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Dopamine-dependent prediction errors underpin
reward-seeking behaviour in humans
Mathias Pessiglione1, Ben Seymour1, Guillaume Flandin1, Raymond J. Dolan1 & Chris D. Frith1

Theories of instrumental learning are centred on understanding
how success and failure are used to improve future decisions1.
These theories highlight a central role for reward prediction errors
in updating the values associated with available actions2. In
animals, substantial evidence indicates that the neurotransmitter
dopamine might have a key function in this type of learning,
through its ability to modulate cortico-striatal synaptic efficacy3.
However, no direct evidence links dopamine, striatal activity and
behavioural choice in humans. Here we show that, during instru-
mental learning, the magnitude of reward prediction error
expressed in the striatum is modulated by the administration of
drugs enhancing (3,4-dihydroxy-L-phenylalanine; L-DOPA) or
reducing (haloperidol) dopaminergic function. Accordingly, sub-
jects treated with L-DOPA have a greater propensity to choose the
most rewarding action relative to subjects treatedwith haloperidol.
Furthermore, incorporating the magnitude of the prediction
errors into a standard action-value learning algorithm accurately
reproduced subjects’ behavioural choices under the different drug
conditions. We conclude that dopamine-dependent modulation of
striatal activity can account for how the human brain uses reward
prediction errors to improve future decisions.
Dopamine is closely associated with reward-seeking behaviours,

such as approach, consummation and addiction3–5. However, exactly
how dopamine influences behavioural choice towards available
rewards remains poorly understood. Substantial evidence from
experiments on primates has led to the hypothesis that midbrain
dopamine cells encode errors in reward prediction, the ‘teaching
signal’ embodied in modern computational reinforcement learning
theory6. Accumulating data indicate that different aspects of the
dopamine signal incorporate information about the time, context,
probability and magnitude of an expected reward7–9. Furthermore,
dopamine terminal projections are able to modulate the efficacy of
cortico-striatal synapses10,11, providing a mechanism for the adap-
tation of striatal activities during learning. Thus, dopamine-depen-
dent plasticity could explain how striatal neurons learn to represent
both upcoming reward and optimal behaviour12–16. However, no
direct evidence is available that links dopamine, striatal plasticity and
reward-seeking behaviour in humans. More specifically, although
striatal activity has been closely associated with instrumental learning
in humans17,18, there is no evidence that this activity is modulated by
dopamine. Here we establish this link by using combined beha-
vioural, pharmacological, computational and functional magnetic
resonance imaging techniques.
We assessed the effects of haloperidol (an antagonist of dopamine

receptors) and L-DOPA (a metabolic precursor of dopamine) on
both brain activity and behavioural choice in groups of healthy
subjects. Subjects performed an instrumental learning task involving
monetary gains and losses, which required choosing between two
novel visual stimuli displayed on a computer screen, so as to

maximize payoffs (Fig. 1a). Each stimulus was associated with a
certain probability of gain or loss: one pair of stimuli was associated
with gains (£1 or nothing), a second pair was associated with loss
(2£1 or nothing), and a third pair was associated with no financial
outcomes. Thus, the first pair was designed to assess the effects of the
drugs on the ability to learn the most rewarding choice. The second
pair was a control condition for the specificity of drug effects, because
it required subjects to learn from punishments (losses) instead of
rewards (gains), with the same relative financial interests. The third
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Figure 1 | Experimental task and behavioural results. a, Experimental task.
Subjects selected either the upper or lower of two abstract visual stimuli
presented on a display screen, and subsequently observed the outcome. In
this example, the chosen stimulus is associated with a probability of 0.8 of
winning £1 and a probability of 0.2 of winning nothing. Durations of the
successive screens are given in milliseconds. b, Behavioural results. Left:
observed behavioural choices for initial placebo (grey), superimposed over
the results from the subsequent drug groups: L-DOPA (green) and
haloperidol (red). The learning curves depict, trial by trial, the proportion of
subjects that chose the ‘correct’ stimulus (associated with a probability of 0.8
of winning £1) in the gain condition (circles, upper graph), and the
‘incorrect’ stimulus (associated with a probability of 0.8 of losing £1) in the
loss condition (squares, lower graph). Right: modelled behavioural choices
for L-DOPA (green) and haloperidol (red) groups. The learning curves
represent the probabilities predicted by the computational model. Circles
and squares representing observed choices have been left for the purpose of
comparison. All parameters of the model were the same for the different
drug conditions, except the reinforcement magnitude R, which was
estimated from striatal BOLD response.
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pair was a neutral condition allowing further control, in which
subjects could indifferently choose any of the two stimuli, because
they involved no monetary gain or loss. The probabilities were
reciprocally 0.8 and 0.2 in all three pairs of stimuli, which were
randomly displayed in different trials within the same learning
session. Subjects had to press a button to select the upper stimulus,
or do nothing to select the lower stimulus, as they appeared on the
display screen. This Go/NoGomode of response offers the possibility
of identifying brain areas related to motor execution of the choice, by
contrasting Go and NoGo trials.
We first investigated the performance of a placebo-treated group,

which showed that subjects learnwithin a 30-trial session to select the
high-probability gain and avoid the high-probability loss. The overall
performance was similar across the gain and loss trials, but with
significantly lower inter-trial consistency and longer response time
for the loss condition (Supplementary Table 1). This result indicates
the possible existence of physiological differences between selecting
actions to achieve rewards and selecting actions to avoid losses,
possibly corresponding to additional processes being recruited
during the avoidance condition. In the subsequent pharmacological
study, L-DOPA-treated subjects won more money than haloperidol-
treated subjects (£66.7 ^ 1.00 versus £61.0 ^ 2.10 (errors indicate
s.e.m.), P , 0.05), but did not lose less money (£26.7 ^ 1.50 versus
£28.9 ^ 1.40). Thus, relative to haloperidol, L-DOPA increased the
frequency which subjects chose high-probability gain but not the
frequency which they chose low-probability loss (Fig. 1b). In other
words, enhancing central dopaminergic activity improved choice
performance towards monetary gains but not avoidance of monetary
losses. Neither drug significantly influenced response times, percen-
tages of Go responses or subjective ratings of mood, feelings and
sensations (Supplementary Table 2 and Supplementary Fig. 1).
For the analysis of brain activity, we first examined the

representation of outcome prediction errors across all groups
(placebo, L-DOPA and haloperidol). Corresponding brain regions
were identified in a linear regression analysis, conducted across all
trials, sessions and subjects, with the prediction errors generated
from a standard action-value learning model. The parameters were
adjusted tomaximize the likelihood of the subjects’ choices under the
model. For each trial the model calculated choice probabilities
according to action values. After each trial the value of the chosen
action was updated in proportion to the prediction error, defined as
the difference between expected value and actual outcome.
Statistical parametric maps (SPMs) revealed large clusters that

were positively correlated with reward prediction error, all located in
the striatum: predominantly the bilateral ventral striatum and left
posterior putamen (Fig. 2a). This appetitive prediction error was
observed across both gain and loss conditions, indicating that the
striatum might represent successfully avoided outcomes as relative
rewards. In addition, we observed a cluster showing significant
negative correlation with an appetitive prediction error during the
loss (but not gain) trials in the right anterior insula. This corresponds
to an aversive prediction error, indicating that the loss condition
might engage opponent appetitive and aversive processes, an idea in
keeping with an experimental psychological literature on the dual
excitatory and inhibitory mechanisms involved in signalled avoid-
ance learning19.
To characterize further the brain activity involved in behavioural

choice, we next examined the main contrasts between trial types at
the time of stimuli display (Fig. 2b). Bilateral ventral striatum was
significantly activated in the contrast between gain and neutral
stimuli, and also in the contrast between loss and neutral stimuli.
This activity is consistent with a learned value reflecting the distinc-
tion between stimuli predicting gains or losses on the one hand, and
those predicting mere neutral outcomes on the other. Again, the
similarity of the signal across both gain and loss trials might indicate a
comparable appetitive representation of stimuli predicting reward and
punishment avoidance. The left posterior putamen was significantly

activated when the optimal stimulus was on the top of the screen
rather than the bottom. This indicates that this region might be
involved specifically when the optimal choice requires a Go (button
press) and not a NoGo response. The left lateralization of posterior
putamen activity is consistent with the fact that the right hand was
employed for pressing the button. These findings are in line with
a body of literature implicating the anterior ventral striatum in
reward prediction20,21 and the posterior putamen in movement
execution22,23. The distinct functional roles that we ascribe to these
striatal regions are also supported by their principal afferents24,25:
amygdala, orbital and medial prefrontal cortex for the ventral
striatum versus somatosensory, motor and premotor cortex for the
posterior putamen. The bilateral anterior insula was activated in the
contrast between loss and neutral pairs alone, again providing
support for the existence of an opponent aversive representation of
stimulus value during avoidance learning. This same region of
anterior insula has been shown to encode aversive cue-related
prediction errors during pavlovian learning of physical punishment26.
Last, we explored the effects of drugs (L-DOPA and haloperidol) on

the representation of outcome prediction errors. We averaged the
blood-oxygen-level-dependent (BOLD) responsesover clusters reflect-
ing prediction errors (derived from the above analysis), separately for
the different drugs and outcomes (Fig. 3). Note that in striatal

Figure 2 | Statistical parametric maps of prediction error and stimulus-

related activity. Coronal slices (bottom) were taken at local maxima of
interest indicated by red arrows on the axial projection planes (top). Areas
shown in grey on axial planes and in orange or yellow on coronal slices
showed significant effect after family-wise error correction for multiple
comparisons (P , 0.05). a, Brain activity correlated with prediction errors
derived from the computational model. Reward prediction errors (positive
correlation) were found by conjunction of gain and loss conditions (left
panels), whereas punishment prediction errors (negative correlation) were
found in the loss condition alone (right panel). From left to right, MNI
(Montreal Neurological Institute) coordinates are given for the maxima
found in the left posterior putamen, left ventral striatum and right anterior
insula. b, Statistical parametric maps resulting frommain contrasts between
stimuli conditions. Go and NoGo refer to stimuli position requiring, or
not requiring, a button press to get the optimal outcome. Gain, neutral and
loss correspond to the different pairs of stimuli. As above, the maxima
shown are located in the left posterior putamen, left ventral striatum and
right anterior insula, from left to right.
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clusters the average amplitude of the negative BOLD response was
about fourfold that of positive BOLD response, which was consistent
with the expression of appetitive prediction error (converging
towards þ0.2 and 20.8). The right anterior insula showed the
opposite pattern (during the loss trials), which was consistent with
the expression of an aversive prediction error (converging towards
þ0.8 and 20.2). Comparing between drugs, there was a significant
difference (P , 0.05) in the gain condition alone, with positive and
negative BOLD responses being enhanced under L-DOPA in com-
parison with haloperidol. There was no significant effect in the loss
condition, either in the striatum or in the anterior insula, in accord
with the absence of drug effects on behavioural choices.
The asymmetry of drug effects between gain and loss conditions

supports the hypothesis that striatal dopamine has a specific involve-
ment in reward learning, providing new insight into the debate over
its relative reward selectivity27 given evidence implicating dopamine
involvement in salient and aversive behaviours28. In some paradigms,
such as in the aversive component of various cognitive procedural
learning tasks, dopamine depletion improves performance13. In
others, however, such as conditioned avoidance response learning,
dopamine blockade impairs performance29, probably as a result of
interference with appetitive processes underlying the opponent
‘safety state’ of the avoided outcome. Although our data support
the expression of distinct appetitive and aversive prediction errors
during avoidance learning, the fact that neither of these opponent
signals was affected by the dopamine-modulating drugs leaves it still
unclear precisely what function dopamine has in aversive instru-
mental learning. This uncertainty is confounded to some extent by
the fact that we do not know unequivocally how the drugs affect the
different components of dopaminergic function, for example with

regard to tonic versus phasic firing, or D1 versus D2 receptors. Thus,
although we can assert that dopamine has a selective effect on gain-
related striatal prediction errors, we have to be cautious about
inferring the precise mechanism at a cellular level.
We then investigated whether there was any relationship between

dopamine-modulated striatal activity and behaviour, during the gain
condition. We first estimated the effective monetary reward value
from the amplitude of the striatal BOLD responses, for the drug
conditions in comparison with the placebo group. By taking the
difference between positive and negative BOLD responses as equiv-
alent to £1.00 for the placebo group, we estimated an effective reward
value of £1.29 ^ 0.07 under L-DOPA and £0.71 ^ 0.12 under
haloperidol. These values were within the 95% confidence interval
of those provided by the maximum-likelihood estimate of the
observed choices under our computational model (see Supplemen-
tary Fig. 2). In other words, when we incorporated the reward
magnitudes estimated from striatal BOLD responses into the com-
putational model, it accurately and specifically reproduced the effects
of the drugs on behavioural choices (Fig. 1b).
Our results support a key functional link between dopamine,

striatal activity and reward-seeking behaviour in humans. We have
shown first that dopamine-related drugsmodulate reward prediction
errors expressed in the striatum, and second that the magnitude of
this modulation is sufficient for a standard action-value learning
model to explain the effects of drugs on behavioural choices. These
findings suggest that humans use dopamine-dependent prediction
errors to guide their decisions, and, more specifically, that dopamine
modulates the apparent value of rewards as represented in the
striatum. Furthermore, the findings might provide insight into
models of clinical disorders in which dopamine is implicated, and
for which L-DOPA and haloperidol are used as therapeutic agents,
such as Parkinson’s disease and schizophrenia. For example, it
offers a potential mechanism for the development of compulsive
behaviours (such as overeating, hypersexuality and pathological
gambling) induced by dopamine replacement therapy in patients
with Parkinson’s disease30.

METHODS

For a detailed and referenced description of the experimental and analytical
techniques, see Supplementary Methods and Results.
Experimental procedure.The studywas approved by the local ethics committee.
In all, 39 healthy subjects were scanned (19–37 years old; 23 males), including a
single-blind initial study of 13 subjects treated with a placebo only (lactose) and a
double-blind test study of 26 subjects, half treated with Haldol (haloperidol,
1mg) and half with Madopar (L-DOPA, 100mg, plus benserazide, 25mg). After
a short practice, subjects had to perform three sessions of the same instrumental
learning task, each proposing three new pairs of abstract stimuli. Each of the
pairs of stimuli (gain, loss and neutral) was associated with pairs of outcomes
(‘gain’ £1/nil, ‘loss’ £1/nil, ‘look’ £1/nil), the two stimuli corresponding to
reciprocal probabilities (0.8/0.2 and 0.2/0.8). On each trial, one pair was
randomly presented and the two stimuli were displayed on the screen, above
and below a central fixation cross, their relative position being counterbalanced
across trials. The subject was required to choose the upper stimulus by pressing a
button (Go response), or the lower stimulus by doing nothing (NoGo response).
The choice was then circled in red and the outcome was displayed on the screen.
Towinmoney the subjects had to learn, by trial and error, the stimulus–outcome
associations. They were told that their winnings would be their remuneration for
participation, but they all left with the same fixed amount. To assess for side
effects of the drug, they were finally asked to rate their subjective feelings, using
visual analogue scales. Behavioural performance was compared directly between
the L-DOPA and haloperidol groups, with two-sample t-tests.
Computational model. A standard algorithm of action-value learning was then
fitted to the observed behaviour. For each pair of stimuli A and B, the model
estimates the expected values of choosing A (Q a) and choosing B (Qb), on the
basis of individual sequences of choices and outcomes. The expected values were
set at zero before learning, and after every trial t . 0 the value of the chosen
stimulus (say A) was updated according to the ruleQa(t þ 1) ¼ Q a(t) þ a*d(t).
The outcome prediction error, d(t), is the difference between the actual and the
expected outcome, d(t) ¼ R(t) 2 Qa(t), the reinforcement R(t) being either
þ£1, £0 or2£1. Given the expected values, the probability (or likelihood) of the

Figure 3 | Time course of brain responses reflecting prediction

errors. Time courses were averaged across trials throughout the entire
learning sessions. Error bars are inter-subject s.e.m. a, Overlaid positive
(grey circles) and negative (black squares) reward prediction errors in the
striatum for both L-DOPA-treated and haloperidol-treated groups, and in
both gain and loss trials. b, Overlaid positive (black squares) and negative
(grey circles) punishment prediction errors in the right anterior insula,
during the loss trials.
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observed choice was estimated with the softmax rule: PaðtÞ ¼

expðQaðtÞ=bÞ={exp½QaðtÞ=b�þ exp½QbðtÞ=b�}: The constants a (learning rate)
and b (temperature) were adjusted to maximize the likelihood of the actual
choices under the model, across all groups of subjects. Outcome prediction
errors estimated by the model were then used as a statistical regressor in the
imaging data.
Image acquisition and analysis. T*2 -weighted echo planar images (EPIs) were
acquired with BOLD contrast on a 3.0-T Siemens Allegra magnetic resonance
scanner, using a tilted plane acquisition sequence covering the whole brain. T1-
weighted structural images were normalized and averaged across subjects to
allow group-level anatomical localization. EPIs were analysed in an event-related
manner, with the statistical parametric mapping software SPM5. Preprocessing
consisted of spatial realignment, normalization to a standard EPI template, and
spatial smoothing with a 6-mm gaussian kernel. To correct for motion artefacts,
subject-specific realignment parameters were modelled as covariates of no
interest. Onsets of stimuli and outcomes were modelled as separate delta
functions and convolved with a canonical haemodynamic response function.
Prediction errors generated by the computationalmodel were used as parametric
modulation of additional regressors modelled at outcome onsets. Linear con-
trasts of regression coefficients were computed at the individual subject level and
then taken to group-level t-tests. All group-level SPMs are reported with a
threshold of P , 0.05 after family-wise error correction for the entire brain. For
large clusters (more than 64 voxels) showing statistical covariation with the
theoretical prediction error, the response time courses were estimated, with the
use of a flexible basis set of finite impulse responses (FIRs), separated from the
next by one scan (1.95 s). The area between positive and negative FIRs, over 3–9 s
after outcome, were used to estimate effective reward values under the drug
conditions.
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