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ABSTRACT
Geo-replicated services need an effective way to direct client re-
quests to a particular location, based on performance, load, and
cost. This paper presents DONAR, a distributed system that can
offload the burden of replica selection, while providing these ser-
vices with a sufficiently expressive interface for specifying map-
ping policies. Most existing approaches for replica selection rely
on either central coordination (which has reliability, security, and
scalability limitations) or distributed heuristics (which lead to sub-
optimal request distributions, or even instability). In contrast, the
distributed mapping nodes in DONAR run a simple, efficient algo-
rithm to coordinate their replica-selection decisions for clients. The
protocol solves an optimization problem that jointly considers both
client performance and server load, allowing us to show that the
distributed algorithm is stable and effective. Experiments with our
DONAR prototype—providing replica selection for CoralCDN and
the Measurement Lab—demonstrate that our algorithm performs
well “in the wild.” Our prototype supports DNS- and HTTP-based
redirection, IP anycast, and a secure update protocol, and can han-
dle many customer services with diverse policy objectives.

Categories and Subject Descriptors: H.3.4 [Information Systems]:
Systems and Software—Distributed Systems; C.2.4 [Computer –
Communication Networks]: Distributed Systems—Distributed Ap-
plications

General Terms: Algorithms, Design

Keywords: Replica Selection, Load Balancing, Geo-Locality, DNS,
Distributed Optimization

1. INTRODUCTION
The Internet is increasingly a platform for online services—such

as Web search, social networks, and video streaming—distributed
across multiple locations for better reliability and performance. The
trend toward geographically-diverse server placement will only con-
tinue and increasingly include smaller enterprises, with the success
of cloud-computing platforms like Amazon AWS [1]. These ser-
vices all need an effective way to direct clients across the wide area
to an appropriate service location (or “replica”). For many compa-
nies offering distributed services, managing replica selection is an
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unnecessary burden. In this paper, we present the design, imple-
mentation, evaluation, and deployment of DONAR, a decentralized
replica-selection system that meets the needs of these services.

1.1 A Case for Outsourcing Replica Selection
Many networked services handle replica selection themselves.

However, even the simplest approach of using DNS-based replica
selection requires running a DNS server that tracks changes in which
replicas are running and customizes the IP address(es) returned to
different clients. These IP addresses may represent single servers in
some cases. Or, they may be virtualized addresses that each repre-
sent a cluster of collocated machines, with an on-path load balancer
directing requests to individual servers. To handle wide-area replica
selection well, these companies need to (i) run the DNS server at
multiple locations, for better reliability and performance, (ii) have
these nodes coordinate to distribute client requests across the repli-
cas, to strike a good trade-off between client performance, server
load, and network cost, and (iii) perhaps switch from DNS to al-
ternate techniques, like HTTP-based redirection or proxying, that
offer finer-grain control over directing requests to replicas.

One alternative is to outsource the entire responsibility for run-
ning a Web-based service to a CDN with ample server and network
capacity (e.g., Akamai [2]). Increasingly, cloud computing offers an
attractive alternative where the cloud provider offers elastic server
and network resources, while allowing customers to design and im-
plement their own services. Today, such customers are left largely
to handle the replica-selection process on their own, with at best
limited support from individual cloud providers [3] and third-party
DNS hosting platforms [4, 5].

Instead, companies should be able to manage their own distributed
services while “outsourcing” replica selection to a third party or
their cloud provider(s). These companies should merely specify
high-level policies, based on performance, server and network load,
and cost. Then, the replica-selection system should realize these
policies by directing clients to the appropriate replicas and adapt-
ing to policy changes, server replica failures, and shifts in the client
demands. To be effective, the replica-selection system must satisfy
several important goals for its customers. It must be:

• Expressive: Customers should have a sufficiently expressive
interface to specify policies based on (some combination of)
performance, replica load, and server and bandwidth costs.

• Reliable: The system should offer reliable service to clients,
as well as stable storage of customer policy and replica con-
figuration data.

• Accurate: Client requests should be directed to the service
replicas as accurately as possible, based on the customer’s
replica-selection policy.



• Responsive: The replica-selection system should respond
quickly to changing client demands and customer policies
without introducing instability.
• Flexible: The nodes should support a variety of replica-selection

mechanisms (e.g., DNS and HTTP-redirection).
• Secure: Only the customer, or another authorized party, should

be able to create or change its selection policies.

In this paper, we present the design, implementation, evaluation,
and deployment of DONAR, a decentralized replica-selection sys-
tem that achieves these goals. DONAR’s distributed algorithm solves
a formal optimization problem that jointly considers both client lo-
cality, server load, and policy preferences. By design, DONAR fa-
cilitates replica selection for many services, however its underlying
algorithms remain relevant in the case of a single service perform-
ing its own replica selection, such as a commercial CDN.

1.2 Decentralized Replica-Selection System
The need for reliability and performance should drive the de-

sign of a replica-selection system, leading to a distributed solution
that consists of multiple mapping nodes handling a diverse mix of
clients, as shown in Figure 1. These mapping nodes could be HTTP
ingress proxies that route client requests from a given locale to the
appropriate data centers, the model adopted by Google and Yahoo.
Or the mapping nodes could be authoritative DNS servers that re-
solve local queries for the names of Web sites, the model adopted
by Akamai and most CDNs. Furthermore, these DNS servers may
use IP anycast to leverage BGP-based failover and to minimize
client request latency. Whatever the mechanism for interacting with
clients, each mapping nodes has only a partial view of the global
space of clients. As such, these mapping nodes need to make dif-
ferent decisions; for example, node 1 in Figure 1 directs all of its
clients to the leftmost replica, whereas node 3 divides its clients
among the remaining three replicas.

Each mapping node needs to know how to both direct its clients
and adapt to changing conditions. The simplest approach would be
to have a central coordinator that collects information about the mix
of clients per customer service, as well as the request load from each
mapping node, and then informs each mapping node how to direct
future requests. However, a central coordinator introduces a single
point of failure, as well as an attractive target for attackers trying to
bring down the service. Further, it incurs significant overhead for
the mapping nodes to interact with the controller. While some ex-
isting services do perform centralized computation—for example,
Akamai uses a centralized hierarchical stable-marriage algorithm
for assigning clients to its CDN servers [6]—the overhead of back-
hauling client information can be more prohibitive when it must be
done for each customer service using DONAR. Finally, a central-
ized solution adds additional delay, making the system less respon-
sive to sudden changes in client request rates (i.e., flash crowds).

To overcome these limitations, DONAR runs a decentralized al-
gorithm among the mapping nodes themselves, with minimal pro-
tocol overhead that does not grow with the number of clients. De-
signing a distributed algorithm that is simultaneously scalable, ac-
curate, and responsive is an open challenge, not addressed by pre-
vious heuristic-based [7, 8, 9, 10] or partially centralized [11] so-
lutions. Decentralized algorithms are notoriously prone to oscilla-
tions (where the nodes over-react based on their own local infor-
mation) and inaccuracy (where the system does not balance replica
load effectively). DONAR must avoid falling into these traps.

1.3 Research Contributions and Roadmap
In designing, implementing, deploying, and evaluating DONAR,

we make three main research contributions:
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Figure 1: DONAR uses distributed mapping nodes for replica selection. Its
algorithms can maintain a weighted split of requests to a customer’s replicas,
while preserving client–replica locality to the greatest extent possible.

Simple and expressive interface for customer policies (Sec-
tion 2): DONAR has a simple policy interface where each replica
location specifies a split weight or a bandwidth cap, and expected
client performance is captured through a performance penalty. These
three sets of parameters may change over time. We show that this
interface can capture diverse replica-selection goals based on client
proximity, server capacity, 95th-percentile billing, and so on. The
API leads us to introduce a formal optimization problem that jointly
consider customers’ (sometimes conflicting) preferences.

Stable, efficient, and accurate distributed replica-selection al-
gorithm (Section 3): DONAR consists of a distributed collection
of mapping nodes for better reliability and performance. Since
these nodes each handle replica selection for a different mix of
clients, they cannot simply solve the optimization problem inde-
pendently. Rather than resorting to a centralized architecture that
pushes results to each mapping node, we decompose the optimiza-
tion problem into a distributed algorithm that requires only mini-
mal coordination between the nodes. We show that our decentral-
ized algorithm provably converges to the solution of the optimiza-
tion problem, ensuring that DONAR does not over or under react to
shifts in client demands.

Scalable, secure, reliable, and flexible prototype system (Sec-
tion 4): Our DONAR prototype implements the distributed opti-
mization algorithm, supports DNS- and HTTP-based replica selec-
tion, and stores customer data in a scalable storage system. DONAR
uses IP anycast for fast failover and good client redirection perfor-
mance. The prototype includes a secure update protocol for policy
changes and receives a periodic feed of IP2Geo data [12] to support
policies based on client location. Our prototype is used to provide
distributed DNS resolution for the Measurement Lab testbed [13]
and for a portion of the CoralCDN service [14].

Experiments in Section 5 evaluate both our distributed algorithm
operating at scale (through trace-driven simulations of client re-
quests to CoralCDN) and a small-scale deployment of our proto-
type system (providing DNS-based replica selection to jointly opti-
mize client proximity and server load for part of CoralCDN). These
experiments demonstrate that DONAR offers effective, customized
replica selection in a scalable and efficient fashion. Section 6 com-
pares DONAR to related work, and Section 7 concludes.

2. CONFIGURABLE MAPPING POLICIES
DONAR realizes its customers’ high-level policy goals, while

shielding them from the complicated internals of distributed replica



selection. By customer, we mean a service provider that outsources
replica selection to DONAR. Customers configure their policies by
communicating directly with any DONAR mapping node. This sec-
tion first motivates and introduces DONAR’s policy API. It then
describes a number of application scenarios that leverage this inter-
face to express sophisticated mapping policies.

2.1 Customer Goals
Customers use DONAR to optimally pair clients with service

replicas. What customers consider “optimal” can differ: some may
seek simply to minimize the network latency between clients and
replicas, others may seek to balance load across all replicas, while
still others may try to optimize the assignment based on the billing
costs of their network operators or hosting services. In general,
however, we can decompose a customer’s preferences into those
associated with the wide-area network (the network performance a
client would experience if directed to a particular replica) and those
associated with its own replicas (the load on the servers and the
network at each location). DONAR considers both factors in its
replica-selection algorithm.

Minimizing network costs. Mapping policies commonly seek to
pair clients with replicas that offer good performance. While replica
load can affect client-perceived performance, the network path has
a significant impact as well. For example, web transfers or interac-
tive applications often seek small network round-trip times (RTTs),
while bulk transfers seek good network throughput (although RTT
certainly can also impact TCP throughput).

DONAR’s algorithms use an abstract cost(c, i) function to in-
dicate the performance penalty between a particular client–replica
pair. This function allows us a considerable amount of expressive-
ness. For instance, to optimize latency, cost simply can be RTT,
directly measured or estimated via network coordinates. If through-
put is the primary goal, cost can be calculated as the penalty of net-
work congestion. In fact, the cost function can be any shape—e.g.,
a translated logistic function of latency or congestion—to optimize
the worst case or percentile-based performance. The flexibility of
the cost function also allows for intricate policies, e.g., always map-
ping one client to a particular server replica, or preferring a replica
through a peering link over a transit link.

DONAR’s current implementation starts with a shared cost func-
tion for all of its customers, which represents expected path latency.
As a result, our customers do not need to calculate and submit large
and complex cost functions independently. In the case where a cus-
tomer’s notion of cost differs from that shared function, our inter-
face allows them to override DONAR’s default mapping decisions
(discussed in more detail in the following section).

To estimate path latency, services like DONAR could use a vari-
ety of techniques: direct network measurements [15, 2, 16], virtual
coordinates [17, 18], structural models of path performance [19,
20], or some hybrid of these approaches [10]. DONAR’s algorithm
can accept any of these techniques; research towards improving net-
work cost estimation is very complementary to our interests. Our
current prototype uses a commercial IP geolocation database [12] to
estimate network proximity, although this easily could be replaced
with an alternative solution.

Balancing client requests across replicas. Unlike pairwise net-
work performance, which is largely shared amongst DONAR’s cus-
tomers, traffic distribution preferences vary widely from customer
to customer. In the simplest scenarios, services may want to equally
balance request rates across replicas, or they may want decisions
based solely on network proximity (i.e., cost). More advanced con-
siderations, however, are both possible and important. For exam-
ple, given 95th-percentile billing mechanisms, customers could try

Functionality DONAR API Call
create a DONAR service s = create ()
add a replica instance i = add (s, repl, ttl)
set split weight set (s, i, wi, εi)
set bandwidth cap set (s, i, Bi)
match a client-replica pair match (s, clnt, i)
prefer a particular replica preference (s, clnt, i)
remove a replica instance remove (s, i)

Figure 2: DONAR’s Application Programming Interface

to minimize costs by reducing the frequency of peak consumption,
or to eliminate overage costs by rarely exceeding their committed
rates. In any replica-mapping scheme, request capacity, bandwidth
cost, and other factors will influence the preferred rate of request
arrival at a given replica. The relative importance of these factors
may vary from one replica to the next, even for the same customer.

2.2 Application Programming Interface
Through considering a number of such policy preferences—which

we review in the next section—we found that enabling customers
to express two simple factors was a powerful tool. DONAR allows
its customers to dictate a replica’s (i) split weight, wi, the desired
proportion of requests that a particular replica i should receive out
of the customer’s total set of replicas, or (ii) bandwidth cap, Bi, the
upper-bound on the exact number of requests that replica i should
receive. In practice, different requests consume different amounts
of server and bandwidth resources; we expect customers to set Bi
based on the relationship between the available server/bandwidth
resources and the average resources required to service a request.

These two factors enable DONAR’s customers to balance load
between replicas or to cap load at an individual replica. For the for-
mer, a customer specifies wi and εi to indicate that it wishes replica
i to receive a wi fraction of the total request load1, but is willing to
deviate up to εi in order to achieve better network performance. If
Pi denotes the true proportion of requests directed to i, then

|Pi−wi| ≤ εi

This εi is expressed in the same unit as the split rate; for example,
if a customer wants each of its ten replicas to receive a split rate
of 0.1, setting ε∗ to 0.02 indicates that each replica should receive
10% ± 2% of the request load.

Alternatively, a customer can also specify a bandwidth cap Bi per
replica, to require that the exact amount of received traffic at i does
not exceed Bi. If B is the total constant load across all replicas, then

B ·Pi ≤ Bi

Note that if a set of Bi’s become infeasible given a service’s traffic
load, DONAR reverts to wi splits for each instance. If those are not
present, excess load is spread equally amongst replicas.

Figure 2 shows DONAR’s customer API. A customer creates a
DONAR service by calling create(). A customer uses add()
and remove() to add or remove a replica instance from its ser-
vice’s replica set. The record will persist in DONAR for the spec-
ified time-to-live period (ttl), unless it is explicitly removed before
this period expires. A short ttl serves to make add() equivalent to
a soft-state heartbeat operation, where an individual replica can ex-
ecute it repeatedly to express its liveness. To communicate its pre-
ferred request distribution, the customer uses set() for a replica
instance i. This function takes either (wi,εi) or Bi, but never both

1In reality, the customer may select weights that do not sum to 1,
particularly since each replica may assign its weight independently.
DONAR simply normalizes the weights to sum to 1, e.g., proportion
wi/∑ j w j for replica i.



(as the combination does not make logical sense with respect to the
same replica at the same instant in time). We do allow a customer
simultaneously to use both wi and Bi for different subsets of repli-
cas, which we show later by example.

Some customers may want to impose more explicit constraints on
specific client-replica pairs, for cost or performance reasons. For
example, a customer may install a single replica inside an enter-
prise network for handling requests only from clients within that
enterprise (and, similarly, the clients in the enterprise should only
go to that server replica, no matter what the load is). A customer
expresses this hard constraint using the match() call. Alterna-
tively, a customer may have a strong preference for directing cer-
tain clients to a particular replica—e.g., due to network peering
arrangements—giving them priority over other clients. A customer
expresses this policy using the preference() call. In contrast
to match(), the preference() call is a soft constraint; in the
(presumably rare) case that replica i cannot handle the total load of
the high-priority clients, some of these client requests are directed
to other, less-preferred replicas. These two options mimic common
primitives in today’s commercial CDNs.

In describing the API, we have not specified exactly who or what
is initiating these API function calls—e.g., a centralized service
manager, individual replicas, etc.—because DONAR imposes no
constraint on the source of customer policy preferences. As we
demonstrate next, different use cases require updating DONAR from
different sources, at different times, and based on different inputs.

2.3 Expressing Policies with DONAR’s API
Customers can use this relatively simple interface to implement

surprisingly complex mapping policies. It is important to note that,
internally, DONAR will minimize the network cost between clients
and replicas within the constraints of any customer policy. To demon-
strate use of the API, we describe increasingly intricate scenarios.

Selecting the closest replica. To implement a “closest replica”
policy, a customer simply sets the bandwidth caps of all replicas
to infinity. That is, they impose no constraint on the traffic dis-
tribution. This update can be generated from a single source or
independently from each replica.

Balancing workload between datacenters. Consider a service
provider running multiple datacenters, where datacenter i has wi
servers (dedicated to this service), and jobs are primarily constrained
by server resources. The service provider’s total capacity at these
datacenters may change over time, however, due to physical failures
or maintenance, the addition of new servers or VM instances, the
repurposing of resources amongst services, or temporarily bringing
down servers for energy conservation. In any case, they want the
proportion of traffic arriving at each datacenter to reflect current ca-
pacity. Therefore, each datacenter i locally keeps track of its num-
ber of active servers as wi, and calls set(s, i,wi,εi), where εi can
be any tolerance parameter. The datacenter need only call set()
when the number of active servers changes. DONAR then pro-
portionally maps client requests according to these weights. This
scenario is simple because (i) wi is locally measurable within each
datacenter, and (ii) wi is easily computable, i.e., decreasing wi when
servers fail and increasing when they recover.

Enforcing heuristics-based replica selection. DONAR imple-
ments a superset of the policies that are used in legacy systems
to achieve heuristics-based replica selection. For example, OA-
SIS [10] allows replicas to withdraw themselves from the server
pool once they reach a given self-assessed load threshold, and then
maps clients to the closest replica remaining in the pool. To re-
alize this policy with DONAR, each replica i independently calls

Multi-Homing Replicated Service
Available Local links with Wide-area replicas with
Resources different bandwidth different bandwidth

to Optimize capacities and costs capacities and costs
Resource Proportion of traffic Proportion of new clients
Allocation to assign each link to assign each replica

Figure 3: Multi-homed route control versus wide-area replica selection

set(s, i,Bi), where Bi is the load threshold it estimates from pre-
vious history. Bi can be dynamically updated by each replica, by
taking into account the prior observed performance given its traffic
volume. DONAR then strictly optimizes for network cost among
those replicas still under their workload threshold Bi.

Optimizing 95th-percentile billing costs. Network transit providers
often charge based on the 95th-percentile bandwidth consumption
rates, as calculated over all 5-minute or 30-minute periods in a
month. To minimize such “burstable billing” costs, a distributed
service could leverage an algorithm recently proposed for multi-
homed route control under 95-percentile billing [21]. This algo-
rithm, while intended for traffic engineering in multi-homed enter-
prise networks, could also be used to divide clients amongst service
replicas; Figure 3 summarizes the relationship between these two
problems. The billing optimization could be performed by whatever
management system the service already runs to monitor its replicas.
This system would need to track each replica’s traffic load, pre-
dict future traffic patterns, run a billing cost optimization algorithm
to compute the target split ratio wi for the next time period, and
output these parameters to DONAR through set(s, i,wi,0) calls.
Of course, any mapping service capable of proportionally splitting
requests (such as weighted round-robin DNS) could achieve such
dynamic splits, but only by ignoring client network performance.
DONAR accommodates frequently updated split ratios while still
assuring that clients reach a nearby replica.

Shifting traffic to under-utilized replicas. Content providers
often deploy services over a large set of geographically diverse
replicas. Providers commonly want to map clients to the closest
replica unless pre-determined bandwidth capacities are violated.
Under such a policy, certain nodes may see too few requests due
to an unattractive network location (i.e., they are rarely the “closest
node”). To remedy this problem, providers can leverage both traf-
fic options in combination. For busy replicas, they set(s, i,Bi)
to impose a bandwidth cap, while for unpopular replicas, they can
set(s, i,k,0), so that replica i receives at least some fixed traf-
fic proportion k. In this way, they avoid under-utilizing instances,
while offering the vast majority of clients a nearby replica.

3. REPLICA SELECTION ALGORITHMS
This section first formulates the global replica-selection prob-

lem, based on the mapping policies we considered earlier. We then
propose a decentralized solution running on distributed mapping
nodes. We demonstrate that each mapping node—locally optimiz-
ing the assignment of its client population and judiciously commu-
nicating with other nodes—can lead to a globally optimal assign-
ment. We summarize the notation we use in Table 1.

3.1 Global Replica-Selection Problem
We have discussed two important policy factors that motivate

our replica-selection decisions. Satisfying one of these components
(e.g., network performance), however, typically comes at the ex-
pense of the other (e.g., accurate load distribution). As DONAR al-
lows customers to freely express their requirements—through their



N Set of mapping nodes
Cn Set of clients for node n, Cn ⊆ C , the set of all clients
I Set of service replicas

Rnci Proportion of traffic load that is mapped
to replica i from client c by node n

αcn Proportion of node n’s traffic load from client c
sn Proportion of total traffic load (from C ) on node n
wi Traffic split weight of replica i
Pi True proportion of requests directed to replica i
Bi Bandwidth cap on replica i
B Total traffic load across all replicas
εi Tolerance of deviation from desired traffic split

Table 1: Summary of key notations

choice of wi, εi, and Bi—customers can express their willingness to
trade-off performance for load distribution.

To formulate the replica-selection problem, we introduce a net-
work model. Let C be the set of clients, and I the set of server
replicas. Denote Rci as the proportion of traffic from client c routed
to replica i, which we solve for in our problem. The global client
performance (penalty) can be calculated as

per f g = ∑
c∈C

∑
i∈I

Rci · cost(c, i) (1)

Following our earlier definitions, let Pi = ∑c∈C Rci be the true pro-
portion of requests directed to replica i. Our goal is to minimize this
performance penalty, i.e., to match each client with a good replica,
while satisfying the customer’s requirements. That goal can be ex-
pressed as the following optimization problem RSg:

minimize per f g (2)
subject to |Pi−wi| ≤ εi (3)

B ·Pi ≤ Bi,∀i (4)

B is the total amount of traffic, a constant parameter that can be
calculated by summing the traffic observed at all replicas. Note that
for each replica i, either constraint (3) or (4) is active, but not both.

The optimization problem can also handle the match() and
preference() constraints outlined in Section 2.2. A call to
match() imposes a hard constraint that client c only uses replica
i, and vice versa. This is easily handled by removing the client and
the replica from the optimization problem entirely, and solving the
problem for the remaining clients and replicas. The preference()
call imposes a soft constraint that client c has priority for mapping
to replica i, assuming the replica can handle the load. This is easily
handled by scaling down cost(c, i) by some large constant factor so
the solution maps client c to replica i whenever possible.

3.2 Distributed Mapping Service
Solving the global optimization problem directly requires a cen-

tral coordinator that collects all client information, calculates the
optimal mappings, and directs clients to the appropriate replicas.
Instead, we solve the replica-selection problem using a distributed
mapping service. Let N be the set of mapping nodes. Every map-
ping node n∈N has its own view Cn of the total client population,
i.e., Cn ⊆ C . A mapping node n receives a request from a client
c ∈ Cn. The node maps the client to a replica i ∈I and returns the
result to that client. In practice, each client c can represent a group
of aggregated end hosts, e.g., according to their postal codes. This
is necessary to keep request rates per-client stable (see Section 5.2
for more discussion). Therefore, we allow freedom in directing one
client to one or multiple replicas. We then expand the decision vari-
able Rci to Rnci, which is the fraction of traffic load that is mapped
to replica i from client c by node n, i.e., ∑i Rnci = 1.

Each DONAR node monitors requests from its own client popu-
lation. Let sn be the normalized traffic load on node n (that is, n’s
fraction of the total load from C ). Different clients may generate
different amounts of workload; let αcn ∈ [0,1] denote the propor-
tion of n’s traffic that comes from client c (where ∑c∈Cn

αcn = 1).
The information of Rnci and αcn can be measured at DONAR nodes
locally, whereas collecting sn and Pi requires either central aggre-
gation of each node’s local client load and decisions, or each node
to exchange its load with its peers. The distributed node deploy-
ment also allows DONAR to check the feasibility of problem (2)
easily: given local load information, calculate the total load B and
determine whether (2) accepts a set of {wi,Bi}i∈I parameters.

The global replica-selection problem RSg, after introducing map-
ping nodes and the new variable Rnci, remains the same formulation
as (2)-(4), with

per f g = ∑
n∈N

sn ∑
c∈Cn

αcn ∑
i∈I

Rnci · cost(c, i) (5)

Pi = ∑
n∈N

sn ∑
c∈Cn

αcn ·Rnci

A simple approach to solving this problem is to deploy a central
coordinator that collects all necessary information and calculates
the decision variables for all mapping nodes. We seek to avoid
this centralization, however, for several reasons: (i) coordination
between all mapping nodes is required; (ii) the central coordinator
becomes a single point-of-failure; (iii) the coordinator requires in-
formation about every client and node, leading to O(|N | · |C | · |I |)
communication and computational complexity; and (iv) as traffic
load changes, the problem needs to be recomputed and the results
re-disseminated. This motivates us to develop a decentralized solu-
tion, where each DONAR node runs a distributed algorithm that is
simultaneously scalable, accurate, and responsive to change.

3.3 Decentralized Selection Algorithm
We now derive a decentralized solution for the global problem

RSg. Each DONAR node will perform a smaller-scale local opti-
mization based on its client view. We later show how local deci-
sions converge to the global optimum within a handful of algorith-
mic iterations. We leverage the theory of optimization decompo-
sition to guide our design. Consider the global performance term
per f g (5), which consists of local client performance contributed
by each node:

per f g = ∑
n∈N

per f l
n

where

per f l
n = sn ∑

c∈Cn

αcn ∑
i∈I

Rnci · cost(c, i) (6)

Each node optimizes local performance on its client population,
plus a load term imposed on the replicas. For a replica i with a
split-weight constraint (the case of bandwidth-cap constraint fol-
lows similarly and is shown in the final algorithm),

load = ∑
i∈I

λi
(
(Pi−wi)2− ε

2
i
)

(7)

where λi is interpreted as the unit price of violating the constraint.
We will show later how to set this value dynamically for each replica.
Notice that the load associates with decision variables from all nodes.
To decouple it, rewrite Pi as

Pi = ∑
n∈N

Pni = Pni + ∑
n′∈N \{n}

Pn′i = Pni +P−ni

where Pni = sn ∑c∈Cn
αcn ·Rnci is the traffic load contributed by node

n on replica i—that is, the requests from those clients directed to



Initialization
For each replica i: Set an arbitrary price λi ≥ 0.
For each node n: Set an arbitrary decision Rnci.

Iteration
For each node n:
(1) Collects the latest {Pn′i}i∈I for other n′.
(2) Collects the latest λi for every replica i.
(3) Solves RSl

n.
(4) Computes {Pni}i∈I and updates the info.
(5) With probability 1/|N |, for every replica i:
(6) Collects the latest Pi = ∑n Pni.
(7) Computes λi←max

{
0,λi +θ

(
(Pi−wi)2− ε2

i
)}

,
or λi←max

{
0,λi +θ

(
(B ·Pi)2−B2

i
)}

.
(8) Updates λi.
(9) Stops if {Pn′i}i∈I from other n′ do not change.

Table 2: Decentralized solution of server selection

i by DONAR node n—and P−ni is the traffic load contributed by
nodes other than n, independent of n’s decisions.

Then the local replica selection problem for node n is formulated
as the following optimization problem RSl

n:

minimize per f l
n + loadn (8)

variables Rnci,∀c ∈ Cn, i ∈I

where loadn = load,∀n. To solve this local problem, a mapping
node needs to know (i) local information about sn and αcn, (ii)
prices λi for all replicas, and (iii) the aggregated P−ni informa-
tion from other nodes. Equation (8) is a quadratic programming
problem, which can be solved efficiently by standard optimization
solvers (we evaluate computation time in Section 5.1).

We formally present the decentralized algorithm in Table 2. At
the initialization stage, each node picks an arbitrary mapping deci-
sion, e.g., one that only optimizes local performance. Each replica
sets an arbitrary price, say λi = 0. The core components of the algo-
rithm are the local updates by each mapping node, and the periodic
updates of replica prices. Mapping decisions are made at each node
n by solving RSl

n based on the latest information. Replica prices
(λi) are updated based on the inferred traffic load to each i. Intu-
itively, the price increases if i’s split weight or bandwidth require-
ment is violated, and decreases otherwise. This can be achieved via
additive updates (shown by θ ). We both collect and update the Pni
and λi information through a data store service, as discussed later.

While the centralized solution requires O(|N | · |C | · |I |) com-
munication and computation at the coordinator, the distributed so-
lution has much less overhead. Each node needs to share its map-
ping decisions of size |I | with all others, and each replica’s price
λi needs to be known by each node. This implies |N | messages,
each of size O((|N |−1) · |I |+ |I |) = O(|N | · |I |). Each node’s
computational complexity is of size O(|Cn| · |I |).

The correctness of the distributed algorithm relies on an appro-
priate ordering of local updates from each node, i.e., in a round-
robin fashion as shown in Appendix A, and a less frequent replica
price update. In practice, however, we allow nodes and replicas to
update uncoordinatedly and independently. We find that the algo-
rithm’s convergence is not sensitive to this lack of coordination,
which we demonstrate in our evaluation. In fact, the decentral-
ized solution works well even at the scale of thousands of mapping
nodes. For a given replica-selection problem, the decentralized so-
lution usually converges within a handful of iterations, and the equi-
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Figure 4: Interactions on a DONAR node

librium point is also the optimal solution to the global problem.
Appendix A provides the derivation of this decentralized solution.

4. DONAR’S SYSTEM DESIGN
This section describes the design of DONAR, which provides

distributed replica selection for large numbers of customers, each of
whom have their own set of service replicas and different high-level
preferences over replica selection criteria. DONAR implements the
policy interface and distributed optimization mechanism we defined
in the last two sections. Each DONAR node must also reliably han-
dle client requests and customer updates. DONAR nodes should
be geographically dispersed themselves, for greater reliability and
better performance. Our current deployment, for example, con-
sists of globally dispersed machines on both the PlanetLab [22] and
VINI [23] network platforms.

Figure 4 depicts a single DONAR node and its interactions with
various system components. This section is organized around these
components. Section 4.1 discusses how DONAR nodes combine
customer policies, mapping information shared by other nodes, and
locally-available cost information, in order to optimally map clients
to customers’ service replicas. Section 4.2 describes DONAR’s
front-end mechanisms for performing replica selection (e.g., DNS,
HTTP redirection, HTTP proxying, etc.), and Section 4.3 details
its update protocol for registering and updating customer services,
replicas, and policies. Finally, Section 4.4 describes DONAR’s
back-end distributed data store (for reliably disseminating data) and
use of IP Anycast (for reliably routing client requests).

4.1 Efficient Distributed Optimization
Given policy preferences for each customer, DONAR nodes must

translate high-level mapping goals into a specific set of rules for
each node. DONAR’s policy engine realizes a variant of the algo-
rithm described in Table 2. Particularly, all nodes act asynchronously
in the system, so no round-based coordination is required. We
demonstrate in Section 5 that this variant converges in practice.

Request rate and cost estimation. Our model assumes that each
node has an estimate of the request rate per client. As suggested
in Section 3, each “client” represents a group of similarly located
end-hosts (we also refer to this entity as a “client region”). When a
DONAR node comes online and begins receiving client requests, it
tracks the request volume per unit time per client region. While our
optimization algorithm models a static problem — and therefore
constant request rates — true request rates vary over time. To ad-
dress this limitation, DONAR nodes use an exponentially-weighted
moving average of previous time intervals (with α = .8 and 10
minute intervals in our current deployment). Still, rapid changes



in a particular client region might lead to suboptimal mapping deci-
sions. Using trace data from a popular CDN, however, we show in
Section 5.2 that relative request rates per region do not significantly
vary between time intervals.

Our model also assumes a known cost(c,i) function, which quan-
tifies the cost of pairing client c with instance i. In our current
deployment, each DONAR node has a commercial-grade IP geolo-
cation database [12] that provides this data and is updated weekly.
We use a cost(c, i) function that is the normalized Euclidean dis-
tance between the IP prefixes of the client c and instance i (like that
described in Section 3).

Performing local optimization. DONAR nodes arrive at globally
optimal routing behavior by periodically re-running the local opti-
mization problem. In our current implementation, nodes each run
the same local procedure at regular intervals (about every 2 minutes,
using some randomized delay to desynchronize computations).

As discussed in Section 3.3, the inputs to each local optimization
are the aggregate traffic information sent by all remote DONAR
nodes {B ·P−ni}i∈I ; the customer policy parameters, {wi,Bi}i∈I ;
and the proportions of local traffic coming from each client region
to that node, {αcn}c∈Cn . The first two inputs are available through
DONAR’s distributed data store, while nodes locally compute their
clients’ proportions. Given these inputs, the node must decide how
to best map its clients. This reduces to the local optimization prob-
lem RSl

n, which minimizes a node’s total client latency given the
constraints of the customer’s policy specification and the mapping
decisions of other nodes (treating their most recent update as a static
assignment). The outcome of this optimization is a new set of local
rules {Rnci}c∈Cni∈I , which dictates the node’s mapping behavior.
Given these new mapping rules, the node now expects to route dif-
ferent amounts of traffic to each replica. It then computes these new
expected traffic rates per instance, using the current mapping policy
and its historical client request rates {αcn}c∈Cn . It then updates its
existing per-replica totals {B ·Pi}i∈I in the distributed data store,
so that implications of its new local policy propagate to other nodes.

If the new solution violates customer constraints — bandwidth
caps are overshot or split’s exceed the allowed tolerance — the
node will update the constraint multipliers {λi}i∈I with probabil-
ity of 1/|N |. Thus, in the case of overload, the multipliers will be
updated, on average, once per cycle of local updates.

4.2 Providing Flexible Mapping Mechanisms
A variety of protocol-level mechanisms are employed for wide-

area replica selection today. They include (i) dynamically generated
DNS responses with short TTLs, according to a given policy, (ii)
using HTTP Redirection from a centralized source and/or between
replicas, and (iii) using persistent HTTP proxies to tunnel requests.

To offer customers maximum flexibility, DONAR offers all three
of these mechanisms. To use DONAR via DNS, a domain’s owner
will register each of its replicas as a single A record with DONAR,
and then point the NS records for its domain (e.g., example.com)
to ns.donardns.org. DONAR nameservers will then respond
to requests for example.com with an appropriate replica given
the domain’s selection criteria.

To use DONAR for HTTP redirection or proxying, a customer
adds HTTP records to DONAR—a record type in DONAR up-
date messages—such as mapping example.com to us-east
.example.com, us-west.example.com, etc. DONAR re-
solves these names and appropriately identifies their IP address for
use during its optimization calculations.2 This customer then hands

2In this HTTP example, customers need to ensure that each name
resolves either to a single IP address or a set of collocated replicas.

off DNS authority to DONAR as before. When DONAR receives a
DNS query for the domain, it returns the IP address of the client’s
nearest DONAR node. Upon receiving the corresponding HTTP
request, a DONAR HTTP server uses requests’ Host: header
fields to determine for which customer domains their requests cor-
respond. It queries its local DONAR policy engine for the appropri-
ate replica, and then redirects or proxies the request to that replica.

The DONAR software architecture is designed to support the
easy addition of new protocols. DONAR’s DNS nameserver and
HTTP server run as separate processes, communicating with the lo-
cal DONAR policy engine via a standardized socket protocol. Sec-
tion 4.5 describes additional implementation details.

4.3 Secure Registration and Dynamic Updates
Since DONAR aims to accommodate many simultaneous cus-

tomers, it is essential that all customer-facing operations be com-
pletely automated and not require human intervention. Addition-
ally, since DONAR is a public service, it must authenticate client
requests and prevent replay attacks. To meet these goals we have
developed a protocol which provides secure, automatic account cre-
ation and facilitates frequent policy updates.

Account creation. In DONAR, a customer account is uniquely
identified by a private/public key pair. DONAR reliably stores its
customers’ public keys, which are used to cryptographically verify
signatures on account updates (described next). Creating accounts
in DONAR is completely automated, i.e., no central authority is
required to approve account creation. To create a DONAR account,
a customer generates a public/private key-pair and simply begins
adding new records to DONAR, signed with the private key. If a
DONAR node sees an unregistered public key in update messages,
it generates the SHA-1 hash of the key, hash, and allocates the
domain <hash>.donardns.net to the customer.

Customers have the option of validating a domain name that
they own (e.g., example.com). To do so, a customer creates a
temporary CNAME DNS record that maps validate-<hash>
.example.com to donardns.net. Since only someone au-
thoritative for the example.com namespace will be able to add this
record, its presence alone is a sufficient proof of ownership. The
customer then sends a validation request for example.com to a
DONAR node. DONAR looks for the validation CNAME record in
DNS and, if found, will replace <hash>.donardns.net with
example.com for all records tied to that account.

DONAR Update Protocol (DUP). Customers interact with DONAR
nodes through the DONAR Update Protocol (DUP). Operating over
UDP, DUP allows customers to add and remove new service repli-
cas, express the policy parameters for these replicas as described in
Section 3, as well as implicitly create and explicitly verify accounts,
per above. DUP is similar in spirit to the DNS UPDATE proto-
col [24] with some important additional features. These include
mandatory RSA signatures, nonces for replay protection, DONAR-
specific meta-data (such as split weight or bandwidth cap), and
record types outside of DNS (for HTTP mapping). DUP is record-
based (like DNS), allowing forward compatibility as we add new
features such as additional policy options.

4.4 Reliability through Decentralization
DONAR provides high availability by gracefully tolerating the

failure of individual DONAR nodes. To accomplish this, DONAR
incorporates reliable distributed data storage (for customer records)
and ensures that clients will be routed away from failed nodes.

Distributed Data Storage. DONAR provides distributed storage
of customer record data. A customer update (through DUP) should



be able to be received and handled by any DONAR node, and the
update should then be promptly visible throughout the DONAR net-
work. There should be no central point of failure in the storage
system, and the system should scale-out with the inclusion of new
DONAR nodes without any special configuration.

To provide this functionality, DONAR uses the CRAQ storage
system [25] to replicate record data and account information across
all participating nodes. CRAQ automatically re-replicates data un-
der membership changes and can provide either strong or eventual
consistency of data. Its performance is optimized for read-heavy
workloads, which we expect in systems like DONAR where the
number of client requests likely will be orders of magnitude greater
than the number of customer updates. DONAR piggybacks on
CRAQ’s group-membership functionality, built on Zookeeper [26],
in order to alert DONAR nodes when a node fails. While such
group notifications are not required for DONAR’s availability, this
feature allows DONAR to quickly recompute and reconverge to op-
timal mapping behavior following node failures.

Route control with IP anycast. While DONAR’s storage sys-
tem ensures that valuable data is retained in the face of node fail-
ures, it does not address the issue of routing client requests away
from failed nodes. When DONAR is used for DNS, it can par-
tially rely on its clients’ resolvers performing automatic failover
between authoritative nameservers. This failover significantly in-
creases resolution latency, however. Furthermore, DONAR node
failure presents an additional problem when used with HTTP-based
selection. Most web browsers do not failover between multiple A
records (in this case, DONAR HTTP servers), and browsers—and
now browser plugins like Java and Flash as well—purposely “pin”
DNS names to specific IP addresses to prevent “DNS rebinding”
attacks [27].3 These cached host-to-address bindings often persist
for several minutes. To address both cases, DONAR is designed to
work over IP anycast, not only for answering DNS queries but also
for processing updates.

In our current deployment, a subset of DONAR nodes run on
VINI [23], a private instance of PlanetLab which allows tighter con-
trol over the network stack. These nodes run an instance of Quagga
that peers with TransitPortal instances at each site [28], and thus
each site announces DONAR’s /24 prefix through BGP. If a node
loses connectivity, the BGP session will drop and the Transit Por-
tal will withdraw the wide-area route. To handle application-level
failures, a watchdog process on each node monitors the DONAR
processes and withdraws the BGP route if a critical service fails.

4.5 Implementation
The software running on each DONAR node consists of several

modular components which are detailed in Figure 5. They consti-
tute a total of approximately 10,000 lines of code (C++ and Java), as
well as another 2,000 lines of shell scripts for system management.

DONAR has been running continuously on Measurement Lab
(M-Lab) since October 2009. All services deployed on M-Lab have
a unique domain name:

〈service〉.〈account〉.donar.measurement-lab.org

that provides a closest-node policy by default, selecting from among
the set of M-Lab servers. Two of the most popular M-Lab services—
the Network Diagnostic Tool (NDT) [29], which is used for the
Federal Communication Commission’s Consumer Broadband Test,
and NPAD [30]—are more closely integrated with DONAR. NDT
3A browser may pin DNS–IP mappings even after observing des-
tination failures; otherwise, an attacker may forge ICMP “host un-
reachable” messages to cause it to unpin a specific mapping.

Distributed Storage Service (CRAQ)

DONAR 
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Figure 5: Software architecture of a DONAR node

and NPAD run the DUP protocol, providing DONAR nodes with
status updates every 5 minutes.

Since December of 2009, DONAR has also handled 15% Coral-
CDN’s DNS traffic [14], around 1.25 million requests per day. This
service uses an equal-split policy amongst its replicas.

DONAR’s current implementation supports three front-end map-
ping mechanisms, implemented as separate processes for exten-
sibility, which communicate via the main DONAR policy engine
over a UNIX domain socket and a record-based ASCII protocol.
The DNS front-end is built on the open-source PowerDNS resolver,
which supports customizable storage backends. DONAR provides
a custom HTTP server for HTTP redirection, built on top of the lib-
microhttpd embedded HTTP library. DONAR also supports basic
HTTP tunneling i.e., acting as a persistent proxy between clients
and replicas, via a custom built HTTP proxy. However, due to the
bandwidth constraints of our deployment platform, it is currently
disabled.

At the storage layer, DONAR nodes use CRAQ to disseminate
customer records (public key, domain, and replica information),
as well as traffic request rates to each service replica (from each
DONAR node). CRAQ’s key-value interface offers basic set/get
functionality; DONAR’s primitive data types are stored with an
XDR encoding in CRAQ.

The DONAR policy engine is written in C++, built using the
Tame extensions [31] to the SFS asynchronous I/O libraries. In
order to assign client regions to replica instances, the engine solves
a quadratic program of size |Cn| · |I |, using a quadratic solver from
the MOSEK [32] optimization library.

The DONAR update server, written in Java, processes DUP re-
quests from customers, including account validation, policy up-
dates, and changes in the set of active replicas. It uses CRAQ to
disseminate record data between nodes. While customers can build
their own applications that directly speak DUP, we also provide a
publicly-available Java client that performs these basic operations.

5. EVALUATION
Our evaluation of DONAR is in three parts. Section 5.1 simulates

a large-scale deployment given trace request data and simulated
mapping nodes. Section 5.2 uses the same dataset to verify that
client request volumes are reasonably stable from one time period
to the next. Finally, Section 5.3 evaluates our prototype performing
real-world replica selection for a popular CDN.

5.1 Trace-Based Simulation
We use trace data to demonstrate the performance and stability

of our decentralized replica-selection algorithm. We analyzed DNS
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log files from CoralCDN. Our dataset consists of 9,918,780 re-
quests over a randomly-selected 24-hour period (July 28, 2009). On
that day, CoralCDN’s infrastructure consisted of 76 DNS servers
which dispatched clients to any of 308 HTTP proxies distributed
world-wide. Locality information was obtained through Quova’s
commercial geolocation database [12].

In the trace-based simulation, we aggregate clients by geographic
location. This results in 371 distinct client regions in our trace.
We choose 10 hypothetical mapping nodes to represent a globally-
distributed set of authoritative nameservers. Each request is as-
signed to the nearest nameserver, partitioning the client space. Four
replica instances are selected from locations in the US-East, US-
West, Europe, and Asia.

We feed each mapping node with client request rates and dis-
tributions, which are inferred from the trace for every 10-minute
interval. In the evaluation, we allow DONAR nodes to commu-
nicate asynchronously, i.e., they do not talk in a circular fashion
as in Table 2. Instead, we overlap updates such that there is 40%
probability that at least half of nodes update simultaneously. All
nodes perform an update once each minute. We use the quadratic
programming solver in MOSEK [32], and each local optimization
takes about 50ms on a 2.0GHz dual core machine.

Load split weight. Customers can submit different sets of load
split weights over time, and we show how DONAR dynamically
adapts to such changes. Figure 6 shows the replica request distri-
bution over a 2-hour trace. We vary the desired split weight four
times, at 0, 30, 60 and 90 minutes. Phase A shows replica loads
quickly converging from a random initial point to a split weight of
40/30/20/10. Small perturbations occur at the beginning of ev-
ery 10 minutes, since client request rates and distributions change.
Replica loads quickly converge to the original level as DONAR re-
optimizes based on the current load. In Phase B, we adjust the split
weight to 60/20/15/5, and replica loads shift to the new level usu-

% of clients to mean variance
closest replica

εi = 0 54.88% 4.0233 0.0888
εi = 1% 69.56% 3.3662 0.1261
εi = 5% 77.13% 3.0061 0.1103
εi = 10% 86.34% 2.8690 0.4960
closest replica 100% 2.3027 0.0226

Figure 8: Sensitivity analysis of using tolerance parameter εi

ally within 1 or 2 minutes. Note that the split weight and traffic
load can change simultaneously, and DONAR is very responsive to
these changes. In Phase C, We implement an equal-split policy and
Phase D re-balances the load to an uneven distribution. In this ex-
periment we chose εi = 0.01, so there is very little deviation from
the exact split weight. This example demonstrates the nice respon-
siveness and convergence property of the decentralized algorithm,
even when the local optimizations run asynchronously.

Network performance. We next investigate the network per-
formance under an equal-split policy among replicas, i.e., all four
replicas expect 25% of load and tolerate εi = 1% deviation. We
use a 6-hour trace from the above dataset, starting at 9pm EST. We
compare DONAR’s decentralized algorithm to three other replica-
selection algorithms. Round Robin maps incoming requests to the
four replicas in a round-robin fashion, achieving equal load distri-
bution. Centralized Alg uses a central coordinator to calculate map-
ping decision for all nodes and all clients, and thus does not require
inter-node communication. Closest always maps a client to the
closest replica and achieves the best network performance. The per-
formance of these algorithms is shown in Figure 7. The best (mini-
mum) distance, realized by Closest, is quite stable over time. Round
Robin achieves the worst network performance, about 300%–400%
more than the minimum, since 75% of requests go to sub-optimal
replicas. DONAR’s decentralized algorithm can achieve much bet-
ter performance, realizing 10%–100% above the minimum distance
in exchange for better load distribution. Note that the decentralized
solution is very close to that of a central coordinator.

It is also interesting to note that DONAR’s network cost is in-
creasing. This can be explained by diurnal patterns in different ar-
eas: the United States was approaching midnight while Asia reached
its traffic peak at noon. Requiring 25% load at each of the two US
servers understandably hurts the network performance.

Sensitivity to tolerance parameter. When submitting split weights,
a customer can use εi to strike a balance between strict load distri-
bution and improved network performance. Although an accurate
choice of εi depends on the underlying traffic load, we use our trace
to shed some light on its usage. In Figure 8, we employ an equal-
split policy, and try εi = 0,1%,5% and 10%. We show the percent-
age of clients that are mapped to the closest replica, and the mean
performance and variance, over the entire 6-hour trace. We also
compare them to the closet-replica policy. Surprisingly, tolerating
a 1% deviation from a strict equal split allows 15% more clients to
map to the closest replica. 5% tolerance can further improve 7%
of nodes, and an additional 9% improvement is possible for a 10%
tolerance. This demonstrates that εi provides a very tangible mech-
anism for trading off network performance and traffic distribution.

5.2 Predictability of Client Request Rate
So far we have shown rapid convergence given a temporarily

fixed set of request rates per client. In reality, client request vol-
ume will vary, and DONAR’s predicted request volume for a given
client may not accurately forecast client traffic. For DONAR to
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Figure 9: Stability of area code request rates

work well, client traffic rates must be sufficiently predictable un-
der a granularity that remains useful to our customers. Our current
deployment uses a fixed interval size of 10 minutes. We now show
via analysis of the same trace data, that request rates are sufficiently
predictable on this timescale.

Figure 9 (top) plots the relative difference between our estimated
rate and the true rate for each client group, i.e., a value of zero
indicates a perfect prediction of request volume. Each data point is
the average difference over a 2-hour interval for one client. Figure
9 (bottom) is a CDF of all traffic from these same clients, which
shows that the vast majority of incoming traffic belongs to groups
whose traffic is very stable. The high variation in request rate of the
last 50% of groups accounts for only 6% of total traffic.

Coarser-grained client aggregation (i.e., larger client groups) will
lead to better request stability, but at the cost of locality precision.
In practice, services prefer a fine granularity in terms of rate inter-
vals and client location. Commercial CDN’s and other replicated
services, which see orders-of-magnitude more traffic than Coral-
CDN, would be able to achieve much finer granularity while keep-
ing rates stable, such as tracking requests per minute, per IP prefix.

5.3 Prototype Evaluation
We now evaluate our DONAR prototype when used to perform

replica selection for CoralCDN. CoralCDN disseminates content by
answering HTTP requests on each of its distributed replicas. Since
clients access CoralCDN via the nyud.net domain suffix, they
require a DNS mechanism to perform replica selection. For our ex-
periments, we create a DONAR account for the nyud.net suffix,
and add ten CoralCDN proxies as active replicas. We then point a
subset of the CoralCDN NS records to DONAR’s mapping nodes
in order to direct DNS queries.

Closest Replica. We first implement a “closest replica” policy
by imposing no constraint on the distribution of client requests.
We then track the client arrival rate at each replica, calculated in
10-minute intervals over the course of three days. As Figure 10
demonstrates, the volume of traffic arriving at each replica varies
highly according to replica location. The busiest replica in each in-
terval typically sees ten times more traffic than the least busy. For
several periods a single server handles more than 40% of requests.
The diurnal traffic fluctuations, which are evident in the graph, also
increase the variability of traffic on each replica.

Each CoralCDN replica has roughly the same capacity, and each
replica’s performance diminishes with increased client load, so a
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Figure 10: Server request loads under “closest replica” policy
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Figure 11: Proportional traffic distribution observed by DONAR (Top) and
CoralCDN (Bottom), when an equal-split policy is enacted by DONAR.
Horizontal gray lines represent the ε tolerance ±2% around each split rate.

preferable outcome is one in which loads are relatively uniform.
Despite a globally distributed set of replicas serving distributed
clients, a naïve replica selection strategy results in highly dispro-
portionate server loads and fails to meet this goal. Furthermore,
due to diurnal patterns, there is no way to statically provision our
servers in order to equalize load under this type of selection policy.
Instead, we require a dynamic mapping layer to balance the goals
of client proximity and load distribution, as we show next.

Controlling request distribution. We next leverage DONAR’s
API to dictate a specific distribution of client traffic amongst repli-
cas. In this evaluation we partition the ten Coral servers to receive
equal amounts of traffic (10% each) each with an allowed devia-
tion of 2%. We then measure both the mapping behavior of each
DONAR node and the client arrival rate at each CoralCDN replica.
Figure 11 demonstrates the proportion of requests mapped to each
replica as recorded by DONAR nodes. Replica request volumes
fluctuate within the allowed range as DONAR adjusts to changing
client request patterns. The few fluctuations which extend past the



1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

Ranked Order from Closest

H
T

T
P

 C
lie

nt
s 

at
 E

ac
h 

P
ro

xy

 

 

DONAR
Round Robin

Figure 12: Client performance during equal split

“allowed” tolerance are due to inaccuracies in request load predic-
tion and intermediate solutions which (as explained in Section 3)
may temporarily violate constraints. Figure 11 (Bottom) depicts
the arrival rate of clients at each CoralCDN node. The discrep-
ancy in these graphs is an artifact of the choice to use DNS-based
mapping, a method which offers complete transparency at the cost
of some control over mapping behavior (as discussed in Section 6).
Nonetheless, request distribution remains within 5% of desired dur-
ing most time periods. Customers using HTTP-based mechanisms
would see client arrival exactly equal to that observed by DONAR.

Measuring client performance. We next evaluate the perfor-
mance of CoralCDN clients in the face of specific the traffic dis-
tribution requests imposed in the prior experiment. Surprisingly,
DONAR is able to sufficiently balance client requests, while pair-
ing clients with nearby servers with very high probability. This dis-
tinguishes DONAR from simple weighted load balancing schemes,
which forgo a consideration of network performance in favor of
achieving a specific split. While DONAR nodes define fractional
rules for each client, in practice nearly every client is “pinned” to
a particular replica at optimum. We can thus show the proportion
of clients paired with their nth preferred replica. Figure 12 plots
this data, contrasting DONAR with a round-robin mapping policy.
With DONAR, more than 50% of clients are mapped to the near-
est node and 75% are mapped within the top three, a significant
improvement over the traditional round-robin approach.

6. RELATED WORK
Network distance estimation. A significant body of research
has examined techniques for network latency and distance estima-
tion, useful for determining cost(c,i) in DONAR. Some work
focused on reducing the overhead for measuring the IP address
space [33, 19, 34, 35]. Alternatively, virtual coordinate systems [17,
18] estimated latency based on synthetic coordinates. More recent
work considered throughput, routing problems, and abnormalities
as well [20, 16]. Another direction is geographic mapping tech-
niques, including whois data [36, 37], or extracting information
from location-based naming conventions for routers [38, 39].

Configurable Mapping Policies. Existing services provide lim-
ited customization of mapping behavior. OASIS [10] offers a choice
of two heuristics which jointly consider server load and client-server
proximity. ClosestNode [40] supports locality policies based on
programmatical on-demand network probing [15]. Amazon’s EC2,
a commercial service, allows basic load balancing between virtual
machine instances. For those who are willing to set up their own
distributed DNS infrastructure, packages like MyXDNS [41] facil-
itate extensive customization of mapping behavior, though only by
leaving all inputs and decisions up to the user.

Efficacy of Request Redirection. Several studies have evaluated
the effectiveness of DNS-based replica selection, including the ac-
curacy of using DNS resolvers to approximate client location [42]
or the impact of caching on DNS responsiveness [43]. Despite these
drawbacks, DNS remains the preferred mechanism for sever selec-
tion by many industry leaders, such as Akamai [2]. While HTTP
tunneling and request redirection offer greater accuracy and finer-
grain control for services operating on HTTP, they introduce addi-
tional latency and overhead.

7. CONCLUSIONS
DONAR enables online services to offer better performance to

their clients at a lower cost, by directing client requests to appropri-
ate server replicas. DONAR’s expressive interface supports a wide
range of replica-selection policies, and its decentralized design is
scalable, accurate, and responsive. Through a live deployment with
CoralCDN, we demonstrate that our distributed algorithm is accu-
rate and efficient, requiring little coordination among the mapping
nodes to adapt to changing client demands. In our ongoing work,
we plan to expand our CoralCDN and M-Lab deployments and start
making DONAR available to other services. In doing so, we hope
to identify more ways to meet the needs of networked services.
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APPENDIX
A. DECENTRALIZED SOLUTION PROOF

Theorem 1 The distributed algorithm shown in Table 2, converges
to the optimal solution of RSg, given that (i) each node n iteratively
solves RSl

n in a circular fashion, i.e., n = 1,2, . . . |N |,1, . . ., and
(ii) each replica price λi is updated in a larger timescale, i.e., after
all nodes’ decisions converge given a set of {λi}i∈I .

Proof: It suffices to show that the distributed algorithm is an ex-
ecution of the dual algorithm that solves RSg. We only show the
case of split weight constraint (3), and the case of bandwidth cap
constraint (4) would follow similarly.

First, following the Lagrangian method for solving an optimiza-
tion problem, we derive the Lagrangian of the global problem RSg.
Constraint (3) is equivalent to

(Pi−wi)2 ≤ ε
2
i

The Lagrangian of RSg is written as:

L(R,λ ) = per f g + ∑
i∈I

λi
(
(Pi−wi)2− ε

2
i
)

= ∑
n∈N

per f l
n + load (9)

where λi ≥ 0 is the Lagrange multiplier (replica price) associated
with the split weight constraint on replica i, and R = {Rnci}n∈N ,c∈Cn,i∈I
is the primal variable. The dual algorithm requires to minimize the
Lagrangian (9) for a given set of {λi}i∈I .

minimize L(R,λ )
variable R

A distributed algorithm implied by condition (i) solves (9), because
each node n iteratively solving RSl

n in a circular fashion, simply
implements the nonlinear Guass-Seidel algorithm (per [45, Ch. 3,
Prop. 3.9], [46, Prop. 2.7.1]):

R(t+1)
n = argminRSg(. . . ,R(t+1)

n−1 ,Rn,R
(t)
n+1, . . .)

where Rn = {Rnci}c∈Cn,i∈I denotes node n’s decision variable. Given
a set of {λi}i∈I , the distributed solution converges because: first,
the objective function (9) is continuously differentiable and con-
vex on the entire set of variables. Second, each step of RSl

n is a
minimization of (9) with respect to its own variable Rn, assuming
others are held constant. Third, the optimal solution of each RSl

n
is uniquely attained, since its objective function is quadratic. The
three conditions together ensure that the limit point of the sequence
{Rn}

(t)
n∈N , minimizes (9) for a given set of {λi}i∈I .

Second, we need to solve the master dual problem:

maximize f (λ )
subject to λ ≥ 0

where f (λ ) = maxR L(R,λ ), which is solved in the first step. Since
the solution to (9) is unique, the dual function f (λ ) is differentiable,
which can be solved by the following gradient projection method:

λi←max
{

0,λi +θ
(
(Pi−wi)2− ε

2
i
)}

, ∀i

where θ > 0 is a small positive step size. Condition (ii) guaran-
tees the dual prices λ are updated in a larger timescale, as the dual
algorithm requires.

The duality gap of RSg is zero, and the solution to each RSl
n

is also unique. This finally guarantees that the equilibrium point of
the decentralized algorithm is also the optimal solution of the global
problem RSg.
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