of cue-induced craving Unexpectedly, however, verucerfont still did not 

reduce alcphol craving or anxiety induced by public speaking or by stress-related guided 

imagery; rather, it worsened anxiety associated with the New Trier social stress test of public 

speaking (Schwandt et al 2016). Thus, although the verucerfont trial was negative, the 

confirmation that receptor residence, a previously underappreciated property, was key for 

pharmacological action, supports the possibility that not all mechanisms critical for 

achieving desired CRF1 silencing in humans have been identified.

To the degree that the biology of human vs rodent CRF1 receptors differ (or that of several, 

molecular partners that influence CRF1 signaling; Dunn et al 2016; Bonfiglio et al 2013; 

Bangasser et al 2010 Walther et al 2015), cryptic species differences also may be impeding 

therapeutic silencing of CRF1 receptors in humans. Furthermore, selective CRF1 antagonists 

that have been tested to date have no activity at CRF2 receptors or the CRE-binding protein 

(CRF-BP). The CRF2 subtype in rodents has often been regarded as having a net null or 

perhaps even anxiolytic-like action, but as Dr. Markou and others showed, stimulation of 

CRE2 receptors in the lateral septum is anxiogenic in rodents (Bakshi et al 2007, Henry et al 

2006, Anthony et al 2014). Furthermore, in contrast to rodents, which mainly express only 

CRF1 receptors in the central nucleus of the amygdala (CeA) (Van Pett et al 2000), primates 

also express substantial numbers of CRF2 receptors of unknown behavioral significance in 

the CeA (Sanchez et al 1999). Third, humans, but not rodents, possess a unique CRF2 

gamma subtype (Kostich et al 1998).Finally,CRF2receptors interact with the CRF-B.P to 

produce actions independent from CRF1 (Wang et al 2007, Ungless et al 2003, Slater et al 

2016a, Slater et al 2016b, Milan-Lobo et al 2009).

In this context, the CRF-BP initially had been regarded as serving an inhibitory role in the 

CRF system; but, it has increasingly been recognized to have other modulatory roles in the 

brain (Westphal and Seasholtz 2006). Indeed, the CRF-BP has recently received attention as 

a potential target for its role in alcohol use disorder (Haass-Koffler et al 2016, Ketchesin et 

al 2016); and, particularly, its role in the escalation of alcohol drinking may involve 

interaction with CRF2 receptors (Albrechet-Souza et al 2015, Quadros et al 2016). Receptor 

activity modifying proteins (RAMPs) are other molecules that interact directly with the CRF 

system, as RAMP2 binds CRF1 and increases its surface expression and signaling sensitivity 

(Wootten et al 2013). But CRF1 antagonists to date likewise have not explicitly considered 

CRF1-RAMP2 complexes.

Thus, perhaps small molecules that: 1) act as non-selective antagonists at both CRF 

subtypes, 2) exhibit inverse agonist activity, or 3) also modulate activities of other CRF 

system molecules, such as CRF-BP or receptor activity modifying protein-2 (RAMP2) 

(Wooten et al 2013; Weston et al 2016; Gingell et al 2016) would have greater therapeutic 

activity than the many selective CRF1 neutral antagonists tested to date. Similarly, the 

structural manner of binding the receptor may be important; perhaps small molecules that 
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bind differentially to certain residues of the atypical allosteric binding site (e.g., compare 

MTIP vs. CP-376395; Xu et al 2015) may slow the antagonist’s escape kinetics (Bai et al 

2014) or direct its anti-signaling pathway bias (Suen et al 2014; Zhang et al 2016). 

Alternatively, a small molecule that binds to the orthosteric (agonist)-binding site, rather 

than to the atypical, deep allosteric binding site that is bound by all clinically-evaluated 

CRF1 antagonists to date (see Zorrilla and Koob, 2010; Hollenstein et al 2013; Hausch 

2013) may yield different pharmacological effects. Finally, there are different degrees of 

“inactivity” in terms of receptor confirmation, and a recent study showed that a cooperative, 

“double antagonist” approach (one at orthosteric, one at allosteric site) led to the most 

inactive state for the CC chemokine receptor 2, another G-protein coupled receptor (Zheng 

et al 2016; Miao and McCammon 2016).

The unavailability of a CRF1 radiotracer for PET/SPECT imaging to confirm adequate 

receptor occupancy in humans, despite continuing efforts to obtain one that exhibits specific 

binding in vivo (Stehouwer et al 2015a; Stehouwer et al 2015b; Lodge et al 2014) as well as 

the uncertain density of CRF1 receptors in human brain vs. other species (see discussion in 

Lodge et al 2014) also may be leading to suboptimal prioritization of drug candidates and 

dosing. A surrogate, non-PET biomarker approach (Schwandt et al 2016) used to predict 

central receptor occupancy found that even with high estimated (~90%) occupancy, 

verucefont still did not produce therapeutic action The development of CRF1 PET/SPECT 

radioligands could further validate and refine such surrogate approaches for estimating 

receptor occupancy.

Recent genetic and molecular findings in humans

In addition to results already cited, several genetic and molecular findings since 2014 in 

humans and non-human primates continue to implicate CRF-CRF1 systems in emotional 

dysfunction, addiction, or stress-related phenotypes (see also Zorrilla et al 2013, for review 

of earlier studies of CRF system SNPs in addiction).

As prelude, major limitations of the genetic variant studies to date are that many of them 

have not been replicated and, for most, their molecular effect, if any, on the CRF1 system (as 

opposed to a putative surrogate marker of CRF1 system activity) is unknown. Additionally, 

in general, individual genetic variants are associated with a low percentage of psychiatric 

disease prevalence. Furthermore, with only a few recent exceptions (see Clarke et al 2014, 

Crist et al 2016, Crist et al 2013 Heinzerling et al 2013) genetic variants have not yet 

reliably and reproducibly predicted treatment response in psychiatric diseases (Jones and 

Comer 2015 Berrettini 2016 Qedegaard et al 2016) A molecular, and not only phenotype-

based, understanding, of a variant’s functional effect (if any) may ultimately be needed to 

understand its prognostic relation to CRF1 antagonist treatment response.

Major Depression

With respect to major depression, CRHR1 SNPs of rs7209436, rs110402, and rs242924 

previously had been associated with peak cortisol responses to the Trier Social Stress Test in 

healthy adults (Mahon et al 2013). Recently it was reported that a TATGA haplotype 

combination that includes the above 3 polymorphic loci (rs17689966, rs173365, rs7209436, 
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rs110402, and rs242924) increased the risk for major depression by 68% in a community-

based study in South Spain (Ching-Lopez et al 2015). Furthermore, the T allele at CRHR1 
rs242941, which forms part of a haplotype that previously had been linked to major 

depression and antidepressant response (Liu et al 2006; Licinio et al 2004; Liu et al 2007) 

was linked to family history of mental illness (Tan et al 2015). Smoller recently reviewed 

genome-wide association studies that implicate CRHR1 genotype X early childhood 

maltreatment environmental interactions for major depression risk (Smoller 2016). Finally, 

an A-Deletion-A CRHR1 haplotype (rs77032924, rs3832590, rs6159) was associated with a 

trend for poorer response to treatment with mirtazapine or escitalopram in patients with 

major depression not experiencing stressful life events, perhaps suggesting a role for this 

haplotype in driving CRF-mediated intrinsic dysphoria that is resistant to non-CRFergic 

intervention (Chang et al 2015).

Suicidality

CRF-CRF1 systems also were linked to suicidality, with ~2-fold increased CRF mRNA in 

the anterior cingulate of depressed patients who committed suicide as opposed to those who 

died from natural causes (Zhao et al 2015). Allele C at the Crhr1 rs878886 locus was 

overrepresented in suicide attempters from both Russian and Tatar ethnicity samples 

(Khalilova et al 2014). In addition, CRHR1 loci that mitigated (rs2664008) or tended to 

potentiate suicide risk (rs1724425, rs1526123, rs6503447, rs11655764) were identified in a 

case-control study of individuals with bipolar disorder, the former especially buffering the 

effects of early childhood abuse (Breen et al 2015)

Anxiety disorders

With respect to anxiety disorders, a recent case-control study found that the minor (A) allele 

of CRHR1 rs17689918 and, relatedly, a CGTGA haplotype (rs7209436, rs4458044, 

rs12936181, rs3785877, rs17689918) increased risk for panic disorder selectively in women. 

Unexpectedly, post-mortem studies showed that this risk allele was associated with 

decreased CRF1 mRNA in human forebrains and amygdala. Neuroimaging studies found 

that allele carriers showed a pattern of altered fMRI signal in the prefrontal cortex and 

amygdala that was interpreted to reflect overgeneralization of fear conditioning and 

underprocessing of safety signals; allele carriers also showed less “flight” and more 

“anxious apprehension” behaviors in response to fear provoking-stimuli. While the results 

implicate CRF1 in anxious processing in panic disorder, they do so in an unexpected 

direction and also indicate that pharmacogenetic selection of patients in which CRF1 

receptors play a role may need to be considered in a sex-specific manner (Weber et al 2016). 

An additional concern here as well is if a patient has fewer CRF1 receptors, then they have 

less available drug target.

In apparent opposition to the findings in people with panic disorder, Kalin, Oler and 

colleagues observed that viral vector mediated overexpression of CRF in the CeA of young 

rhesus monkeys led to increased anxious temperament (freezing, cooing and cortisol 

reactivity in response to a human intruder). The increase in anxious temperament correlated 

directly with increased fluorodeoxyglucose metabolism (by PET) and fMRI functional 
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connectivity within a circuit that included the dorsal amygdala, orbital proisocortex/anterior 

insula and hippocampus (Kalin et al 2016).

Addiction

With respect to addiction, the CRHBP rs1875999 locus was associated with risk for both 

cocaine and heroin addiction in African Americans in a study of heroin addicts (n = 314), 

cocaine addicts (n = 281), and healthy controls (n = 208) (Levran et al 2014). SNPs in the 

CRHBP (10kD) fragment, rs10055255, rs10062367, and rs7728378 were each shown to be 

associated with increased risk of alcohol drinking and/or anxiety in patients with alcohol use 

disorder (Haass-Koffler et al 2016).

Irritable bowel syndrome

Several recent human studies further implicated CRF-CRF1 activity in irritable bowel 

syndrome (IBS), a heterogeneous diagnosis that involves abdominal pain, altered bowels 

habits, gastrointestinal (GI) symptom-specific anxiety, and altered, stress-sensitive brain-gut 

interactions, often in association with comorbid anxiety or mood disorders. First, men with 

IBS showed increased sensitivity to intravenous CRF infusion, with greater right amygdala 

activation (by H2
15O-PET) and peripheral noradrenaline secretion than in healthy controls 

(Tanaka et al 2016). Second, the major alleles of CRHR1 rs110402, rs242924 and rs720943 

(all C) were associated with increased risk for IBS and, within IBS patients, increased GI-

symptom-related anxiety. Unexpectedly, IBS patients with the same risk alleles showed 

reduced acoustic startle responses vs. healthy controls, whereas those with the minor alleles 

did not, indicating a complex influence of the CRHR1 SNPs on different symptoms of 

anxiety per diagnostic group (Orand et al 2016). Finally, a separate study of young Japanese 

individuals observed that the CRHR1 rs10474485 locus was associated with increased 

psychometric scores for depression, perceived stress or state/trait anxiety in IBS patients 

with diarrhea or mixed symptoms, with the CRHR1 variant more predictive of differences in 

emotional scales in women than in men (Sasaki et al 2016). Two. CRHR2. variants, 

rs4722999 and rs3779250, have also been associated with genotype frequency of IBS and 

the distribution of the major allele was significantly different in IBS patients compared to 

controls (Komuro et al 2016).

Other emotion-related phenotypes

A recent neuroimaging study of school-age children was performed involving a genetic 

profile score that predicts HPA-axis reactivity, wherein 5 of the 10 SNPs used to calculate 

the genetic profile score involved CRHR1 loci (rs4792887, rs110402, rs242941, rs242939, 

rs1876828). Higher genetic profile scores were found to predict greater amygdala and 

hippocampal fMRI activational responses to facial stimuli in pubertal, but not non-pubertal, 

children. In pubertal children, differential activation to fearful faces was seen in girls and to 

neutral faces in boys (Pagliaccio et al 2015). The results again are consistent with the 

possibility of sex differences in the functional significance of CRF1 genetic variants in a 

manner that depends upon developmental milestones associated with puberty. Indeed, 

gonadal hormones influence the regulation of CRF system molecules in both male and 

female rats in a puberty-relevant manner (Bangasser and Valentino 2012; Gomez et al 2004). 

Furthermore, Valentino and colleagues have described sex differences in the signaling 
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pathway bias of CRF1 receptors in rodents (Valentino et al 2013a; Valentino et al 2013b), a 

mechanistic difference that may be relevant to some of the reviewed sex differences in the 

functional impact of CRHR1 genetic variants.

A separate imaging study at the Duke Neurogenetics Center examined the widely studied 

CRHR1 locus rs110402, which, as reviewed above, has been associated with increased HPA-

axis reactivity, in interaction with a locus relevant to a gene encoding fatty acid amide 

hydrolase, an enzyme that degrades the endocannabinoid anandamide. Individuals with a 

genetic background of increased CRF1 signaling (A homozygotes) in combination with 

increased anandamide inhibitory tone (FAAH 385A carriers) showed decreased habituation 

of the BOLD fMRI response of the basolateral amygdala during emotional facial processing. 

The blunted amygdala habituation, in turn, was associated with increased risk for an anxiety 

disorder (Demers et al 2016). Interestingly, the rs110402 locus also was associated recently 

with premature decline in working memory, but not other measures of neuropsychological 

function, across the lifespan. The finding has been interpreted to reflect a chronic deleterious 

influence of stress reactivity (Grimm et al 2015).

Finally, the GGA haplotype at polymorphic loci of the CRHR1 gene (rs4458044, rs242924, 

and rs1768996) was associated with aggressive behavior towards others as determined in a 

Han Chinese sample of violent criminals (Chen et al 2014).

Summary

Variants of the CRHR1 and CRHBP genes continue to be associated with the diagnoses, 

phenomenology and/or non-CRFergic treatment response of major depression, suicidality, 

panic disorder, and irritable bowel syndrome. Findings also implicate other stress-related 

(endo)phenotypes, including not only HPA-axis reactivity and startle reactivity, but also 

more novel findings, such as altered amygdalar habituation or activation during facial 

processing, premature impairment of working memory, and physical aggression. A new 

development includes the finding that there may be sex differences or developmental 

(pubertal) moderation of the predictive relation of some genetic variants, and that for some 

phenotypes (e.g., panic disorder, startle reactivity between IBS patients and controls). 

Particular CRF1 variants also appeared to have effects opposite to those anticipated from a 

simple model of greater CRF1 activation always having anxiogenic action. The latter result 

may reflect that CRF1 activation in some brain regions may have anxiolytic-like effects, 

including via circuit action to inhibit anxiogenic-like effects of CRF1 activation elsewhere 

(Sztainberg et al 2011; Walker et al 2009). These results may also relate to why CRF1 

antagonists even exacerbated anxious or fearful symptomatology in two human studies 

(Grillon et al 2015; Schwandt et al 2016).

Variants that have been replicated across studies and which, at the least, associate with an 

endophenotype of CRF1 activation, such as rs7209436, rs110402, or rs242924, are 

hypothesized to be more likely to predict better treatment response to CRF1 antagonists. 

However, as alluded to previously, important criticisms of these genetic variant studies 

include that their associated odds ratios, even when significant, have been modest (Levran et 

al 2014), and many genetic variants have unknown molecular effects, if any, on the. CRF1 

system. Additionally, many genetic variant studies failed to replicate (Buttenschøn et al 
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2016, Ventura-Juncá et al 2014) or have not yet been replicated. Finally, the finding that 

variants of CRHBP and CRHR2 have been associated with psychiatric and stress-related 

disease lends support to the hypothesis that other components of the CRF system may be 

involved and warrants further exploration of polymorphs of CRHBP, CRHR2, and/or 

RAMP2.

Recent promising CRF1 antagonist trials in humans

Two clinical trials with CRF1 antagonists reported potentially promising results during 2016. 

First, in a randomized, double-blind, placebo-controlled study that was stopped by the NIH. 

IRB for reasons unrelated to adverse drug effects or efficacy (reinterpretation of the 

Common Rule for human snbject protection under HHS, 45 CFR 46A), pexacerfont was 

found to produce effect sizes consistent with reduction of food craving and laboratory stress-

induced eating in a small sample of healthy individuals with restrained eating. Although 

statistical significance was not seen, the study was stopped prematurely and thereby only 

had 30% power to detect the stated effect size of.interest; thus, it would be inappropriate to 

interpret it as a negative result and observed effect sizes may inform whether future 

appropriately-powered studies are warranted. The effect size for pexacerfont’s reduction of 

laboratory stress-induced eating was r = 0.30 (counternull r = 0.55; Rosenthal and Rubin 

1994) and for its reduction of craving for sweet foods (brownies and Swedish fish) ranged 

from r = 0.28 to 0.49 (counternull rs = 0.52–0.79). Furthermore, in bogus taste tests 

designed to mask the true dependent measure of interest (intake), pexacerfont reduced eating 

of palatable foods independent of which imagery script was presented before food access 

(neutral, food cue, stress) with an effect size of r = 0.34 (counternull r = 0.61). Finally, 

nightly Yale Food Addiction Scores were consistently lower in subjects receiving 

pexacerfont (vs. placebo) beginning the evening after the first loading dose of pexacerfont 

with an effect size of r = 0.39 (counternull r = 0.68). Because the study was stopped 

prematurely (n = 11–13/group for laboratory studies and n = 13–17/group for YFAS 

ratings), only the YFAS result was significant at the p < 0.05 level. However, Bayes factor 

analysis, a ratio that relates to the relative probability of an effect actually being present vs. 

the null effect (Goodman 1999), and counternull analysis, which describes the effect size as 

likely to be true as the null, indicate a strong positive potential of CRF1 antagonists to 

reduce palatable food craving and eating in restrained eaters (Epstein et al 2016) and justify 

a well-powered clinical trial in this domain. A concern with these results is that the YFAS 

scores had changed as early as 24-hours post-treatment, and the degree of CNS exposure 

obtained at that time is uncertain, leading one to question the CRF1 antagonist mechanism of 

action Still, the preliminary results concord with preclinical studies showing that systemic 

administration of CRF1 antagonists reduce overeating of a palatable, high sucrose diet in rats 

receiving intermittent access to the diet (Cottone et al 2009) and also reduce stress-induced 

reinstatement of palatable food-seeking (Ghitza et al 2006). Why the clinical results differ 

from those obtained for alcohol craving with pexacerfont in anxious alcoholics (Kwako et al 

2015) is unclear.

The second promising clinical result involved a phase Ib, single-blind, placebo-controlled, 

fixed-sequence, single-dose trial of verucerfont, (NBI-77860; see Figure 1) for 21-

hydroxylase deficiency, the most common cause of congenital adrenal hyperplasia. In 21-
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hydroxylase deficiency, the cortisol synthetic pathway is impaired, leading to loss of 

glucocorticoid negative feedback over the HPA-axis (similar to adrenalectomy) and 

consequent hypothalamic CRF-driven hypersecretion of ACTH, with accumulation of 

upstream precursors of cortisol, including 17α-hydroxyprogesterone (17OHP). Because 

17OHP cannot be processed to cortisol, it instead is converted along the androgen pathway, 

leading to clinical manifestations of congenital adrenal hyperplasia. Following CRF1 

antagonist treatment, dose-dependent reductions of ACTH and/or 17OHP were observed in 

six of eight subjects, with overall mean reductions of 41–43% for ACTH and, at the higher 

antagonist dose, 27% for 17OHP. Thus, the results validate the reviewed clinical finding 

with verucerfont (Schwandt et al 2016) that CRF1 antagonists with long receptor residence 

can reduce CRF-driven chronic overactivation of the HPA-axis and indicate one possible 

therapeutic indication for this action (Turcu et al 2016). This positive finding also is 

consistent with the revisionist hypotheses that robust pathophysiological overactivation of 

CRF signaling is a key for therapeutic potential.

Conclusion

We reviewed a range of issues that may explain why CRF1 antagonists could be said to have 

been lost in translation from the bench to the bedside. These include not only potential 

specificity limitations of the preclinical models themselves, but also the reality that, for some 

predictive endpoints, CRF1 antagonists produced therapeutic-like results only under certain 

circumstances (e.g., high stress, withdrawal), unlike some clinically effective compounds 

that act more generally. In some models, CRF1 antagonists had null or even exacerbating 

actions, the latter consistent with analogous findings in gene variant and clinical studies. 

Recognition of this leads to the revised view that the efficacy of CRF1 antagonists may be 

correspondingly circumscribed to particular psychiatric disorders or symptoms, patient 

subgroups, or circumstances in which the activation of pro-stress-like CRF-CRF1 circuits is 

dynamically heightened. We described genetic and non-genetic markers that could be 

evaluated as markers of such activation towards individualized treatment and obstacles that 

remain for such approaches (e.g.., CRF1 in vivo radiotracer; molecularly validated, 

functional SNPs). We also discussed both solved and unresolved issues concerning whether 

small molecules that have been advanced to the clinic adequately engaged human CRF 

system molecules in the manner needed to attain therapeutic silencing. We also noted 

mechanisms via which CRF1 stimulation-induced plasticity within and downstream of CRF1 

receptors may reduce the need for high ongoing CRF1 agonist stimulation to perpetuate the 

maladaptive behavior. Finally we review promising, recent human trials which suggest that 

CRF1 antagonists may have potential to reduce craving for and stress-induced eating of 

palatable food as well as CRF-driven overactivation of the HPA-axis. One must be cognizant 

of the significant opportunity cost in continuing to pursue selective CRF1 antagonists for 

therapeutic use, but given the increasing understanding in the field, several therapeutie 

avenues with these or, especially, novel anti-CRF compounds remain underexplored Thus, 

while it appears that the therapeutic scope of selective CRF1 antagonists is narrower than 

had been hoped when Dr. Markou organized those early studies of antalarmin, much remains 

to be learned about the shared molecular roles of CRF receptors in the neurobiology of 
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stress, dysphoria and addictive behavior in humans and the potential individualized role of 

novel anti-CRF approaches therein.
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Figure 1. 
A. Dr. Athina Markou, one of the pioneers in the preclinical study of selective CRF1 

antagonists for potential therapeutic use in emotional disorders B. The chemical structure of 

antalarmin (CAS: 157284-96-3), an early CRF1 antagonist shown to have anxiolytic-like 

activity by Dr. Markou and colleagues, and similar structures of CRF1 antagonists that have 

been evaluated in clinical trials, including compounds R121919 (CAS: 195055-03-9), 

pexacerfont (CAS: 459856-18-9), and verucerfont (CAS: 885220-61-1)
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Table 1

Clinical trial outcomes of small-molecule CRF1 antagonists in selected samples with stress-like psychiatric 

symptoms

Trial for Drug Notes Refs

Major depression R121919 Reduced anxiety and depression; 
normalized sleep EEG But, 
withdrawn due to liver enzyme 
elevations

Held et al 2004; Kunzel et al 2005; 
Kunzel et al 2003; Zobel et al 
2000; Neurocrine Press Release 
April 5, 2000

PF-00572778 Withdrawn due to liver enzyme 
elevations

NCT00580190

ONO-2333Ms Lacked efficacy NCT00514865; Ono 
Pharmaceutical Co Ltd, 2008

CP-316,311 Lacked efficacy Binneman et al 2008

SSR125543 Lacked efficacy NCT01034995; Sanofi Report 
DFI5687, September 2011

Verucerfont
(NBI-77860/GSK561679A)

Lacked efficacy Tellew et al 2010; 
GlaxoSmithKline Results 
Summary for CRS106139, 2010

Pexacerfont
(BMS-562,086)

Study completed October, 2007; 
no results reported

NCT00135421

Generalized Pexacerfont Lacked efficacy Coric et al 2010

Anxiety Disorder (BMS-562,086)

Post-traumatic stress disorder Verucerfont
(NBI-77860/GSK561679A)

Lacked efficacy NCT01018992

Suicidal ideation in anxious 
patients

Pexacerfont
(BMS-562,086)

Lacked efficacy Coric et al 2010

Social anxiety disorder Emicerfont
(GW876008)

Study completed January, 2008; 
no results reported

NCT00555139

Verucerfont
(NBI-77860/GSK561679A)

Study completed January, 2008; 
no results reported

NCT00555139

Alcohol dependence Pexacerfont
(BMS-562,086)

Lacked efficacy to reduce alcohol 
craving, emotional responses to 
alcohol- or stress-related imagery, 
or anxiety

Kwako et al 2015

Verucerfont
(NBI-77860/GSK561679A)

Lacked efficacy to reduce alcohol 
craving, emotional responses to 
alcohol- or stress-related imagery, 
or anxiety in anxious alcoholic 
women.

Schwandt et al 2016

Irritable bowel syndrome Emicerfont
(GW876008)

Lacked efficacy GlaxoSmithKline Results 
Summary for CRI105626, 2008

Pexacerfont
(BMS-562,086)

Lacked efficacy Sweetser et al 2009
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