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Parkinson’s disease is primarily characterized by diminished dopaminergic function; however, the impact of these impairments on

large-scale brain dynamics remains unclear. It has been difficult to disentangle the direct effects of Parkinson’s disease from

compensatory changes that reconfigure the functional signature of the whole brain network. To examine the causal role of

dopamine depletion in network-level topology, we investigated time-varying network structure in 37 individuals with idiopathic

Parkinson’s disease, both ON and OFF dopamine replacement therapy, along with 50 age-matched, healthy control subjects using

resting state functional MRI. By tracking dynamic network-level topology, we found that the Parkinson’s disease OFF state was

associated with greater network-level integration than in the ON state. The extent of integration in the OFF state inversely

correlated with motor symptom severity, suggesting that a shift toward a more integrated network topology may be a compen-

satory mechanism associated with preserved motor function in the dopamine depleted OFF state. Furthermore, we were able to

demonstrate that measures of both cognitive and brain reserve (i.e. premorbid intelligence and whole brain grey matter volume)

had a positive relationship with the relative increase in network integration observed in the dopaminergic OFF state. This suggests

that each of these factors plays an important role in promoting network integration in the dopaminergic OFF state. Our findings

provide a mechanistic basis for understanding the Parkinson’s disease OFF state and provide a further conceptual link with

network-level reconfiguration. Together, our results highlight the mechanisms responsible for pathological and compensatory

change in Parkinson’s disease.
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Introduction
Parkinson’s disease is a common neurological disorder

characterized by degeneration of the dopaminergic mid-

brain. This pathological insult to the brainstem results in

a severe dopamine depletion throughout ascending neural

pathways innervating the basal ganglia, thalamus and

cortex (Braak et al., 2004). The impact of such extensive

dopaminergic loss on brain network dynamics remains

poorly understood, partly due to the fact that dopamine

depletion has been linked to both pathological and com-

pensatory changes in brain network organization and
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connectivity (Bohnen and Martin, 2014; Bell et al., 2015;

Poston et al., 2017).

Studies using resting state functional MRI in Parkinson’s

disease consistently show alterations in functional connect-

ivity that impact a diverse set of brain regions, including

both cortico-cortical and cortico-subcortical architectures.

In the dopaminergic OFF state, cortico-striatal hypercon-

nectivity is often observed, particularly in motor networks

involving the subthalamic nucleus and primary motor

cortex (Wu et al., 2010; Baudrexel et al., 2011; Kwak

et al., 2012). However, alterations in interstriatal connect-

ivity, and across a range of cortico-striatal networks, have

also been shown (Helmich et al., 2010; Wu et al., 2010;

Bell et al., 2015). Importantly, many of these abnormalities

are normalized with dopamine replacement pharmacother-

apy (Wu et al., 2010; Kwak et al., 2012), suggesting that

dopamine medication may play a role in both correcting

pathological activity and alleviating compensatory

reorganization.

The effects of pharmacological manipulation on func-

tional brain network architecture are often non-linear

(Brezina, 2010; Marder, 2012; Tahmasian et al., 2015).

For instance, increases in neural activity when OFF dopa-

minergic therapy may reflect the compensatory engagement

of non-dopaminergic systems of the brainstem or network

reorganization across the cortex and subcortex. This con-

cept is supported by a general principal of compensation

observed in ageing and neurodegeneration, wherein rela-

tively spared circuits and networks are over-engaged to

support dysfunctional nodes (Grafman, 2000). In

Parkinson’s disease this effect can be observed as shifts in

the topography of cortico-striatal connectivity. For ex-

ample, less dopaminergically depleted striatal zones (such

as the anterior putamen) may increase their coupling with

cortical sensorimotor areas to overcome relatively severe

posterior striatal dopamine pathology (Helmich et al.,
2010; Hacker et al., 2012). Alternatively, cortico-cerebellar

connections may be increasingly engaged to offset impaired

cortico-striatal function (Wu and Hallett, 2013;

O’Callaghan et al., 2016). When these instances of hyper-

connectivity are associated with preserved behavioural

function, this implies an adaptive reallocation of activity

in response to focal pathological changes (Hillary and

Grafman, 2017). It is also possible that in some instances,

functional circuit reorganization may represent a patho-

logical loss of network segregation or specialization

(Fornito et al., 2015; Hillary and Grafman, 2017). This

could conceivably occur as a ‘knock-on’ effect at the cor-

tical network level, stemming from a fundamental loss of

segregation in basal ganglia subcircuits (Nieuwhof et al.,

2017), which in turn would cause an increase in correlated

activity in previously segregated neural populations (Bar-

Gad et al., 2003; Wilson, 2013).

Whether the changes are compensatory or pathological,

the current mechanisms supporting rearrangement of large-

scale cortical patterns in the dopamine-depleted state are

unclear. Ultimately, the degree of compensatory versus

maladaptive change may be determined by the relative bal-

ance between focused increases in connectivity and a more

general loss of segregation. Importantly, this concept can be

examined using network analytic approaches. Using the

mathematical formalism of graph theory, network commu-

nities are taken to represent densely interconnected neural

elements in which local connections are highly segregated.

In contrast, network hubs integrate diverse communities,

enabling channels for effective information integration

(van den Heuvel and Sporns, 2013; Bertolero et al.,

2017). These organizational principles are thought to bal-

ance the specialization of function with the integration of

information (Park and Friston, 2013; Deco et al., 2015),

and this balance gives rise to complex neural dynamics that

span multiple spatiotemporal scales (Honey et al., 2012;

Deco et al., 2013).

Here, we used time-resolved functional connectivity of

resting state functional MRI in combination with graph

theoretical analyses to determine the balance between inte-

gration and segregation in the face of dopaminergic deple-

tion in Parkinson’s disease. To date, studies of network

topology in neurological disease have largely focused on

structural brain networks and time-averaged resting state

functional networks, which represent an inherently ‘static’

snapshot of brain architecture (Breakspear, 2017).

However, recent advances in the statistical analysis of

time-varying resting state functional MRI data have

demonstrated that functional brain organization is dynamic

over the course of seconds to minutes (Zalesky et al., 2014;

Betzel et al., 2016; Shine et al., 2016) and that fluctuating

network dynamics are crucial for normal cognitive (Shine

et al., 2016; Hearne et al., 2017) and motor (Bassett et al.,

2011) function. Examination of time-varying functional

network architecture provides an opportunity to explore

the balance between segregated and integrated neural dy-

namics in both health and disease.

In determining the impact of dopamine depletion on dy-

namic network architecture in Parkinson’s disease, we fur-

ther aimed to establish whether certain functional patterns

in the OFF state may be linked to a compensatory mech-

anism. Defining compensatory activity in neurodegenera-

tion is a non-trivial problem (Gregory et al., 2017). Brain

and cognitive reserve refer to aspects of structural integrity

that support increased functional resilience, and the preser-

vation of function in the face of underlying degeneration,

respectively (Fratiglioni and Wang, 2007). Importantly,

these concepts can be operationalized using grey matter

integrity (as a surrogate of brain reserve) and educational

level or general intelligence quotient (as a surrogate of

pre-morbid cognitive reserve) (Stern, 2017). These metrics

can then be compared to network-level topological changes

to provide an estimate of the extent to which brain organ-

ization is related to functional and structural resilience.

To examine the dynamic network architecture of the rest-

ing brain in the OFF compared with the ON dopaminergic

state, we related network topology to motor function in the

OFF state, and also to measures of cognitive and brain
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reserve. We hypothesized that removal of dopaminergic

medications would lead to a relatively integrated network

topology, which should also relate to a preservation of

motor function in the OFF state. In addition, any compen-

satory pattern should be observed in the positive relation-

ship between network topology and both cognitive and

brain reserve.

Materials and methods

Participants

Thirty-seven patients were recruited from the Parkinson’s
Disease Research Clinic at the Brain and Mind Centre,
University of Sydney, Australia. All patients satisfied the UK
Parkinson’s Disease Society Brain Bank criteria and were not
demented (Martinez-Martin et al., 2011). Patients were as-
sessed on the Hoehn and Yahr Scale and the motor section
of the Unified Parkinson’s Disease Rating Scale (UPDRS-III) in
the dopaminergic OFF state. The Mini-Mental State
Examination (MMSE) was administered as a measure of gen-
eral cognition.

Participants with Parkinson’s disease were assessed on two
occasions: (i) ON their regular dopaminergic medications; and
(ii) OFF following overnight withdrawal (i.e. 12–18 h) of
dopaminergic medications (5.2 � 1.4 weeks between sessions).
Dopaminergic dose equivalence (DDE) scores were calculated
for each patient. Specifically, 10 patients were on L-DOPA
monotherapy; nine were on L-DOPA plus a dopaminergic
agonist; a further eight were on L-DOPA plus adjuvant therapy
(rasagaline, entacapone or a monoamine oxidase inhibitor);
seven were on a combination of L-DOPA, dopaminergic agon-
ist and adjuvant therapy; one patient was on dopaminergic
agonist monotherapy, and two were on an agonist plus adju-
vant therapy. No participant was taking any psychoactive
medications.

Fifty healthy controls were recruited to participate in the
study. Control participants were screened for a history of
neurological or psychiatric disorders, and no controls were
using psychoactive medications. Patients with Parkinson’s dis-
ease and healthy controls were matched for age and education.
The study was approved by the local Ethics Committees and
all participants provided informed consent in accordance with
the Declaration of Helsinki. See Table 1 for demographic de-
tails and clinical characteristics.

Behavioural and neuropsychological
assessment

Mood was assessed via a self-report questionnaire, the Beck
Depression Inventory-II (BDI-II) (Beck et al., 1996). Patients
were also administered the National Adult Reading Test
(NART) (Bright et al., 2016), and their predicted pre-morbid
full-scale IQ was calculated. The NART is an established
measure of premorbid intelligence and serves as a surrogate
of cognitive reserve, with the benefit of offering greater vari-
ance than years of education in a homogenous sample (Stern
et al., 2003). These measures were assessed in the

dopaminergic ON state. Results from these measures are also
shown in Table 1.

Imaging acquisition

Imaging was conducted on a General Electric 3 T MRI.
Whole-brain 3D T1-weighted sequences were acquired as fol-
lows: coronal orientation, matrix 256� 256, 200 slices, 1� 1
mm2 in-plane resolution, slice thickness 1 mm, echo time/
repetition time = 2.6/5.8 ms. T2*-weighted echo planar func-
tional images were acquired in interleaved order with repeti-
tion time = 3 s, echo time = 32 ms, flip angle 90

�

, 32 axial
slices covering the whole brain, field of view = 220 mm, inter-
slice gap = 0.4 mm, and raw voxel size = 3.9� 3.9� 4 mm
thick. Each resting state scan lasted 7 min (140 repetition
times). During the resting state scan, patients were instructed
to lie awake with their eyes closed and to let their minds
wander freely.

Resting state functional MRI data

Preprocessing and analyses of resting state data were con-
ducted using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/soft-
ware/). Scans were first slice-time corrected to the median
slice in each repetition time, then realigned to create a mean
realigned image, with measures of 6 degrees of rigid head
movements calculated for later use in the correction of minor
head movements. For quality assurance, each trial was ana-
lysed using ArtRepair and trials with a large amount of global
drift or scan-to-scan head movements 41 mm were corrected
using interpolation. None of the subjects included in this study
demonstrated scan-to-scan head movements 43 mm (51
voxel breadth). Images were normalized to the Echo Planar
Image template, resampled to 3 mm isotropic voxels and then
subsequently smoothed using a 4 mm full-width at half-max-
imum isotropic Gaussian kernel.

Table 1 Demographics and patient clinical

characteristics

Control Parkinson’s

disease

n 50 37

Sex, male:female 14:36 29:8

Age 65.82 (7.8) 65.05 (7.2)

Education 13.51 (2.8) 13.50 (3.0)

MMSE 29.00 (1.2) 28.59 (2.2)

BDI-II 9.41 (7.3) 10.67 (8.6)

Duration, years diagnosed – 6.41 (4.2)

DDE, mg/day – 808.54 (503.0)

Hoehn and Yahr stage – 2.14 (0.8)

UPDRS III, ‘OFF’ – 32.00 (16.3)

PIGD:TD – 30:7

NART – 111.08 (10.3)

Values are presented as mean (standard deviation).

BDI-II = Beck Depression Inventory-II; DDE = dopaminergic dose equivalence;

MMSE = Mini-Mental State Examination; PIGD = postural instability and gait dominant;

TD = tremor dominant; UPDRS III = motor section of the Unified Parkinson’s Disease

Rating Scale. There were no significant differences in age, education, MMSE or BDI-II

between the two groups, though there were differences in gender (P5 0.05).
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Temporal artefacts were identified in each dataset by calcu-
lating framewise displacement (FD) from the derivatives of the
six rigid-body realignment parameters estimated during stand-
ard volume realignment (Power et al., 2014), as well as the
root mean square change in BOLD signal from volume to
volume (DVARS). Frames associated with FD4 0.25 mm or
DVARS4 2.5% were identified. However, as no participants
were identified with 410% of the resting time points exceed-
ing these values, no sessions were excluded from further ana-
lysis. However, to ensure that neither head motion nor the
global signal were influencing group effects, we re-ran the ana-
lysis after: (i) scrubbing data with FD4 0.25 mm or
DVARS4 2.5%; or (ii) global signal regression. Both analyses
revealed similar group-level effects. No cardiorespiratory data
were available, and hence, were not accounted for in our
analysis.

Following artefact detection, nuisance covariates associated
with the 12 linear head movement parameters (and their
temporal derivatives), FD, DVARS, and anatomical masks
from the CSF and deep cerebral white matter were regressed
from the data using the CompCor strategy (Behzadi et al.,
2007). In keeping with previous time-resolved connectivity
experiments (Bassett et al., 2015), a temporal bandpass
filter (0.0715 f5 0.125 Hz) was applied to the data.
Finally, given the importance of head motion in functional
connectivity analyses, we compared the mean and standard
deviation of framewise displacement (Power et al., 2014)
across the entire resting state session across the three
groups (controls, Parkinson’s disease ON and Parkinson’s
disease OFF).

Brain parcellation

Following preprocessing, the mean time series was extracted
from 377 predefined parcels. To ensure whole brain coverage,
we extracted: 333 cortical parcels (161 and 162 regions from
the left and right hemispheres, respectively) using the Gordon
atlas (Gordon et al., 2014); 14 subcortical regions from
Harvard-Oxford subcortical atlas (bilateral thalamus, caudate,
putamen, ventral striatum, globus pallidus, amygdala and
hippocampus; http://fsl.fmrib.ox.ac.uk/); 28 cerebellar parcels
from the SUIT atlas (Diedrichsen, 2006), and bilateral subtha-
lamic nucleus parcels (Lambert et al., 2012) for each partici-
pant in the study. Because of the spatial resolution of our data,
we were unable to adequately distinguish between the internal
and external segment of the globus pallidus, and hence have
included these regions, which admittedly have distinct func-
tional capacities within the basal ganglia circuitry, as a single
parcel in our analysis.

Time-resolved functional
connectivity

To estimate functional connectivity between the 377 parcels,
we used the multiplication of temporal derivatives (MTD)
metric (Shine et al., 2015). The MTD is computed by calculat-
ing the point-wise product of temporal derivative of pairwise
time series (Equation 1). The MTD is averaged by calculating
the mean value over a temporal window, w. Time-resolved
functional connectivity was calculated between all 377 brain
regions using the MTD within a sliding temporal window of

15 time points (�33 s), which allowed for estimates of signals
amplified at � 0.1 Hz (Shine et al., 2015). Individual functional
connectivity matrices were then calculated within each tem-
poral window, thus generating a weighted 3D adjacency
matrix (region� region� time) for each participant.

MTDijt ¼
1

w

Xtþw
2

t�w
2

ðdtit � dtjtÞ

ð�dti
� �dtj

Þ
ð1Þ

For each time point, t, the MTD for the pairwise interaction
between region i and j is defined according to Equation 1,
where dt is the first temporal derivative of the ith or jth time
series at time t, � is the standard deviation of the temporal
derivative time series for region i or j and w is the window
length of the simple moving average. This equation can then
be calculated over the course of a time series to obtain an
estimate of time-resolved connectivity between pairs of regions.

Time-resolved community structure

The Louvain modularity algorithm was applied to the func-
tional connectivity time series using the Brain Connectivity
Toolbox (Rubinov and Sporns, 2010). The Louvain algorithm
iteratively maximizes the modularity statistic, Q, for different
community assignments until the maximum possible score of
Q has been obtained (Equation 2). The modularity estimate
for a given adjacency matrix quantifies the extent to which the
network may be subdivided into communities with stronger
within-module than between-module connections. Using this
technique, time-averaged and time-resolved community struc-
ture was calculated for each participant.

QT ¼
1

vþ

X
ij

ðwþij � eþij Þ�MiMj
�

1

vþ þ v�

X
ij

ðw�ij � e�ij Þ�MiMj
ð2Þ

where v is the total weight of the network (sum of all negative
and positive connections), wij is the weighted and signed con-
nection between regions i and j, eij is the strength of a connec-
tion divided by the total weight of the network, and �MiMj is
set to 1 when regions are in the same community and 0 other-
wise. The plus and minus sign symbols denote all positive and
negative connections, respectively.

For each temporal window, regional community assignment
was assessed 500 times and a consensus partition was identi-
fied using a fine-tuning algorithm from the Brain Connectivity
Toolbox. This then afforded an estimate of both the time
resolved modularity (QT) and cluster assignment (CiT) within
each temporal window for each participant in the study. To
define an appropriate value for the � parameter, we iterated
the Louvain algorithm across a range of values (0.5–2.5 in
steps of 0.1) for 100 iterations of a single subject’s (sub1)
time-averaged connectivity matrix and then estimated the simi-
larity of the resultant partitions using mutual information. A �
parameter of 1.1 provided the most robust estimates of top-
ology across these iterations (quantified by the minimum
standard deviation across 100 iterations of the Louvain
algorithm).

Cartographic profiling

Based on time-resolved community assignments, we estimated
within-module connectivity by calculating the time-resolved
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module-degree Z-score (WT; within module strength) for each
parcel (Equation 3) (Guimerà and Nunes Amaral, 2005).

WiT ¼ �iT � �� siT

��siT

ð3Þ

Module degree Z-score, WiT, where �iT is the strength of the
connections of region i to other regions in its module si at time
T, �� siT

is the average of � over all the regions in si at time T,
and ��siT

is the standard deviation of � in si at time T.
To calculate between-module connectivity (BT), we used the

participation coefficient, BT, quantifying the extent to which a
region connects across all modules (i.e. between-module
strength) (Equation 4).

BiT ¼ 1�
XnM

s¼1

�isT

�iT

� �2

ð4Þ

Participation coefficient BiT, where �isT is the strength of the
positive connections of region i to regions in module s at time
T, and �iT is the sum of strengths of all positive connections of
region i at time T. The participation coefficient of a region is
therefore close to 1 if its connections are uniformly distributed
among all the modules and 0 if all of its links are within its
own module.

To track fluctuations in cartography over time, for each
temporal window, we computed a joint (i.e. 2D) histogram
of within- and between-module connectivity measures, referred
to here as a ‘cartographic profile’ (Fig. 1B). The cartographic
profile is a group-level joint histogram of the BT and WT

scores for each region, stretched out into two dimensions (x-
axis: BT; y-axis: WT). The intensity in this graph reflects points
in the topological space in which multiple regions share a
similar topological signature. Interrogations of the carto-
graphic profile (e.g. correlations against clinical symptoms)
allow comparisons to be made with respect to the network
as a whole, independent of whether a particular region was
highly integrated or segregated. In this way, clinical symptoms
(for example) can be correlated with a network-level metric of
integration or segregation. The resolution of the joint histo-
gram is user-defined and was set to 100� 100 for our ana-
lysis—importantly, this parameter does not change the
qualitative interpretation of the results. Code for this analysis
is freely available at https://github.com/macshine/integration/.

Regional flexibility

The flexibility of each brain parcel was calculated by the per-
centage of temporal windows in which an individual region
‘switched’ between modules, normalized to the total number of
modules in the data (as estimated in the previous step). Code
was obtained directly from the original author (http://www.
danisbassett.com/resources/). As the modular assignment was
essentially arbitrary within each unique temporal window, we
used a version of the Hungarian algorithm to assign regions to
modules with consistent values over time.

Grey matter extraction

Grey matter extraction was performed using the FMRIB software
library package FSL (http://www.fmrib.ox.ac.uk/fsl/). Scans were
skull-stripped using the BET algorithm in FSL (Smith, 2002) and
tissue segmentation was completed using FMRIB’s Automatic

Segmentation Tool (FAST v4.0) (Zhang et al., 2001). A study-
specific grey matter template was created using the maximum
equal number of scans from both groups (37 from each) and
registered to the Montreal Neurological Institute Standard space
(MNI 152) using a non-linear b-spline representation of the regis-
tration warp field. Grey matter partial volume maps were non-
linearly registered to the study template and modulated by divid-
ing by the Jacobian of the warp field, to correct for any contrac-
tion/enlargement caused by the non-linear component of the
transformation; this step corrects for total intracranial volume
(ICV) so that it does not need to be included as a confounding
covariate (Good et al., 2002). After normalization and modula-
tion, the grey matter maps were smoothed with an isotropic
Gaussian kernel with a sigma of 2 mm.

Whole brain grey matter volume (mm3) was then extracted
for each participant. The total volume of non-zero voxels was
extracted from the grey matter mask automatically generated
from FAST. Using the smoothed and registered images, the
mean proportion of grey matter per voxel from non-zero
voxels was extracted for each subject using fslstats.
Multiplying the volume within the mask by each subjects’
mean grey matter proportion inside the mask gave a measure
of total grey matter volume for each person. We used whole
brain grey matter volume (corrected for total ICV), a specific
indicator of grey matter structural integrity, as our measure of
brain reserve. For completeness, we also calculated total ICV,
as it is a commonly used proxy for brain reserve. Total ICV
was calculated for each individual by summing the segmented
grey matter, white matter and CSF volumes obtained from the
FAST procedure. We re-ran our analysis using total ICV as a
measure of brain reserve to confirm that similar results were
obtained using both total grey matter volume and total ICV as
indicators of brain reserve.

Statistical analyses

To determine whether there were any abnormalities in func-
tional network topology between groups, the mean cartographic
profile for each Parkinson’s disease patient was compared be-
tween medication states (paired-sample t-test for each bin of the
cartographic profile; FDR q4 0.05) and between groups (inde-
pendent-samples t-test for each bin; FDR q4 0.05). Regional
WT and BT scores were also compared across groups using
independent-samples t-tests. Results were consistent when only
analysing the subgroup of 30 individuals with postural instabil-
ity and gait dominant-type Parkinson’s disease.

To determine the clinical relevance of functional network
reconfiguration, we measured the correlation of the difference
in the cartographic profile between the OFF and ON state with
the severity of motor impairments in the OFF state (measured
using UPDRS III) using a Spearman’s rho correlation (due to
the non-parametric nature of the data).

To determine whether network level integration related to
brain reserve in the individuals with Parkinson’s disease, we fit
a general linear model that fit grey matter volume, predicted
full-scale IQ (as estimated using normalized NART scores) and
the interaction between these two measures of reserve (i.e.
Grey Matter�NART) to the amount of integration present
in the OFF versus ON state, while co-varying for age. Given
that the interaction between Grey Matter�NART and net-
work integration was the most effective way to test our hy-
pothesis, we have focused our interpretation on the significant
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interaction term (Brambor et al., 2006). However, it is import-
ant to note that the non-significant lower order effects were in
the same expected (positive) direction as the interaction term
(Supplementary Fig. 1). Separate analyses were conducted at
the global (i.e. cartographic profile) and regional (i.e. parcel-
wise) level.

Data availability

The data that support the findings of this study are avail-
able from the corresponding author, upon reasonable
request.

Results

Head motion

There were no significant differences in head movement be-

tween healthy control subjects and individuals with

Parkinson’s disease in either medication state (mean

framewise displacement: controls 4.9� 10�4
� 3.3�10�4,

Parkinson’s disease ON: 5.7�10�4
� 5.3�10�4;

Parkinson’s disease OFF: 5.8�10�4
� 5.0�10�4; all

P4 0.200) or between dopaminergic states in the

Parkinson’s disease group (P4 0.200). In addition,

there was no relationship between mean framewise

displacement and network integration differences across

medication states (P4 0.200), nor a relationship between

time-varying framewise displacement and fluctuations in net-

work topology (P4 0.200 in both the OFF and ON states).

Relationship between network
topology and dopaminergic state

In the dopaminergic OFF state, individuals with

Parkinson’s disease demonstrated a more integrated func-

tional network topology than those ON medication or

healthy controls (Fig. 1A and B; P5 0.001). The magni-

tude of regional between-module integration was signifi-

cantly higher in the OFF state (relative to the ON state)

across medial and lateral frontoparietal cortical regions

(Fig. 1B). These changes were diffusely mediated across

multiple subsystems, including frontoparietal, cingulo-oper-

cular, salience and dorsal attention networks (Fig. 1C and

D). The majority of patients in our study (30/37) had an

akinetic-rigid phenotype (tremor dominant/postural

instability and gait dominant ratio4 0.9), which did not

allow us to formally test whether the results were

related to individual differences in Parkinson’s disease

syndromes.

Relationship between network
topology and motor symptom
severity

There was a significant inverse correlation between net-

work-level integration and UPDRS III scores as measured

in the OFF state (Fig. 2A) that was maximal in right dorso-

lateral prefrontal cortex, bilateral dorsal anterior cingulate,

bilateral retrosplenial cortex and sensorimotor cortex

Figure 1 Network topology as a function of dopaminergic state. (A) Global mean participation coefficient (BT) in controls (blue),

Parkinson’s disease ON (green) and Parkinson’s disease OFF (red). P5 0.001. (B) Force-directed plots comparing Parkinson’s disease ON and

OFF dopaminergic medication. Edges represent top 1% of connections in time averaged connectivity matrix and colours of nodes reflect

predefined network identity of each region. (C) Cartographic profile comparing Parkinson’s disease OFF4 Parkinson’s disease ON. Subjects

were more integrated (i.e. rightward shift on the BT axis) in the OFF compared to the ON state. (D) Surface plot of regions with significantly

increased participation (BT) during OFF state. COn = cingulo-opercular network; CPar = cingulo-parietal network; DAN = dorsal attention

network; FPN = frontoparietal network; FTp = fronto-temporal network; PD = Parkinson’s disease; RSp = retrosplenial network;

SMh = somatomotor hand network; SMm = somatomotor mouth network; VAN = ventral attention network; Subcort = subcortical network.
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(Fig. 2B). This is consistent with greater integration in those

regions being associated with less severe motor impairment

on UPDRS motor scale. In addition, we also observed a

positive correlation between network level integration and

disease severity (as indexed by DDE scores; r = 0.451;

P = 0.003), confirming the relationship between

Parkinson’s disease symptom severity and network level

reconfiguration in the OFF state.

Figure 2 Relationship between network topology and motor severity. (A) Inverse relationship between cartographic profile

(Parkinson’s disease OFF4 Parkinson’s disease ON) and UPDRS III (motor) severity (estimated in the dopaminergic OFF state): greater

integration (i.e. rightward shift on the BT axis) was inversely correlated with motor severity. (B) Parcels with significant inverse correlation

between BT (OFF4ON) and UPDRS III. FDR q4 0.05.

Figure 3 Topological flexibility as a function of dopaminergic state. Regions with increased topological flexibility (increased frequency

of modular switching) in the OFF4ON dopaminergic state. FDR q4 0.05. No regions showed a significant decrease in flexibility in the OFF

state.
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Effects of dopaminergic state on
regional flexibility

Regions were more likely to switch their modular allegiance

more frequently in the dopaminergic OFF state as com-

pared to the ON state, and to a greater extent than control

subjects (P50.001). We observed a distributed set of in-

sular, frontal and parietal regions that demonstrated an

increase in topological flexibility and/or decreased modular

stability in the resting state following dopaminergic with-

drawal (Fig. 3). We did not observe a relationship between

flexibility and motor severity (all P4 0.05).

Relationship between network
topology and brain reserve

Using a linear mixed effects model specifying grey matter

(Supplementary Fig. 1A), NART (Supplementary Fig. 1B)

and Grey matter � NART (Fig. 4A) adjusting for age and

gender as fixed covariates, we observed a positive relation-

ship (FDR q40.05) between network topology and the

interaction between grey matter volume and NART-

predicted IQ scores that was maximal in frontal cortex,

insula, thalamus and amygdala (Fig. 4B; FDR q4 0.05).

Discussion
In this study, we demonstrated causal evidence for large-

scale network reconfiguration in the OFF state in individ-

uals with idiopathic Parkinson’s disease as compared to the

dopaminergic ON state, consistent with an increase in

topological integration (Fig. 1) and flexibility (Fig. 3).

Within this general shift toward a more integrated state,

a distributed set of regions were inversely correlated with

motor symptom severity (Fig. 2), suggesting that increased

integration may provide compensatory processes that offset

clinical motor severity. Furthermore, we showed an associ-

ation between the magnitude of integration in the OFF

state and measures of grey matter volume and premorbid

intelligence. This suggests that a topological shift in re-

sponse to dopamine depletion is related to neurocognitive

reserve (Fig. 4). Together these results show that the effect

of dopamine depletion in Parkinson’s disease results in a

Figure 4 Relationship between network topology and neurocognitive reserve. (A) Relationship between cartographic profile

(Parkinson’s disease OFF4 Parkinson’s disease ON) and interaction between grey matter volume and education level (NART). FDR q4 0.05.

Subjects with greater NART and grey matter scores were more integrated (i.e. rightward shift on the BT axis) in the OFF compared to the ON

state. (B) Regions with significant relationship between BT (OFF4ON) and the interactions between brain (mean grey matter) and cognitive

(NART) reserve, estimated using a linear mixed effects model. FDR q4 0.05. GLM = general linear model.
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global shift toward integration, and that this increased in-

tegration may serve some compensatory function, the

extent of which may be determined by underlying cognitive

and brain reserve.

Withdrawal from dopamine replacement therapy altered

network topology in the medial frontal, lateral parietal and

anterior temporal cortices (Fig. 1D). Importantly, these re-

gions also exhibited an increase in topological flexibility in

the OFF state, suggesting that they were not effectively

‘locked’ into an integrated state, a result that may have

argued against a possible compensatory role for increased

integration in the OFF state. Similar regions were inversely

correlated with OFF state motor symptom severity

(Fig. 2B), suggesting that regional and network-level inte-

gration may help maintain motor function in the face of

dopamine depletion. It is currently unclear whether the pos-

sible compensatory benefits identified here are specific to

motor impairments (as indexed by MDS-UPDRS III) or

will extend into cognitive and affective domains.

The possibility that increased topological integration in

the face of dopamine depletion may be associated with a

compensatory function supports and extends a growing lit-

erature that highlights the importance of network level

hyperconnectivity as an adaptive response to local patho-

logical change in neurodegenerative disorders (O’Callaghan

et al., 2016; Gregory et al., 2017; Hillary and Grafman,

2017). In Parkinson’s disease, this response has previously

been observed and interpreted based on static measures of

resting state functional MRI (Helmich et al., 2010; Wu

et al., 2010; O’Callaghan et al., 2016). Here, we provide

a description of the underlying dynamic processes that

might support these enhanced activations; however, it is

worth mentioning that the vast majority of our participants

presented with akinetic-rigid Parkinson’s disease, and hence

further work is required to determine if this same effect is

consistent across all Parkinson’s disease phenotypes.

Prior work has highlighted a link between increased rest-

ing state functional connectivity and markers of cognitive

reserve (e.g. greater years of education) in diverse cohorts,

including healthy ageing, and those with mild cognitive im-

pairment and Alzheimer’s disease (Arenaza-Urquijo et al.,

2013; Franzmeier et al., 2017, 2018). However, increased

functional connectivity does not necessarily lend itself to a

specific mechanistic interpretation per se. Using the math-

ematical formalism of graph theory, our results identify a

relationship between premorbid intelligence and the cap-

acity to promote functional integration, suggesting a pos-

sible dynamic mechanism that underpins the role of

cognitive reserve in compensation.

The use of overall brain volume as a measure of brain

reserve in our study is somewhat underspecified. Whole-

brain grey matter volume incorporates a host of factors,

including neuronal count, neuronal integrity and synaptic

density, which jointly determine the brain’s ability to

engage compensatory activity. Despite this caveat, the

structural integrity of nodes (and hence, the grey matter

volume) is proposed to mediate network controllability,

and therefore may explain the role of brain reserve in sup-

porting resilience of large-scale networks in ageing and

neurodegeneration (Medaglia et al., 2017). Such nodes

may indeed mediate the overall flexibility of brain net-

works, and allow for transitions between segregated and

integrated states (Pasqualetti et al., 2014). Here, we identi-

fied a relationship between brain volume and the capacity

to move toward a more integrated state. This result is con-

sistent with the proposed hypothesis that brain volume may

serve as a proxy for network controllability, as it captures

within it a measure of the structural integrity of nodes

involved in network control (Medaglia et al., 2017).

The prospect of compensatory network-level integration

in the dopamine-depleted state raises the question of the

potential mechanism for this effect. One plausible hypoth-

esis is the relative integrity of other neuromodulatory

neurotransmitter systems that contribute to global brain

network dynamics (Brezina, 2010). Aside from the wide-

spread dopaminergic loss that characterizes Parkinson’s dis-

ease, the disease is also associated with neuropathological

alterations within the brainstem nuclei that supply the

brain with noradrenaline (Rye and DeLong, 2003), acetyl-

choline (Müller and Bohnen, 2013) and serotonin (Politis

and Niccolini, 2015). In the OFF state, compensatory drive

may be determined by the degree of relative preservation in

these nuclei and the ascending projections throughout the

brain.

In the context of promoting network level integration, in

healthy individuals a link has been observed between the

ascending noradrenergic neuromodulatory system and

global functional integration (Shine et al., 2016, 2018a,

b), suggesting effective functioning of this system is crucial

for modulating the gain and responsiveness of ongoing

neuronal processing (Shine et al., 2018a). In addition, it

has been proposed that activation of the locus coeruleus

noradrenergic system across the lifespan is a crucial deter-

minant of later-life cognitive reserve (Wilson et al., 2013),

potentially through brain-derived neurotrophic factor-

mediated neuroplasticity (Robertson, 2013; Mather and

Harley, 2016). It follows that one possible mechanism sup-

porting compensatory increases in integration in the dopa-

minergic OFF state may reflect a long-term compensatory

strategy, mediated at least partially by the noradrenergic

locus coeruleus. The implication is that as system begins

to fail, as is the case when locus coeruleus develops high

levels of �-synuclein (Surmeier et al., 2017), the compensa-

tory reserve is lost and a failure to effectively integrate the

brain unmasks the clinical severity of symptoms of

Parkinson’s disease.

In addition to noradrenergic function, the multi-scale

nature of the brain’s neuromodulatory network (Brezina,

2010) means it is likely that other neurotransmitter systems

play a crucial role in mediating adaptive brain dynamics in

the face of dopaminergic cell loss. For instance, there is a

well demonstrated loss of cholinergic cell bodies in the

basal nucleus in Parkinson’s disease (Müller and Bohnen,

2013). Given the recent links between the global brain
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signal and ascending cholinergic activity (Turchi et al.,

2018), it is also plausible that impairments in the choliner-

gic system could adversely affect the topological signature

of the network, or that the relative preservation of the cho-

linergic system might contribute to compensatory neural

dynamics. The presence of serotonergic deficits (Politis

and Niccolini, 2015) further points to a complex, multi-

system pathological mechanism for compensation and im-

pairment in Parkinson’s disease.

In summary, we used a combination of time-resolved

resting functional MRI, graph theoretical analysis and the

manipulation of dopaminergic therapy in individuals with

idiopathic Parkinson’s disease to provide evidence for alter-

ations in network topology that related to motor severity.

These topological signatures demonstrated a relationship

with both brain and cognitive reserve, suggesting a possible

compensatory role, which may be mediated by the relative

integrity of other neuromodulatory systems. Future work

that disambiguates the causal relationships between neuro-

modulatory systems and large-scale network dynamics in

Parkinson’s disease, perhaps as a function of differing dis-

ease stage, will help to better clarify this and potentially

uncover new avenues for pharmacological treatments.
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Braak H, Ghebremedhin E, Rüb U, Bratzke H, Del Tredici K. Stages in

the development of Parkinson’s disease-related pathology. Cell

Tissue Res 2004; 318: 121–34.
Brambor T, Clark WR, Golder M. Understanding interaction models:

improving empirical analyses. Political Anal 2006; 14: 63–82.

Breakspear M. Dynamic models of large-scale brain activity. Nat

Neurosci 2017; 20: 340–52.

Brezina V. Beyond the wiring diagram: signalling through complex

neuromodulator networks. Philos Trans R Soc Lond B, Biol Sci

2010; 365: 2363–74.

Bright P, Hale E, Gooch VJ, Myhill T, van der Linde I. The National

Adult Reading Test: restandardisation against the Wechsler Adult

Intelligence Scale-Fourth edition. Neuropsychol Rehabil 2016: 1–9.
Deco G, Jirsa VK, McIntosh AR. Resting brains never rest: computa-

tional insights into potential cognitive architectures. Trends in

Neurosciences 2013; 36: 268–74.

Deco G, Tononi G, Boly M, Kringelbach ML. Rethinking segregation

and integration: contributions of whole-brain modelling. Nat Rev

Neurosci 2015; 16: 430–9.

Diedrichsen J. A spatially unbiased atlas template of the human cere-

bellum. NeuroImage 2006; 33: 127–38.
Fornito A, Zalesky A, Breakspear M. The connectomics of brain dis-

orders. Nat Rev Neurosci 2015; 16: 159–72.
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