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Abstract

We give a reduction to quasisimple groups for Donovan’s conjecture for blocks with abelian

defect groups defined with respect to a suitable discrete valuation ring O. Consequences are

that Donovan’s conjecture holds for O-blocks with abelian defect groups for the prime two,

and that, using recent work of Farrell and Kessar, for arbitrary primes Donovan’s conjecture

for O-blocks with abelian defect groups reduces to bounding the Cartan invariants of blocks

of quasisimple groups in terms of the defect. A result of independent interest is that in

general (i.e. for arbitrary defect groups) Donovan’s conjecture for O-blocks is a consequence

of conjectures predicting bounds on the O-Frobenius number and on the Cartan invariants,

as was proved by Kessar for blocks defined over an algebraically closed field.

1 Introduction

Let p be a prime and let k = F̄p . Let (K , O, k) be a p-modular system, so O is a complete

discrete valuation ring with residue field k. The results here hold in this general setting, but

we have in mind for O the ring of Witt vectors over k as this will be used to state Donovan’s

conjecture in a uniform way. Donovan’s conjecture, originally stated over an algebraically

closed field, is as follows:
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Conjecture 1.1 (Donovan) Let P be a finite p-group. Then amongst all finite groups G and

blocks B of OG with defect groups isomorphic to P there are only finitely many Morita

equivalence classes.

For blocks defined over an algebraically closed field there has been some success in

proving the conjecture for certain p-groups, for example it is known for abelian 2-groups

by [5] and for abelian defect groups in arbitrary characteristic it reduces to bounding the

Cartan invariants of blocks of quasisimple groups by [5,9]. In addition blocks with defect

groups isomorphic to dihedral or semidihedral 2-groups were classified in [8]. However, we

ultimately want to understand blocks defined over O. Two of the main obstacles to working

over O rather than k are as follows. The first is that the crucial reduction step in [14], allowing

us to reduce to studying groups generated by the defect groups, was only known over a field.

The second is that the reduction in [12] of Donovan’s conjecture into two distinct conjectures

was also only known over a field. The first problem was overcome by the second author in

[7], and we resolve the second here, allowing us to reduce Donovan’s conjecture for O-blocks

with abelian defect groups to bounding, for quasisimple groups, the Cartan invariants and

strong Frobenius number as defined in [4]. The results of [9] show that the strong Frobenius

numbers of quasisimple groups are bounded in terms of the defect group, so Donovan’s

conjecture for abelian defect groups in fact reduces to bounding Cartan invariants of blocks

of quasisimple groups. Such bounds are known to hold for 2-blocks with abelian defect

groups.

Our main result is as follows:

Theorem 1.2 Let d be a non-negative integer. If there are functions s, c : N → N such that

for all O-blocks B of quasisimple groups with abelian defect groups of order pd ′
dividing

pd , sfO(B) ≤ s(d ′) and all Cartan invariants are at most c(d ′), then Donovan’s conjecture

holds for O-blocks with abelian defect groups of order pd .

A straightforward consequence is that:

Corollary 1.3 Donovan’s conjecture (over O) holds for blocks with abelian defect groups if

and only if it holds for blocks of quasisimple groups with abelian defect groups.

By work of Farrell and Kessar in [9], we get a much more powerful consequence:

Corollary 1.4 Let d be a non-negative integer. If there is a function c : N → N such that for

all O-blocks B of quasisimple groups with abelian defect groups of order pd ′
dividing pd

the Cartan invariants are at most c(d ′), then Donovan’s conjecture holds for O-blocks with

abelian defect groups of order pd .

Hence we have shown that for abelian p-groups Conjecture 1.1 is equivalent to (the

restriction to quasisimple groups of) the following apparently much weaker conjecture, which

arose from a question of Brauer:

Conjecture 1.5 (Weak Donovan) Let P be a finite p-group. Then there is c(P) ∈ N such that

if G is a finite group and B is a block of kG with defect groups isomorphic to P, then the

entries of the Cartan matrix of B are at most c(P).

Remark 1.6 It actually suffices to bound the Cartan invariants of quasisimple groups G with

Op(G) = 1, as we will see in Sect. 5.

In [6] it was shown that the Cartan invariants are bounded in terms of the defect group for

2-blocks with abelian defect groups, so we get:
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Theorem 1.7 Let P be an abelian 2-group. Then Donovan’s conjecture holds for P.

The paper is structured as follows. In Sect. 2 we recall the definition of the strong O-

Frobenius number and state some of the main results. In Sect. 3 we show that Donovan’s

conjecture for O-blocks is equivalent to two separate conjectures as in [12]. Section 4 contains

the reduction to quasisimple groups. In Sect. 5 we briefly discuss the problem of bounding

Cartan invariants.

Remark on choice of O in Donovan’s conjecture: Note that since O/J (O) is algebraically

closed we ensure that K contains all p′-roots of unity. In general O would have to contain

a primitive |P|th root of unity in order for K to be a splitting field for a block with defect

group P , but this condition is not always necessary to demonstrate Donovan’s conjecture.

We therefore have two canonical choices for O in the statement of Donovan’s conjecture: the

ring of Witt vectors for F̄p and the same with a primitive |P|th root of unity attached. The

results of this paper hold over either choice (see Remark 4.7 for the latter case), but in light

of the results of [9] the former seems the best setting for Donovan’s conjecture.

2 StrongO-Frobenius andO-Morita-Frobenius numbers

The strong O-Frobenius number was introduced in [4], but we recall the definition and some

of its main properties here. We also define the O-Morita-Frobenius number. These numbers

may be defined for any choice of O as in the introduction, although this requires some care

when it comes to defining the character idempotents.

Let A be an O-algebra finitely generated as an O-module. Write k A for A ⊗O k and

K A for A ⊗O K . Let G be a finite group and B a block of OG. Denote by eB ∈ OG the

block idempotent corresponding to B and ek B ∈ kG the block idempotent corresponding

to k B. Write Irr(G) for the set of irreducible characters of G and Irr(B) for the subset of

Irr(G) of irreducible characters χ such that χ(eB) �= 0. For each χ ∈ Irr(G) we denote

by eχ ∈ K G the character idempotent corresponding to χ , where K denotes the algebraic

closure of K . Note that K B =
⊕

χ∈Irr(B) K Geχ . If X and Y are finitely generated R-

algebras for R ∈ {K , O, k, K }, we write X ∼Mor Y if the categories of finitely generated X

and Y -modules are (Morita) equivalent as R-linear categories.

Denote by π a generator of the maximal ideal of O. Let σ ∈ Gal(K/Qp) be such that

σ(π) = π and σ induces a non-trivial automorphism σ̄ on O/πO = k.

Define A(σ ) to be the O-algebra with the same underlying ring structure as A but with

a new action of the scalars given by λ.a = λσ−1
a, for all λ ∈ O and a ∈ A. We may

similarly define (k A)(σ̄ ). We note that, through the identification of elements, A and A(σ ) are

isomorphic as rings but not necessarily as O-algebras.

In the case that σ̄ is the Frobenius automorphism given by x 	→ xq , where q is a power

of p, it is sometimes convenient to write −(q) for σ̄ . If B is a block of OG, for some finite

group G, then we can also define B(q) to be B(σ ), where σ is some lift of −(q). We define

B(q) in an alternative way below. In particular we show that it is independent of the choice

of σ .

For a general σ we have OG(σ ) ∼= OG and we can realise this isomorphism via:

OG(σ ) → OG
∑

g∈G

αgg 	→
∑

g∈G

σ(αg)g.
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If B is a block of OG, then we identify B(σ ) with its image under the above isomorphism.

We can do analogous identifications with kG and its blocks.

Let q = pz for some z ∈ Z. By an abuse of notation we use −(q) to also denote the field

automorphism of the universal cyclotomic extension of Q defined by ωpωp′ 	→ ωpω
q

p′ , for

all pth-power roots of unity ωp and p′th roots of unity ωp′ . If χ ∈ Irr(G), then we define

χ (q) ∈ Irr(G) to be given by χ (q)(g) = χ(g)(q) for all g ∈ G. If B is a block of OG with

χ ∈ Irr(B), then we define B(q) to be the block of OG with χ (q) ∈ Irr(B(q)). We have

(k B)(q) = k(B(q)), in particular B(q) is well-defined. Note that if σ : O → O is a lift of

−(q), then B(q) = B(σ ).

Definition 2.1 Let A be a finitely generated k-algebra.

(i) The Morita Frobenius number mf(A) of A is the smallest integer n such that A ∼Mor

A(pn) as k-algebras.

Let B a block of OG, for some finite group G.

(ii) The O-Morita Frobenius number mfO(B) of B is the smallest integer n such that

B ∼Mor B(pn) as O-algebras.

(iii) The O-Frobenius number fO(B) of B is the smallest integer n such that B ∼= B(pn)

as O-algebras.

(iv) The strong O-Frobenius number sfO(B) of B is the smallest integer n such that

there exists an O-algebra isomorphism B → B(pn) such that the induced K -algebra

isomorphism K B → K B(pn) sends χ to χ (pn) for all χ ∈ Irr(B).

Note that the definition of strong O-Frobenius number given above is not exactly the same

as that given in [4, Definition 3.8] but the two are shown to be equivalent in [4, Proposition 3.5].

A consequence of the following is that bounding the strong O-Frobenius numbers in terms

of the size of the defect group is equivalent to bounding the O-Morita-Frobenius numbers in

terms of the size of the defect group.

Proposition 2.2 Let G and H be finite groups, and let B and C be blocks of OG and OH

respectively. Let D be a defect group for B.

(i) mf(k B) ≤ mfO(B) ≤ fO(B) ≤ sfO(B) ≤ |D|2!fO(B).

(ii) If B and C are Morita equivalent, then sfO(B) = sfO(C) and mfO(B) = mfO(C).

Proof (i) The first three inequalities should be clear from the definitions and the final inequal-

ity is in [4, Proposition 3.11].

(ii) The first part is [4, Proposition 3.12] and the second is immediate from the definition.

⊓⊔

We state an analogue of [12, Conjecture 1.3]:

Conjecture 2.3 Let P be a finite p-group. Then there is s(P) ∈ N such that if G is a finite

group and B is a block of OG with defect groups isomorphic to P, then sfO(B) ≤ s(P).

Equivalently, there is t(P) ∈ N such that if G is a finite group and B is a block of OG

with defect groups isomorphic to P, then mfO(B) ≤ t(P).

3 Morita-Frobenius numbers and Donovan’s conjecture

As in the rest of the paper, the results of this section hold over any complete discrete valuation

ring O with residue field k = F̄p , but we have in mind the ring of Witt vectors of k. Denote
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by π a generator of the maximal ideal of O. Let us fix an element σ of Gal(K/Qp) such that

σ(π) = π and σ induces a positive power of the Frobenius automorphism on O/πO. If O

is the ring of Witt vectors over k, then π = p and any power of the Frobenius automorphism

of k can explicitly be lifted to O. We denote the automorphism of k that σ induces by σ̄ . The

ultimate aim of the section is to prove an analogue over O for Kessar’s results in [12] which

hold over k.

Defining “−〈σ 〉”, resp.“−〈σ̄ 〉”, to be the elements fixed under σ , resp. σ̄ , the field k〈σ̄ 〉 is

finite by definition and we claim that (K 〈σ 〉, O
〈σ 〉, k〈σ̄ 〉) is again a p-modular system. It is clear

that K 〈σ 〉 is complete and that O
〈σ 〉 is integrally closed in K 〈σ 〉. Moreover O

〈σ 〉/πO
〈σ 〉 ⊆

k〈σ̄ 〉. We just need to check that this inclusion is an equality. To see this, note that every

non-zero element of k〈σ̄ 〉 is a (|k〈σ̄ 〉| − 1)th root of unity, and those lift to O by Hensel’s

lemma. That is, the groups of (|k〈σ̄ 〉| − 1)th roots of unity of O and k are in bijection (via

reduction mod π ), and since σ̄ acts trivially on the latter, σ must act trivially on the former.

Hence (|k〈σ̄ 〉| − 1)th roots of unity in O lie in O
〈σ 〉 and reduce to the non-zero elements of

k〈σ̄ 〉, so the claim is shown.

Definition 3.1 (Order) We call an O-algebra � an O-order if it is free and finitely generated

as an O-module. By an O-order in a finite-dimensional K -algebra A we mean an O-order

contained in A which, in addition, spans A as a vector space over K .

Proposition 3.2 (Lang’s theorem over O) Let m ∈ N and extend σ to K m×m entry-wise:

σ : K m×m −→ K m×m : (ai, j )i, j 	→ (σ (ai, j ))i, j

Then the map

GLm(O) −→ GLm(O) : A 	→ A−1 · σ(A)

is surjective.

Proof Note that the restriction of the epimorphism

¯ : O
m×m −→ km×m : A 	→ A + π · O

m×m

to GLm(O) induces an epimorphism GLm(O) −→ GLm(k). Therefore, given a matrix

A ∈ GLm(O), Lang’s theorem gives us a matrix B ∈ GLm(k) such that Ā = B−1 · σ̄ (B),

where σ̄ (B) is the image of B with σ̄ applied entry-wise. Choose C1 ∈ GLm(O) such that

C̄1 = B. Then clearly A − C−1
1 · σ(C1) ∈ π · O

m×m . Now let n ∈ N and assume there

exist Ci ∈ GLm(O) for each 1 ≤ i ≤ n satisfying A − C−1
i · σ(Ci ) ∈ π i · O

m×m for each

1 ≤ i ≤ n and Ci − Ci+1 ∈ π i · O
m×m for each 1 ≤ i ≤ n − 1. Then, for any X ∈ O

m×m :

(Cn − πn · X · Cn)−1 · σ(Cn − πn · X · Cn)

= ((1 − πn · X) · Cn)−1 · (1 − πn · σ(X)) · σ(Cn)

= C−1
n · (1 − πn · X)−1 · (1 − πn · σ(X)) · σ(Cn)

= C−1
n ·

⎛

⎝

∞
∑

j=0

πn· j · X j

⎞

⎠ · (1 − πn · σ(X)) · σ(Cn).

Hence

(Cn − πn · X · Cn)−1 · σ(Cn − πn · X · Cn)

≡ C−1
n · (1 + πn · (X − σ(X))) · σ(Cn) (mod πn+1).
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If we set Cn+1 := Cn − πn · X · Cn, then we have A − C−1
n+1 · σ(Cn+1) ∈ πn+1 · O

m×m if

and only if X satisfies

Cn · A · σ(Cn)−1 ≡ 1 + πn · (X − σ(X))(mod πn+1).

The same congruence mod πn is satisfied by assumption. Thus we can rewrite this as

π−n · (Cn · A · σ(Cn)−1 − 1) ≡ X − σ(X) (mod π).

We can find such an X once we show that the map

km×m −→ km×m : (xi, j ) 	→ (xi, j − σ̄ (xi, j )) = (xi, j − x
q
i, j )

is surjective. Surjectivity of this map is equivalent to the statement that the polynomial

equation x − xq − z = 0 has a solution in k for any z ∈ k. Since k is algebraically closed,

such a solution always exists. Therefore, by induction, there exist Ci ∈ GLm(O) for each

i ∈ N satisfying A − C−1
i · σ(Ci ) ∈ π i · Om×m and Ci − Ci+1 ∈ π i · Om×m for each i ∈ N.

Therefore, since O is complete with respect to (π), there exists some C ∈ GLm(O) (the limit

of the Ci ’s) such that A = C−1 · σ(C). ⊓⊔

Theorem 3.3 Let � be an O-order. Set K0 = K 〈σ 〉 and O0 = O
〈σ 〉. If there is an isomorphism

of O-algebras

	 : � −→ �(σ )

then there exists an O0-algebra �0 ⊆ � such that � ∼= O ⊗O0 �0.

Proof As a set �(σ ) is equal to �, and hence we may view 	 as a σ -sesquilinear map from

� into itself. Now fix an isomorphism of O-lattices 
 : � −→ O
n , where n = rankO(�).

Let F : O
n −→ O

n denote the σ -sesquilinear map given by entry-wise application of σ .

Then the map


 ◦ 	 ◦ 
−1 ◦ F−1 : O
n −→ O

n

is O-linear (being the composition of a σ -sesquilinear and a σ−1-sesquilinear map), and may

therefore be viewed as an element of GLn(O) (as all maps involved in its construction are

bijections). Now Lemma 3.2 implies that there is an A ∈ GLn(O) such that


 ◦ 	 ◦ 
−1 ◦ F−1 = A−1 ◦ σ(A) = A−1 ◦ F ◦ A ◦ F−1.

The above equation implies that

A ◦ 
 ◦ 	 ◦ 
−1 ◦ A−1 = F . (1)

Let e1, . . . , en denote the standard basis of O
n , and set λi = 
−1(A−1(ei )) for 1 ≤ i ≤ n.

Since F(ei ) = ei for all i , formula (1) implies that 	(λi ) = λi for all i .

Next, let us define structure constants mi, j;l ∈ O for i, j, l ∈ {1, . . . , n} such that

λi · λ j =

n
∑

l=1

mi, j;l · λl for all i, j ∈ {1, . . . , n}.

The σ -sesquilinearity of 	 implies that

	(λi · λ j ) = 	

(

n
∑

l=1

mi, j;l · λl

)

=

n
∑

l=1

σ(mi, j;l) · λl .
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The fact that 	 is multiplicative (by virtue of being an algebra isomorphism between � and

�σ ) implies that

	(λi · λ j ) = 	(λi ) · 	(λ j ) = λi · λ j =

n
∑

l=1

mi, j;l · λl .

Since the λi are linearly independent it follows that mi, j;l = σ(mi, j;l) for all i, j, l ∈

{1, . . . , n}, i.e. mi, j;l ∈ O0. This implies that the O0-lattice spanned by λ1, . . . , λn is an

O0-algebra, which completes the proof. ⊓⊔

In the following we have in mind the case K0 = K 〈σ 〉.

Proposition 3.4 Given a finite extension K0/Qp , and a natural number n, there are only

finitely many isomorphism classes of semi-simple K0-algebras A of dimension n.

Proof The Artin–Wedderburn theorem implies that it suffices to prove that there are only

finitely many division algebras A of a given dimension n over K0. As a Z(A)-algebra, a

skew-field A is determined by its Hasse invariant (see [18, § 14]), which can take only

finitely many possible values once we fix dimZ(A)(A). Hence we are reduced to showing

that there are only finitely many possibilities for the field Z(A), that is, that there are only

finitely many field extensions of K0 of degree at most n. But it is well known that the number

of extensions of Qp of a fixed degree is finite (see [13, Théorème 2], which even gives an

explicit formula). Clearly the same holds for extensions of K0, as K0 is of finite degree over

Qp . This completes the proof. ⊓⊔

In what follows we denote by lengthR(M) ∈ Z≥0 ∪ {∞}, for a commutative local ring R

and R-module M , the length of M as an R-module. We will also allow more flexibility for

the choice of K0. We will often ask that K0/Qp be an extension of discretely valued fields,

which means that it should be a (not necessarily finite) field extension such that the usual

discrete (exponential) valuation νp : Qp −→ Z ⊂ Q satisfying νp(p) = 1 extends to a

discrete valuation K0 −→ Q, also denoted by νp . It is well known that the valuation on Qp

can be extended (even uniquely) to any algebraic extension of finite degree. But K/Qp is

an extension of discretely valued fields as well, after appropriate rescaling of the valuation.

To be explicit, we let νp : K −→ Q denote the unique discrete valuation on K such that

νp(p) = 1. If we equip K with this valuation, K/Qp becomes an extension of discretely

valued fields.

Proposition 3.5 Let K0/Qp be an extension of discretely valued fields, let O0 be the associ-

ated discrete valuation ring, and let A be a split semisimple K0-algebra. We have

A ∼=

n
⊕

i=1

K
di ×di

0

for certain n, d1, . . . , dn ∈ N. Denote by Tri : A −→ K0 the trace function on the i th matrix

algebra summand of A. Fix elements u1, . . . , un ∈ K ×
0 and define

T : A × A −→ K0 : (a, b) 	→

n
∑

i=1

ui · Tri (a · b).

If � ⊂ A is an O0-order such that

� = �♯ := {a ∈ A | T (a, x) ∈ O0 for all x ∈ �}
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and Ŵ ⊇ � is a maximal O0-order in A, then

lengthO0
Ŵ/� =

1

2
· lengthO0

(O0/pO0) ·

n
∑

i=1

d2
i · νp(u

−1
i ). (2)

Proof All maximal orders in A are conjugate. Moreover, any conjugate of � is self-dual with

respect to the same bilinear form T , that is, (a�a−1)♯ = a�a−1 for any a ∈ A×. This is

because the trace functions Tri used in the definition of T are invariant under conjugation.

Hence we may assume without loss of generality that

Ŵ =

n
⊕

i=1

O
di ×di

0 .

Using the matrix units as an explicit basis of Ŵ we can compute

Ŵ♯ =

n
⊕

i=1

u−1
i · O

di ×di

0 .

Moreover, T induces a non-degenerate pairing (with values in K0/O0, the quotient of the

underlying additive group of K0 by the underlying additive group of O0) between the O0-

modules Ŵ/� and �♯/Ŵ♯ = �/Ŵ♯. It follows that these two O0-modules have the same

length, which must consequently be exactly half the length of Ŵ/Ŵ♯. The asserted formula

for the length of Ŵ/� now follows immediately. ⊓⊔

Definition 3.6 (Defect of a symmetric order) Let K0/Qp be an extension of discretely valued

fields and let O0 be the associated discrete valuation ring.

1. Let A be a split semisimple K0-algebra. We have

A ∼=

n
⊕

i=1

K
di ×di

0

for certain n, d1, . . . , dn ∈ N. If � ⊆ A is a symmetric O0-order, then there is a sym-

metrising form

T : A × A −→ K0 : (a, b) 	→

n
∑

i=1

ui · Tri (a · b)

for certain u1, . . . , un ∈ K ×
0 such that � = �♯ (see [16, Definition (III.1)] for an

introduction to symmetrising forms from this point of view). We call

d = max
1≤i≤n

{−νp(ui )}

the defect of �.

2. Assume now that A is an arbitrary semisimple K0-algebra and that, as in the previous

point, � ⊆ A is a symmetric O0-order. Then there is an algebraic extension E0/K0 of

finite degree such that E0 ⊗K0 A is split. As the extension is of finite degree, the discrete

valuation of K0 extends uniquely to a discrete valuation on E0. If E0 denotes the valuation

ring of E0, then E0 ⊗O0 � is an E0-order in the split semisimple E0-algebra E0 ⊗K0 A,

and we define the defect of � to be equal to the defect of E0 ⊗O0 � (which is defined as

per the previous point).

123



Donovan’s conjecture, blocks with abelian defect groups... 257

Remark 3.7 1. Note that the defect of a symmetric order � is well-defined (i.e. independent

of the choice of T and the splitting field E0).

Independently of whether K0 is a splitting field for A, a symmetrising form T defines an

isomorphism

� −→ HomO(�, O) : a 	→ T (a,−)

of � − �-bimodules. Such an isomorphism is clearly unique up to an automorphism

of � viewed as a �-�-bimodule, and such automorphisms are given by multiplica-

tion by an element of Z(�)×. So if T ′ is another symmetrising form for �, then

T ′(−,=) = T (z · −,=) for some z ∈ Z(�)×. If K0 is a splitting field for A, then

for all i and all a, b ∈ A we have Tri (zab) = zi Tri (ab) for some zi ∈ O
×
0 (using the

notation of Definition 3.6). In particular, the ui attached to the forms T and T ′ differ only

by an element of O
×
0 , that is, they have the same valuation.

The above argument shows that the defect of a symmetric order in a split semisimple

algebra is independent of the choice of a symmetrising form. The second part of Defini-

tion 3.6 defines the defect in the non-split case by passing to a splitting field. So assume

that we have two different splitting fields E0 and E ′
0, both of finite degree over K0.

We need to show that the defect of � is independent of whether we use E0 or E ′
0 as

our splitting field in Definition 3.6. Fix an algebraic closure K̄0 of K0. We can choose

embeddings i : E0 →֒ K̄0 and i ′ : E ′
0 →֒ K̄0. Then there is a bigger splitting field

E ′′
0 ⊂ K̄0 containing both i(E0) and i(E ′

0). As the valuation νp on K0 extends uniquely

to any finite algebraic extension, we have νp(i(x)) = νp(x) for all x ∈ E0 (same for i ′

and E ′
0). Hence we may replace, without loss of generality, E0 by i(E0) and E ′

0 by i ′(E ′
0)

and just assume that E0 and E ′
0 are contained (as discretely valued fields) in E ′′

0 . The

explicit symmetrising forms T and T ′ we chose over E0 and E ′
0 both extend linearly to

symmetrising forms over E ′′
0 . The invariants ui used in Definition 3.6 for T (respectively

T ′) are the same as for the E ′′
0 -linear extension of T (respectively T ′). That is, the defect

of � obtained using the splitting field E0 (respectively E ′
0) is the same as the one obtained

using the splitting field E ′′
0 . As we have seen in the previous paragraph that the defect of

an order in a split semi-simple algebra over a given field is well-defined, it follows that

defect of � defined using the splitting fields E0 or E ′
0 is the same.

2. Let E0/K0 be an extension of discretely valued fields, and let E0 and O0 denote the

corresponding discrete valuation rings. If � is an O0-order in a semisimple K0-algebra,

then the defect of the O0-order � is the same as the defect of the E0-order E0 ⊗O0 �

(this is again easy to see, one just needs to construct a finite splitting extension of E0

containing a finite splitting extension of K0).

3. If e ∈ � is an idempotent, and T : A × A −→ K0 is a symmetrising form for �, then

T |eAe×eAe is a symmetrising form for e�e. In particular, if e does not annihilate any

non-zero element of Z(A), then � and e�e have the same defect (this can be seen by

passing to a splitting field). It follows that the basic algebra of � has the same defect as

�, that is, the defect is invariant under Morita equivalence.

4. Let � = O0G, and assume without loss of generality that K0G is split. If χ1, . . . , χn :

K0G −→ K0 are the (absolutely) irreducible characters of G, then χi = Tri (up to

permutation of the indices). It is easy to see that O0G is self-dual with respect to the

bilinear form T (a, b) = |G|−1 ·χreg(a ·b), where χreg denotes the character of the regular

representation of G. We have χreg =
∑

i χi (1) · χi , and therefore

T (a, b) =
1

|G|
·

n
∑

i=1

χ(1) · Tri (a · b).
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That is ui = |G|−1 · χi (1). In particular, the defect of O0G is equal to νp(|G|).

5. If � = O0Gb is a block, then the above reasoning implies that the defect of � in the

sense of Definition 3.6 is equal to

max
χ∈IrrC(b)

{νp(|G|) − νp(χ(1))}

This equals the defect of O0Gb in the ordinary sense (that is, the p-valuation of the order

of a defect group) since any block contains a character of height zero.

Proposition 3.8 Let K0/Qp be an extension of discretely valued fields and let O0 be the

associated discrete valuation ring. Let A be a semisimple K0-algebra and let Ŵ ⊂ A be a

maximal O0-order in A (unique up to conjugation). If � ⊆ Ŵ is a symmetric O0-order of

defect d, then

lengthO0
(Ŵ/�) ≤

1

2
· e · d · dimK0(A)

where e = lengthO0
(O0/pO0).

Proof If A is split then this follows immediately from Eq. (2). If A is not split, E0 is a finite

extension of K0 which splits A and E0 is the integral closure of O0 in E0, then

lengthO0
(Ŵ/�) = f −1 · lengthE0

(E0 ⊗O0 Ŵ/E0 ⊗O0 �) ≤ f −1 · lengthE0
(Ŵ̃/E0 ⊗O0 �)

where Ŵ̃ is a maximal E0-order containing E0 ⊗O0 Ŵ and f = lengthE0
(E0/rad(O0)E0) ≥ 1

(the ramification index of the extension E0/K0). The right hand side can be bounded using

Eq. (2) as before, so

lengthO0
(Ŵ/�) ≤

1

2
· f −1 · e · d · dimE0(E0 ⊗K0 A) ≤

1

2
· e · d · dimK0(A).

⊓⊔

Theorem 3.9 Fix d, n ∈ N. Up to isomorphism there are only finitely many symmetric O-

orders � satisfying all of the following:

1. dimK (K ⊗O �) ≤ n.

2. The defect of � is d.

3. � ∼= �(σ ) as O-algebras.

Proof Define K0 = K 〈σ 〉 and O0 = O
〈σ 〉. By Theorem 3.3 any � satisfying the conditions

above has an O0-form �0. By Proposition 3.4 there are only finitely many K0-algebras which

can occur as the K0-span of �0. Hence it suffices to show that any semisimple K0-algebra

A0 contains only finitely many isomorphism classes of symmetric O0-orders of defect d .

The algebra A0 contains a maximal order Ŵ0 which is unique up to conjugation. By

Proposition 3.8 the O0-length of the quotient Ŵ0/�0 for a symmetric O0-order �0 ⊆ Ŵ0

of defect d is bounded by 1
2

· e · d · n, where e = lengthO0
(O0/pO0). Now we just need

to realise that there are only finitely many isomorphism classes of O0-modules of length

smaller than this bound (as the residue field of O0 is finite), and for each of these (torsion)

O0-modules the set of O0-homomorphisms from Ŵ0 onto the module is a finite set. Any �0

occurs as the kernel of such a homomorphism, which proves that there are only finitely many

possibilities. ⊓⊔

Theorem 3.10 Let c, d, m ∈ N. There are only finitely many Morita equivalence classes of

blocks of finite groups (defined over O) such that
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1. The sum of all entries of the Cartan matrix of the block is bounded by c.

2. The defect of the block is equal to d.

3. The O-Morita-Frobenius number of the block is bounded by m.

Proof Consider the basic algebra of such a block, note that this is also symmetric with

the same defect. The bound on the Cartan numbers implies a bound on the dimension of

the K -span of the basic algebra. Moreover, a Morita equivalence of blocks corresponds to

an isomorphism of basic algebras. Let n denote the least common multiple of the integers

between 1 and m, and let σ be a lift of the nth power of the Frobenius automorphism of k.

Any basic algebra � of a block satisfying the third condition will satisfy � ∼= �(σ ), since n

is a multiple of the O-Morita-Frobenius number of �. It follows that the collection of basic

algebras of the blocks satisfying the three conditions satisfies the conditions of Theorem 3.9

(for the chosen σ ). Hence this collection contains only finitely many isomorphism classes of

orders, which implies the assertion of the theorem. ⊓⊔

Corollary 3.11 Let X be a collection of O-blocks of finite groups and let P be a finite p-group.

The following are equivalent:

1. Conjecture 1.1 holds for P for blocks in X , that is, there are only finitely many Morita

equivalence classes amongst the blocks in X with defect group isomorphic to P.

2. Conjectures 1.5 and 2.3 both hold for P for blocks in X .

Proof By Proposition 2.2, which relates the strong O-Frobenius number to the O-Morita-

Frobenius number, this follows from Theorem 3.10. ⊓⊔

4 Reductions for Donovan’s conjecture

The general strategy for the reduction for Donovan’s conjecture is the same as that in [5],

where the reduction proceeds in two steps. First it is shown that it suffices to consider reduced

pairs, and then it is shown that in order to demonstrate the conjecture for reduced pairs, we

need only consider quasisimple groups. In [5] the first part of the reduction, to reduced pairs,

could only be achieved over k since it relied on the results of [14]. However the analogue of

the results of [14] has since been shown by the second author. The following comes from [7,

Corollary 4.18].

Theorem 4.1 [7] Let P be a finite p-group. Given a finite group G and a block B of OG with

defect group D ∼= P covering a block C of OH where H = 〈Dh : h ∈ H〉, there are only

finitely many possibilities for the Morita equivalence class of B given that of C.

Recall that for a finite group G, a normal subgroup N and a G-stable block b of ON ,

we define G[kb] to be the normal subgroup of G consisting of elements which act as inner

automorphisms on kb. By [5, Propisition 3.1], if b is covered by a block of OG with abelian

defect group D, then D ≤ G[kb].

We recall the definition and some properties of the generalized Fitting subgroup F∗(H) of

a finite group H . Details may be found in [1]. A component of H is a subnormal quasisimple

subgroup of H . Distinct components of H commute and so if L1, L2 are two components of

H then L1 ∩ L2 ⊆ Z(L1). We define the layer E(H) of H to be the normal subgroup of H

generated by the components. It is a central product of the components. The Fitting subgroup

F(H) is the largest nilpotent normal subgroup of H , and this is the direct product of Or (H)

for all primes r dividing |H |. The generalized Fitting subgroup F∗(H) is E(H)F(H). An
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important property F∗(H) is that CH (F∗(H)) ≤ F∗(H), so G/F∗(H) may be viewed as a

subgroup of Out(F∗(H)).

Our definition of reduced pairs is as in [5]:

Definition 4.2 Let G be a finite group and B a block of OG with defect group D. We call

(G, B) a reduced pair if it satisfies the following:

(R1) F(G) = Z(G) = Op(G)Op′(G);

(R2) Op′(G) ≤ [G, G];

(R3) Every component of G is normal in G;

(R4) If L ≤ G is a component, then L ∩ D � Z(L);

(R5) G = 〈Dg : g ∈ G〉;

(R6) If H is any characteristic subgroup of G, then B covers a unique (i.e., G-stable) block

b of OH and further G[kb] = G.

We now give the first part of the reduction, which is analogous to [5, Proposition 3.4] and

based on [2]. We give a proof here for completeness.

Proposition 4.3 Let P be an abelian p-group for a prime p. In order to verify Donovan’s

conjecture for P, it suffices to verify that there are only a finite number of Morita equivalence

classes of blocks B of OG with defect group D ∼= P occurring in reduced pairs (G, B).

Proof Fix a finite abelian p-group P .

Consider pairs ([G : Op′(Z(G))], |G|) with the lexicographic ordering, where G is a

finite group. We first use two processes, labelled (a) and (b), which we apply alternately to

O-blocks of finite groups with defect groups isomorphic to P . Both processes strictly reduce

([G : Op′(Z(G))], |G|) when applied non-trivially, hence after repeated application must

terminate.

Let G be a finite group and B be a block of OG with defect group D ∼= P .

(a) Suppose N ⊳ G and b is a block of ON covered by B. Write I = IG(b) for the stabilizer

of b in G, and BI for the Fong-Reynolds correspondent. Now BI is Morita equivalent to

B and they have isomorphic defect groups. Since Op′(Z(G)) ≤ Op′(Z(I )), if I �= G,

then [I : Op′(Z(I ))] < [G : Op′(Z(G))]. Process (a) involves replacing B by BI and

repeating the process until B is necessarily quasiprimitive.

(b) Assume that process (a) has been performed, which means that B is quasiprimitive. Let

N ⊳ G such that N � (Z(G) ∩ [G, G])Op(G), and suppose that B covers a nilpotent

block b of N . Let b′ be a block of Z(G)N covered by B and covering b. Since B is

quasiprimitive both b and b′ are G-stable. Further b′ must also be nilpotent. Using the

results of [15], as outlined in [6, Proposition 2.2], B is Morita equivalent to a block B̃

of a central extension L̃ of a finite group L by a p′-group (which further is contained

in the derived subgroup [L̃, L̃]) such that there is an M ⊳ L̃ with M ∼= D ∩ (Z(G)N ),

G/Z(G)N ∼= L̃/Z(L̃)M , and B̃ has defect group isomorphic to D. Note that [L̃ :

Op′(Z(L̃))] ≤ |L| = [G : Z(G)N ]|D ∩ (Z(G)N )| < [G : Op′(Z(G))] and that

M ≤ (Z(L̃) ∩ [L̃, L̃])Op(L̃). Process (b) consists of replacing G by L̃ and B by B̃.

By repeated application of (a) and (b) to all blocks of all normal subgroups we have that

B is Morita equivalent to a quasiprimitive block C (i.e., every covered block of every normal

subgroup is stable) of a finite group H in which N ≤ Z(H)Op(H) and Op′(Z(H)) ≤ [H , H ]

whenever C covers a nilpotent block of a normal subgroup N of H . Hence in order to prove

Donovan’s conjecture it suffices to consider such blocks.
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Let G be a finite group and B a quasiprimitive block of OG with defect group D ∼= P

such that N ≤ Z(G)Op(G) whenever B covers a nilpotent block of a normal subgroup N

of G.

Let H = 〈Dg : g ∈ G〉 ⊳ G. Let C be the unique block of OH covered by B. If N is a

characteristic subgroup of H , then N ⊳ G and if b is a block of N covered by C , then b is

covered by B. Hence if b is a block of a characteristic subgroup of H covered by C , then b

is G-stable. Further, D ≤ G[kb] ⊳ G by [5, Proposition 3.1], so H ≤ G[kb]. If further b is

nilpotent, then N ≤ Z(G)Op(G) (and N ≤ Z(H)Op(H)).

We claim that (H , C) is reduced. Note that we have already shown that it satisfies (R2),

(R5) and (R6). Since D is abelian and contains any normal p-subgroup of H (and so in

particular Op(H)) we have D ≤ CH (Op(H)) ⊳ H , so CH (Op(H)) = H , i.e., Op(H) ≤

Z(H). Since also Op′(H) ≤ Z(H) by application of (b) to Op′(H) we have that (R1) holds.

Write L1, . . . , L t for the components of H , so E(H) = L1 · · · L t ⊳ H . Note that H

permutes the L i . If there are no components, then F∗(H) = Z(H)Op(H) by (R1), so

D ≤ CH (F∗(H)) ≤ F∗(H) = Z(H)Op(H) (since Op(H) ≤ D and D is abelian) and

D ⊳ H , so that H = D, and (R3), (R4) hold. Suppose that there is at least one component.

We claim that we cannot have D ∩ L j ≤ Z(L j ) for any j . Write L = E(H) and M :=

L1×· · ·×L t , where L i := L i Op(H)/Op(H). Write CL for the unique block of OL covered

by C and C L for the unique block of L := L Op(H)/Op(H) corresponding to CL . There is a

p′-group W ≤ Z(M) and a block CM of OM with W in its kernel such that L ∼= M/W and

CM is isomorphic to C L . Then D ∩ L is a defect group for CL , (D ∩ L)Op(H)/Op(H) is a

defect group for C L and CM has defect groups isomorphic to (D ∩ L)Op(H)/Op(H). Write

ci for the unique block of L i covered by CL and ci for the unique block of L i corresponding

to ci . Then ci has defect group Di = ((D ∩ L)Op(H)/Op(H)) ∩ L i . We have that CM =

c1⊗· · ·⊗ct and CM has defect group D1×· · ·×Dt . Let J ⊆ {1, . . . , t} correspond to the orbit

of L j under the permutation action of H on the components. Suppose that D ∩ L j ≤ Z(L j )

for some j , so c j is nilpotent. Define L J ⊳ H to be the product of the L i for i ∈ J , and write

cJ for the unique block of L J covered by CL . Now the unique block cJ of L J Op(G)/Op(G)

corresponding to cJ is isomorphic to a block ofXi∈J L i with a central p′-group in the kernel.

Products of nilpotent blocks are nilpotent, so cJ is nilpotent. Since Op(G) ≤ Z(G), by [19]

cJ is also a nilpotent block, of a nonsolvable normal subgroup covered by C , a contradiction.

Hence for all j we have D ∩ L j � Z(L j ), so (R4) holds for (H , C).

Conjugation induces a permutation action on the components, hence a homomorphism

ϕ : H → St . Let g ∈ D and say L
g
i = L j for some i �= j . Since D ∩ L i � Z(L i )

and L i ∩ L j ⊆ Z(L i ) we have a contradiction and so D ≤ ker(ϕ). Now (R5) implies that

ker(ϕ) = H , i.e., (R3) holds for (H , C), and (H , C) is reduced.

Finally, by Theorem 4.1 for a fixed Morita equivalence class for C , there are only finitely

many possibilities for the Morita equivalence class of B, and we are done. ⊓⊔

In the second part of the reduction, from reduced pairs to blocks of quasisimple groups, we

first show that in order to bound the strong O-Frobenius number for reduced pairs it suffices

to bound it for quasisimple groups. This is already given in [5]:

Lemma 4.4 (Lemma 3.5 of [5]) If there is a function s : N → N such that for all O-blocks B

of quasisimple groups with abelian defect groups of order pd , sfO(B) ≤ s(d), then there is

a function r : N → N such that for all reduced pairs (G, B) of a finite group G and a block

B of OG with abelian defect groups of order pd we have sfO(B) ≤ r(d).

The remainder of the proof of Theorem 1.2 now consists of observing that bounding the

strong O-Frobenius numbers for reduced pairs implies a bound on the number of Morita
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equivalence classes amongst reduced pairs. In [5], this part of the reduction could only be

achieved over k since it relied on the results of [12]. The results of the previous section

remedy this.

Proof of Theorem 1.2 Suppose that there is a function s : N → N such that sfO(b) ≤ s(d) for

all O-blocks b of quasisimple groups with abelian defect group of order pd . By Lemma 4.4

sfO(B) is bounded in terms of D for all reduced pairs (G, B) where B is a block of OG

with abelian defect group D. We have assumed that the Cartan invariants of the blocks of

quasisimple groups with abelian defect groups are bounded in terms of the defect. Then by

[2, Theorem 3.2] the Cartan invariants of any block with abelian defect groups are bounded

in terms of the defect, and so in particular this holds for blocks B for finite groups G

such that (G, B) is reduced. Hence by Theorem 3.11 there are only finitely many Morita

equivalence classes amongst blocks in reduced pairs with defect group isomorphic to P and

by Proposition 4.3 we are done. ⊓⊔

Corollary 4.5 Let P be a finite abelian p-group. Suppose that there is a function c : N → N
such that if G is a quasisimple finite group and B is a block of kG with abelian defect groups

D of order pd ≤ |P|, then the entries of the Cartan matrix of B are at most c(d). Then

Donovan’s conjecture holds for O-blocks with defect groups isomorphic to P.

Proof This follows from Theorem 1.2 and [9], in which it is proved that sfO(B) ≤ 4|D|2!

for all blocks B of quasisimple finite groups with defect groups D. Note that the setting of

[9] is that O is the ring of Witt vectors for k. However for O
′ a complete discrete valuation

ring containing O with O
′/J (O′) ∼= k, we have sfO′(B ⊗O O

′) ≤ sfO(B). ⊓⊔

Corollary 4.6 Donovan’s conjecture holds for O-blocks whose defect groups are abelian

2-groups.

Proof This follows immediately from Corollary 4.5 and [6, 9.2], in which it is proved that the

Cartan invariants of 2-blocks with abelian defect groups are bounded in terms of the defect.

⊓⊔

Remark 4.7 Note that if O ⊆ O
′ then sfO′(B⊗O

′) ≤ sfO(B) for some O-block B. Therefore

all the results of this section hold for O equal to the ring of Witt vectors of k adjoining a

primitive |P|th root of unity, where we are considering blocks with defect group isomorphic

to P . This is a very common and natural choice of ring to work over as it guarantees that

eχ ∈ K B for all χ ∈ Irr(B).

5 Bounding Cartan invariants

We are left with the difficult problem of finding a bound on the Cartan invariants of blocks

of quasisimple groups in terms of the defect group, so we gather together some (known)

comments on the problem. In general, there are few p-groups for which a bound on the

Cartan invariants is known but Donovan’s conjecture is not known to hold. The generalised

quaternion 2-groups are an exception, where Donovan’s conjecture is still not known in the

case where the block has two simple modules, but the Cartan matrix is known (see [8]).

Following [2], for G a finite group and B a block of kG with defect group D, write LL(B)

for the Loewy length of B, the smallest n such that radn(B) = 0. Write

e(B) = max{dimk(Ext1
kG(V , W )) : V , W simple kG−modules}.
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The largest Cartan invariant of B is at most

LL(B)
∑

i=0

e(B)i l(B)i

and by the Brauer–Feit theorem l(B) ≤ |D|2, so bounding the Cartan invariants in terms of

the defect group is equivalent to bounding LL(B) and e(B) in terms of the defect group.

By [2, Theorem 3.4] if Z ≤ Op(G) and B the unique block of kG/Z corresponding to B,

we have LL(B) ≤ LL(B)LL(k Z) and e(B) ≤ e(B)+e(k Z), so in order to prove Donovan’s

conjecture it now suffices to bound the Cartan invariants for blocks of quasisimple groups

with no non-trivial central p-subgroup.

Bounds for the Loewy length in terms of the defect group have been considered in [3]

for abelian defect groups, although bounds are only demonstrated for p = 2 and so do not

contribute anything to our knowledge of Donovan’s conjecture.

The question of bounding dimk(Ext1
kG(V , W )) for simple B-modules V and W is related

to a conjecture of Guralnick in [10] where it is predicted that there should be an absolute

bound when V is the trivial module and W is faithful. In [17] it is shown that for finite groups

of Lie type in defining characteristic dimk(Ext1
kG(V , W )) is bounded in terms of the size of

the root system, with no restrictions on V and W . Therefore, since all blocks of non-trivial

defect are of full defect for finite groups of Lie type in defining characteristic, there is a bound

in terms of the size of the defect group in this case.
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