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health and cocaine addiction
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Dopamine modulates executive function, including sustaining cognitive control during mental fatigue. Using event-related

functional magnetic resonance imaging (fMRI) during the color-word Stroop task, we aimed to model mental fatigue with

repeated task exposures in 33 cocaine abusers and 20 healthy controls. During such mental fatigue (indicated by increased

errors, and decreased post-error slowing and dorsal anterior cingulate response to error as a function of time-on-task), healthy

individuals showed increased activity in the dopaminergic midbrain to error. Cocaine abusers, characterized by disrupted

dopamine neurotransmission, showed an opposite pattern of response. This midbrain fMRI activity with repetition was further

correlated with objective indices of endogenous motivation in all subjects: a state measure (task reaction time) and a trait

measure (dopamine D2 receptor availability in caudate, as revealed by positron emission tomography data collected in a subset

of this sample, which directly points to a contribution of dopamine to these results). In a second sample of 14 cocaine abusers

and 15 controls, administration of an indirect dopamine agonist, methylphenidate, reversed these midbrain responses in both

groups, possibly indicating normalization of response in cocaine abusers because of restoration of dopamine signaling but

degradation of response in healthy controls owing to excessive dopamine signaling. Together, these multimodal imaging

findings suggest a novel involvement of the dopaminergic midbrain in sustaining motivation during fatigue. This region might

provide a useful target for strengthening self-control and/or endogenous motivation in addiction.
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Introduction

Drug addiction is characterized by functional and structural

impairments in prefrontal cortical regions subserving self-

regulation and top-down executive control,1 culminating in

disadvantageous/impulsive decision-making,2 dysregulated

inhibitory control,3 and poor behavioral adaptation.4 As these

executive functions are subject to fatigue after their sustained

use even in healthy individuals (reviewed in Heatherton and

Wagner5), studying mental fatigue and its relation to self-

control could be especially important in a substance-abusing

population. Supporting this suggestion, on days underage

drinkers experienced higher-than-average self-control

demands (which putatively resulted in mental fatigue), they

were more likely to drink heavily—particularly if they initially

had strong intentions to avoid overindulging.6 The reciprocal

relationship has also received support: resisting the tempta-

tion to drink alcohol (again putatively resulting in mental

fatigue) thwarted self-control on subsequent tasks of execu-

tive function.7 Further supporting the importance of mental

fatigue in addiction are studies of fatigue/sleep deprivation.

During early abstinence, poor sleep quality in cocaine-

addicted individuals degrades neuropsychological functioning

(reviewed in Morgan and Malison8), which in turn has been

shown to impact treatment retention.9,10 In cigarette smokers,

sleep deprivation increased the number of cigarettes subjects

chose to smoke in a laboratory choice procedure (cigarettes

versus money).11 Female smokers who had relapsed at

3-month follow-up reported more drowsiness than did those

who maintained abstinence.12 In alcohol-dependent subjects,

the perception of sleeping badly predicted relapse to heavy

drinking at 12-week follow-up.13

One interesting paradigm that has been suggested to

instantiate mental fatigue is continued task repetition.

Assuming subjects have no additional incentive to maintain

consistently high performance,14 studies have shown that

task performance and/or behavioral adjustment generally

declines with increasing time spent performing a task15–18—

findings interpreted as reflecting mental fatigue. Notably, this

time-on-task performance erosion often occurs in conjunction

with disengagement of the anterior cingulate cortex (ACC), as

indicated by reductions in the scalp-recorded error-related

negativity15,16,18 (an event-related potential thought to be

generated by the ACC,19 especially by its more cognitive

dorsal (dACC) subregion,20 which spikes during error,

negative feedback or high response conflict21). These findings

could indicate that increasing time-on-task, and the mental

fatigue that ostensibly ensues, weaken cognitive oversight

functions of the dACC that encompass performance monitor-

ing,22,23 cognitive control24 or signaling the need for increased

attentional resources to enhance control.25 With increasing
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disengagement of the dACC, additional, compensatory

regions may need to be recruited for task completion.

Although time-on-task effects could stem from cognitive

processes beyond fatigue, alternative processes including

practice effects or target familiarity would ostensibly improve

performance.

One such compensatory region, at least in healthy

individuals, could be the dopaminergic midbrain, location of

the ventral tegmental area and substantia nigra (which

together are main sources of dopamine projection to the

prefrontal cortex). This region is amajor source for the release

of dopamine, which has core roles in reward prediction,26,27

conditioning,28 incentive salience,29 arousal,30 novelty31,32

and aversion.33,34 In addition, dopamine supports numerous

higher-order cognitive functions that bear on self-regulation

and top-down control, encompassing cognitive flexibility,35

exertion and sustaining effort,36 and effort-based decision-

making (for example, selecting rewards that are less desir-

able, but easier to obtain37–39). Of particular relevance to the

current study, several lines of evidence have hinted that the

dopaminergic midbrain may support endogenous motivation.

For example, (A) a study of non-human primates performing

an instrumental-conditioning task showed that midbrain

dopamine firing was associated with animals’ faster reaction

time (RT), a marker of enhanced motivation;40 (B) a different

marker of task-related motivation (enhanced long-term

memory for scenes) was associated with midbrain activity

(to cues that signaled availability of high reward) in a human

functional magnetic resonance imaging (fMRI) study;41 (C) a

recent human fMRI study documented endogenous midbrain

activity (that is, in the absence of extrinsic reward) during

demanding trials on a visual discrimination task in healthy

individuals;42 and (D) dopamine D2/D3 receptor availability in

the midbrain (and nucleus accumbens), measured with

positron emission tomography (PET), positively correlated

with higher trait motivation (an achievement-oriented person-

ality).43 Moreover, previous studies have hinted that dopami-

nergic mechanisms may underlie the mental fatigue-drug use

relationship. For example, sleep deprivation enhanced the

effect of cocaine on stereotyped behaviors in rats, interpreted

to reflect hypersensitivity of dopaminergic receptors;44 similar

dopaminergic hypersensitivity following sleep deprivation has

been observed in healthy humans.45 Finally, under conditions

of sleep deprivation, a critical node of the mesolimbic

dopamine pathway (the nucleus accumbens) showed

increased activity during risky decisions.46

The goals of the present study were to model mental fatigue

as a function of time-on-task (repetition) in a cocaine-addicted

population, and to probe for potential compensatory regions

(and underlying neurotransmitters) (in both addicted indivi-

duals and healthy controls). Human volunteers performed an

event-related color-word Stroop task,47 a classical inhibitory/

cognitive control task, widely used in fMRI environments.48–54

We hypothesized that time-on-task would produce more

errors, less post-error slowing (that is, an increase in RT

following an error, indicative of more controlled responding to

prevent future errors55) and less dACC activity, together

reflecting mental fatigue. In parallel, we expected that the

midbrain would increase error-related activity as a function of

time-on-task in healthy individuals, but not in cocaine abusers

in whom dopamine neurotransmission is disrupted.56 Insofar

as this midbrain response is marking enhanced task-related

effort/motivation,40 we expected this region to correlate with

faster RT. We did not expect a similar midbrain increase

during successful resolution of cognitive conflict, as mental

fatigue likely would be less prominently expressed during a

successful trial.

Attribution of such midbrain activity to dopamine during this

study was further tested (beyond what can be concluded

through studying addicted individuals) through preliminary

PET data and pharmacological manipulation. Data using PET

with raclopride, a radioligand that competes with endogenous

dopamine for binding to dopamine D2/D3 receptors and more

directly measures dopaminergic neurotransmission in

humans, were collected in a subset of our sample. We

hypothesized that increased error-related midbrain fMRI

activation would positively correlate with higher dopamine

D2 receptor availability. In a second sample of subjects,

pharmacological manipulation during fMRI was accomplished

with an indirect dopamine agonist (oral methylphenidate). As

dopamine exerts inverted U-shaped effects on cognition,57

benefiting those with initially decreased dopamine functioning

(for example, impulsive individuals) but impairing those with

initially optimal dopamine functioning (for example, non-

impulsive individuals),58 we hypothesized that methylpheni-

date would remediate this reduced midbrain response in

cocaine abusers but would degrade this response in healthy

controls. Effects of methylphenidate would both provide

further evidence that effects are attributable to dopamine

and suggest an avenue through which an aberrant midbrain

response in addicted individuals could be normalized.

Methods

Subjects. Fifty-three healthy human volunteers (33 cocaine

abusers and 20 healthy controls) who received no medica-

tion comprised our main sample (Sample 1). These 53

subjects had available fMRI scans from the first and last

(fourth) repetitions of an event-related color-word Stroop

task; these subject groups could also be matched demo-

graphically (Table 1) (see Supplementary Material for

exclusion criteria and subject recruitment). A comprehensive

diagnostic interview revealed that the cocaine subjects met

criteria for current cocaine dependence (N¼ 22), cocaine

dependence in partial remission (N¼ 3), cocaine depen-

dence in fully sustained remission (N¼ 3), cocaine abuse

(N¼ 4) or past polysubstance abuse with cocaine as the

primary substance (N¼ 1) (see Supplementary Material for

interview components and subject comorbidities).

In addition to Sample 1, we studied a secondary sample

(Sample 2) that included 14 cocaine abusers and 15 healthy

controls, each administered oral methylphenidate (20mg) or

placebo on two separate, counterbalanced study days.

Sample 2 subjects completed an fMRI color-word Stroop task

with the same task parameters, except that this Stroop task

included three repetitions (instead of four) to ensure that peak

methylphenidate effects were sustained throughout (see

Supplementary Material for complete methylphenidate pro-

cedures). These cocaine subjects met criteria for cocaine

Midbrain in sustaining motivation

SJ Moeller et al

2

Translational Psychiatry



dependence (N¼ 14) or cocaine abuse in partial remission

(N¼ 1).

Task and behavioral measures. During the event-related

fMRI Stroop task (Figure 1),48 subjects pressed for ink color

of color words printed in either their congruent or incongruent

colors. Four colors and words (red, blue, yellow and green)

were used in all possible combinations. Both congruent and

incongruent stimuli were presented randomly, except that no

word or color of an incongruent stimulus was the same as the

preceding congruent color word to avoid a priming effect.

Each word was presented for 1300ms, with an intertrial

interval of 350ms. Incongruent events were pseudorandomly

spaced by at least five stimuli (range: 5–31; median: 14).

Each run was 5.6min (3300ms for all stimuli, preceded by

and terminating in fixation slides, 350 and 3200ms,

respectively). Sample 1 subjects performed four consecutive

runs of this task; Sample 2 subjects performed three runs. As

there were 12 incongruent events in each run of 200 events,

each subject’s data contained up to 48 incongruent events.

Accuracy, RT, post-conflict slowing and post-error slowing

were collected using E-prime (see Supplementary Material

on how the latter two variables were calculated). To bolster

the case for fatigue, we also inspected self-reported ratings

of sleepiness and task interest (collected as part of a

different, preceding drug Stroop task; see Supplementary

Material for ratings procedures).

MRI data acquisition. MRI scanning was performed on a

whole-body MRI scanner composed by a Varian INOVA

console (Palo Alto, CA, USA) interconnected to a Siemens

4Tesla Interatom magnet (Erlangen, Germany). The fMRI

blood-oxygenation-level-dependent (BOLD) responses were

measured as a function of time using a T2*-weighted single-

shot gradient-echo EPI sequence (TE/TR¼ 20/1600ms, 4mm

slice thickness, 1mm gap, typically 33 coronal slices, 20cm

FOV, 64� 64 matrix size, 901-flip angle, 200 kHz bandwidth

with ramp sampling, 207 time points and 4 dummy scans to

avoid non-equilibrium effects in the fMRI signal). Padding

minimized subject motion, which was also monitored imme-

diately after each fMRI run.59 Earplugs (28dB sound attenua-

tion; Aearo Ear TaperFit 2, 3M Co., St Paul, MN, USA) and

headphones (30dB sound attenuation; Commander XG MRI

Audio System, Resonance Technology Inc., Northridge, CA,

USA) minimized scanner noise.60 Anatomical images were

collected using a T1-weighted 3D-MDEFT (three-dimensional

modified driven equilibrium Fourier transform) sequence61 and

a modified T2-weighted hyperecho sequence,62 inspected by

a neurologist for gross morphological abnormalities.

MRI data processing. Image reconstruction was performed

using an iterative phase correction method that produces

minimal signal-loss artifacts in echo-planar images.63 Sub-

sequent analyses were performed with statistical parametric

mapping (SPM2) (Wellcome Trust Center for Neuroimaging,

London). A six-parameter rigid body transformation (three

rotations, three translations) was used for image realignment

and for correction of head motion. Criteria for acceptable

motion were displacement o2mm and rotation o21. The

realigned data sets were spatially normalized to the standard

stereotactic space of the Montreal Neurological Institute

(MNI) using a 12-parameter affine transformation64 and

a voxel size of 3� 3� 3mm3. An 8-mm full-width-half-

maximum Gaussian kernel was for spatial smoothing.

Table 1 Demographics and drug use of all study subjects

Sample 1 Sample 2

Test Cocaine Control Test Cocaine Control
N¼ 33 N¼20 N¼ 14 N¼ 15

Gender: male/female w
2
¼ 0.0 28/5 17/3 w

2
¼1.1 13/1 15/0

Race: African-American/Other w
2
¼ 2.5 25/8 11/9 w

2
¼1.2 12/2 11/4

Age (years) t¼ 2.7* 44.2±6.3 39.8±5.0 t¼2.7* 45.8±8.3 38.6±6.1
Education (years) t¼ 1.9 12.8±1.9 13.8±1.7 t¼1.9 12.9±2.2 14.2±1.4
Verbal IQ: Wide Range Achievement Test III—Reading
Scale92

t¼ 0.9 94.0±11.9 97.4±14.5 t¼1.6 95.0±10.6 101.2±9.7

Non-verbal IQ: WASI—Matrix Reasoning Scale93 t¼ 0.8 9.9±3.4 10.6±2.8 t¼0.5 10.6±2.8 10.0±3.7
Depression: Beck Depression Inventory II94 Z¼ �1.6 5.5±4.6 3.6±3.6 Z¼ � 3.1* 8.0±5.0 2.2±4.1
Socioeconomic status: Hollingshead Index t¼ 1.0 29.5±12.5 32.7±12.9 t¼0.6 36.3±9.8 38.7±10.6
Cigarette smokers (current or past/nonsmokers) w

2
¼ 14.2* 27/6 6/14 w

2
¼9.9* 11/3 3/12

Daily cigarettes (current smokers: Sample 1: N¼ 23/4;
Sample 2: N¼10/0)

t¼ 0.1 8.7±5.8 9.0±6.1 — 8.4±4.1 —

Time since last use (within 4 h/44 h) w
2
¼ 4.6 18/5 1/3 — 2/8

Age of onset (years) — 24.2±5.5 — — 26.6±8.2 —
Duration of use (years) — 18.0±6.2 — — 14.5±8.1 —
Current abstinence (days since last use) — 157.7±534.9 — — 3.9±6.7 —
Cocaine urine status: positive/negative — 20/13
Past month use: days/week — 2.6±2.4 — — 2.4±1.8 —
Severity of Dependence Scale (0–15) — 6.2±4.0 — — 6.8±2.4 —
Withdrawal symptoms: 18-item CSSA (0–126)95 — 14.1±9.4 — — 17.0±7.2 —
Cocaine craving: 5-item Questionnaire (0–45)96 — 16.4±12.2 — — 21.8±12.7 —

Abbreviations: CSSA, the Cocaine Selective Severity Assessment Scale; WASI, Wechsler Abbreviated Scale of Intelligence.
Note: values are frequencies ormeans±s.d.; *Po0.05; race: Other (Caucasian, Hispanic or Asian); w2-tests were used for categorical variables; Mann–WhitneyU for
all drug-related variables (continuous non-normally distributed variables); and t-tests for continuous, normally distributed variables.

Midbrain in sustaining motivation

SJ Moeller et al

3

Translational Psychiatry



BOLD-fMRI analyses. Three general linear models,65 each

with six motion regressors (three translation and three

rotation) and up to three task conditions (incongruent correct

events, congruent error events and/or incongruent error

events) convolved with a canonical hemodynamic response

function and low-pass and high-pass (cutoff frequency: 1/

90 s) filters, were used to calculate individual BOLD-fMRI

maps. Contrast maps were calculated for all available runs for

all subjects (who met motion criteria as described above),

with each contrast reflecting percent signal change from

baseline. The baselines of these three models consisted of all

the task events that were not modeled in the relevant design

matrices, and at minimum included the fourth (and most

frequent) type of task event (congruent correct events).

Specifically, Design Matrix 1 included one regressor col-

lapsed across both incongruent trials (Incongruent Correct

and Incongruent Incorrect), leaving out both congruent trials

(Congruent Correct and Congruent Incorrect) to serve as the

baseline. Design Matrix 1 tested for a main effect of

‘congruency’, defined as (Incongruent Errorþ Incongruent

Correct)� (Congruent ErrorþCongruent Correct). Design

Matrix 2 included one regressor collapsed across both error

trials (Congruent Incorrect and Incongruent Incorrect), leaving

out both correct trials (Congruent Correct and Incongruent

Correct) to serve as the baseline. Design Matrix 2 tested for a

main effect of ‘correctness’, defined as (Incongruent Errorþ

Congruent Error)� (Incongruent CorrectþCongruent Cor-

rect). Design Matrix 3 included three regressors: Incongruent

Correct trials, Congruent Incorrect trials and Incongruent

Incorrect trials, leaving out the Congruent Correct trials to

serve as the baseline. Design Matrix 3 tested for a

‘correctness� congruency’ interaction, defined as ((Incon-

gruent Correct�Congruent Correct)� (Incongruent Error�

Congruent Correct))þ (Congruent Error�Congruent Cor-

rect). In these 1st level analyses, each of these three

contrasts was computed separately for each task repetition.

At the 2nd level, we tested how each of these 1st level

contrasts differed as a function of repetition and group. To

maximize sample size, Sample 1 analyses principally

compared the first and fourth task runs (repetitions). We

estimated three separate 2 (repetition: first, last)� 2 (group:

cocaine, control) mixed analyses of variance at the whole-

brain level in SPM2; however, to provide support for graded

effects, we also inspected all four repetitions among subjects

with complete fMRI data (Supplementary Material). Sample 2

analyses principally contrasted the first and third task runs;

however, the second task repetition was also examined

(Supplementary Material). Sample 2 analyses also included

an additional 2nd level within-subjects factor: medication

condition (methylphenidate or placebo). To maximize the

number of available Sample 2 subjects, we analyzed all

subjects who had usable fMRI scans from at least 3/4 task

conditions (first and third task repetitions, for methylphenidate

and placebo study days). These 29 subjects were missing 12/

116 scans (10.3%); 17 of these subjects (10 cocaine subjects

and 7 healthy controls) had complete data (all four scans). As

the neuroimaging results were unchanged when analyzing

either the 29 subjects with some missing data or the 17

subjects with complete data, we elected to report results from

the larger sample.

fMRI activations from peak coordinates were further

extracted using the SPM EasyMRI toolbox and verified for

anatomical accuracy using MRIcron. These extracted BOLD-

fMRI signals were used to inspect for outliers and to conduct

correlation analyses in SPSS. These correlation analyses

tested for respective associations between select activations

(that is, regions that showed significant main effects or

interactions of repetition as reported in Results) and select

behavioral measures (that is, errors, RT and post-error

slowing), separately during the first and last task runs. For

Sample 2, correlation analyses were also split by medication.

Task performance behavioral analyses were considered

significant at Po0.05. SPM2 analyses were considered

significant at Pcorro0.05 (cluster-level Po0.05 family-wise

error corrected threshold, search threshold of Po0.005 voxel

uncorrected, 15 contiguous voxels). As a large number of

brain-behavior associations were available for inspection,

correlation analyses were considered significant at of Po0.01

(a more conservative threshold to minimize Type I errors).

Given the complexity of the current design and approach,

such brain-behavior correlations are essential to increase

understanding of the underlying mechanisms.

Preliminary PET data. A subsample of Sample 1, consist-

ing of five cocaine subjects and seven controls (who did not

differ from the larger sample on any demographic, drug use

Figure 1 Functional magnetic resonance imaging (fMRI) color-word Stroop task. Subjects pressed for ink color as quickly and accurately as possible (performance was
recorded throughout). fMRI response to conflict trials (all incongruent), error trials (all error) and their interaction were each compared with active baselines (all congruent trials,
all correct trials and congruent correct trials, respectively). (a) Examples of color words: the circled (red) stimulus is congruent; all others are incongruent. (b) Individual trial,
comprised of a 1300-ms color-word stimulus and 350ms interstimulus interval. (c) Individual run, comprised of 200 individual trials and a 3200-ms interval to separate runs.
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or task performance variables (all P40.05, independent

samples t-tests)), was also scanned with PET (raclopride

imaging for dopamine D2 receptor availability in the striatum).

This sample size, although not large, is comparable to some

of the previous studies assessing correlations between fMRI

BOLD and PET (for example, N¼ 11;66 N¼ 1867).

PET imaging was performed on a Siemens HRþ tomo-

graph (resolution: 4.5� 4.5� 4.5mm3 full-width half-maxi-

mum). Dynamic scans were started immediately after

injection of 4–10mCi [11C]raclopride (specific activity 0.5–

1.5Ci/mM at end of bombardment) and were obtained for

60min.68 Arterial blood was obtained to measure the

concentration of unchanged [11C]raclopride in plasma.

Regions of interest were obtained in striatum (caudate,

putamen and ventral striatum) and cerebellum (reference

region).43 The distribution volumes in these regions were

computed as the ratio of tissue radiotracer concentration to

plasma non-metabolized radiotracer concentration. The ratio

of distribution volume in the striatum to that of the cerebellum

corresponds to (Bmax/Kd)þ 1 and was used as measures of

D2/D3 receptor availability (non-displaceable binding poten-

tial). We predicted that midbrain (but not dACC) fMRI activity

would positively correlate with striatal dopamine D2 receptor

availability (note that consistent with previous PET studies,56

this measure was higher in controls (2.5±0.1) than in cocaine

subjects (2.1±0.1), t(10)¼ � 2.2, P¼ 0.05)). As such dopa-

minergic neurotransmission correlates with an achievement-

oriented personality,43 current PET data may be viewed as

signifying trait motivation (complementing findings of our

behavioral marker of motivation, RT).

Results

Sample 1: behavior. Behavioral data (errors and RT) were

(separately) analyzed with 2 (congruency: congruent,

incongruent)� 2 (repetition: first, fourth)� 2 (group: cocaine,

control) analyses of variances. As predicted, all subjects

committed more errors during the fourth than the first

repetition (repetition main effect: F(1,51)¼ 21.0, Po0.001).

A repetition� congruency interaction (F(1,51)¼ 23.8,

Po0.001), followed by post-hoc tests, revealed that all

subjects committed more errors during the fourth than first

repetition during the congruent trials (t(52)¼ 5.1, Po0.001)

(Figure 2a) but not during the incongruent trials (t(52)¼ 0.4,

P40.7). Results of RT revealed the classical Stroop

interference effect (faster RT on congruent trials than

incongruent trials: F(1,51)¼ 332.0, Po0.001). No other main

effects or interactions emerged for errors or RT.

Post-conflict slowing and post-error slowing were sepa-

rately analyzed with 2 (repetition)� 2 (group) analyses of

variances (post-error slowing was analyzed separately for

congruent trials, incongruent trials and their sum; see

Supplementary Material for further discussion). Post-error

slowing (when the trial after the error was a congruent trial)

was higher during the first than the fourth task repetition

(F(1,45)¼ 11.4, Po0.01) (Figure 2b). Although the

repetition� group interaction was initially significant

(F(1,45)¼ 6.0, Po0.05), such that post-error slowing

decreased as a function of time-on-task only in controls

(paired t(18)¼ 5.6, Po0.001) (an effect likely attributable to

baseline group differences, insofar as post-error slowing was

lower in cocaine subjects than controls during the first

repetition; independent t(47)¼ 2.3, Po0.05), this interaction

did not survive correction for covariates (Supplementary

Material) and is not interpreted. There were no effects for

post-error slowing during incongruent trials, possibly because

of their infrequency or for post-conflict slowing (that is,

increased RT following an incongruent, but correct, trial).

Supplementary Table S1 (Supplementary Material) presents

the Sample 1 means and s.e. of all behavioral variables.

Figure 2 Evidence of mental fatigue as a function of time-on-task. During the event-related color-word Stroop task, performance on the fourth repetition (compared with
the first) produced (a) more congruent errors, (b) less post-error slowing on congruent trials and (c) less % blood-oxygenation-level-dependent (BOLD) signal change to error
(compared with all correct trials) in the dorsal anterior cingulate cortex (dACC). (d) Scatterplot showing that higher error-induced BOLD signal change during the first task
repetition correlated with respective longer post-error slowing in all subjects. (e) Scatterplot showing that the higher the change in dACC activity (fourth4first repetition), the
higher was the sleepiness before beginning the task. Asterisks denote a significant difference between first and last task runs (repetitions).
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Sample 1: SPM

Conflict. During conflict, whole-brain SPM analyses revealed

repetition main effects in the thalamus (first 4fourth),

precentral gyrus (first ofourth) and parietal cortex (first

ofourth); cocaine subjects also showed more activity than

controls in lingual gyrus and cerebellum (Table 2). However,

because there were no repetition� group interactions for the

‘congruency’ main effect contrast, subsequent analyses

focused on ‘correctness’ activations as described below.

Importantly, there were also no activations for the

‘correctness� congruency’ interaction, indicating that effects

during error were not further modulated by conflict.

Error. During error, whole-brain SPM analyses revealed

decreased activity with repetition in all subjects in the right

dACC (Figure 2c), a cluster that extended dorsally to the

bilateral supplementary motor area (SMA) (Table 2). The

higher the extracted BOLD signals in the right dACC (but not

SMA) (that is, the peak dACC coordinate from Table 2)

during the first task repetition, the higher was the respective

post-error slowing in all subjects (Figure 2d; note that this

correlation remained significant after excluding the potential

outlier in the bottom left quadrant). Thus, both behavior and

brain measures on the task were consistent with mental

fatigue (and not alternative processes such as practice

effects), and were interrelated across all subjects. Further

supporting this interpretation of mental fatigue, the higher the

increase in self-reported sleepiness (but not task interest)

during a preceding drug Stroop task, the higher was the

decrease (fourth 4first repetition) in dACC/SMA activity

during the color-word Stroop task in controls (though not in

cocaine subjects) (Figure 2e). Thus, healthy individuals who

showed the greatest decrease in dACC/SMA activity during

the color-word Stroop task were also the ones likely fatigued

before beginning the task.

Importantly, whole-brain SPM analyses also revealed a

repetition� group interaction in the right midbrain during error

(that extended dorsally to include part of the thalamus;

Table 2): cocaine subjects showed decreased error-induced

BOLD signal in this region with repetition, whereas the

controls showed the opposite pattern (Figure 3a). Peak

activity of this cluster did not appear to include the locus

coeruleus (Supplementary Material). During the fourth repeti-

tion, the BOLD signal extracted from the midbrain (the peak

coordinate from Table 2) correlated with faster RT in all

subjects (Figure 3b) and higher striatal dopamine D2 receptor

availability in caudate in all subjects (after excluding one

outlier) (Figure 3c). This PET dopamine measure did not

correlate with fMRI dACC or SMA activity (P40.4). Thus,

fMRI midbrain activity (but not dACC activity) during the last

task repetition correlated with both state and trait measures of

motivation in all subjects.

Sample 2: SPM. For these Sample 2 subjects, we restricted

repetition-associated analyses to midbrain activity during

error because of our targeted a priori hypotheses and the

Table 2 Color-word Stroop SPM error- and conflict-related activations (vs all correct activations) during the first and last task repetitions

BA Side Voxels Peak Z P cluster-level
corrected

x y z

SAMPLE 1
Error: repetition main effect (first 4fourth)
dACC/supplementary motor area 6, 32 B 178 3.8 0.029 3 12 54

6 12 45
� 12 15 51

Error: repetition (first, fourth)�group (cocaine, control) interaction
Midbrain: VTA/STN complex — R 183 4.5 0.026 6 �18 � 9
Thalamus 12 �15 0

Conflict: repetition main effect (first 4fourth)
Thalamus — B 372 4.2 0.001 15 �27 0

� 6 �15 9

Conflict: repetition main effect (first ofourth)
Precentral gyrus 6, 4 R 162 3.6 0.042 33 �12 48

36 �24 60
Inferior parietal lobule 40, 7 L 288 3.5 0.003 � 39 �48 51
Superior parietal lobule � 27 �60 57

Conflict: group main effect (cocaine 4control)
Lingual gyrus 18, 37 L 203 3.7 0.016 � 12 �66 � 9
Cerebellum � 21 �57 �15

SAMPLE 2
Error: repetition (first, third)�medication (methylphenidate, placebo)�group (cocaine, control) interaction
Midbrain: VTA/STN complexa — B 38 4.5 0.002 � 3 �18 �15

Abbreviations: B, bilateral (neurological convention); BA, Brodmann Area; dACC, dorsal anterior cingulate cortex; L, left side, R, right side; STN, substantia nigra;
VTA, ventral tegmental area.
Note: regions significant at Pcorro0.05 (cluster-level corrected for multiple comparisons, 15 voxels minimum).
aUsed a bilateral 10mm spherical mask around the peakmidbrain coordinate of Sample 1 (x¼ |6|, y¼ � 18, z¼ �9); the Stroop task completed by Sample 1 had four
repetitions, while the Stroop task completed by Sample 2 had three repetitions.

Midbrain in sustaining motivation

SJ Moeller et al

6

Translational Psychiatry



smaller sample size. We also used a bilateral spherical mask

of the midbrain coordinates from Sample 1, with a search

threshold set at the more conservative PFWEo0.05 (voxel-

level family-wise error correction) (cluster extent remained at

15 voxels). Consistent with hypotheses, SPM analyses

revealed a repetition (first, third)�medication (methylpheni-

date, placebo)� group (control, cocaine) three-way interac-

tion in the bilateral midbrain (Table 2): during placebo, the

pattern of results mirrored Sample 1; during methylpheni-

date, however, the pattern of effects was reversed, such that

the cocaine subjects increased error-related activity in the

midbrain with repetition, whereas the controls decreased

activity in this context (Figure 3d). Again, these effects did

not extend to the locus coeruleus (Supplementary Material).

We did not replicate the midbrain correlation with RT during

the last task repetition (here, the third repetition), during

either methylphenidate or placebo. For behavioral task

performance, there were no modulatory effects of methyl-

phenidate on task repetition that survived correction for

covariates (Supplementary Material).

Discussion

Cocaine abusers and healthy controls completed a laboratory

paradigm that aimed to model mental fatigue as a function of

time-on-task. Support for such fatigue in Sample 1 came from

measures of behavior (more errors, less post-error slowing)

and brain function (less dACC activity to error, which could

indicate decreased cognitive control24 and/or performance

monitoring22,23); the latter two variables were themselves

positively correlated during the first repetition in all subjects.

At first blush, it might seem surprising that such results only

emerged for the congruent trials. However, it is not entirely

unexpected that mental fatigue would be best manifested

during the easier andmore frequent congruent trials. In further

support, the higher the fatigue before beginning the task, the

greater was the decrease in dACC activity throughout the

task. These collective fMRI findings extend prior studies on

repetition-induced fatigue in healthy controls that have

traditionally relied on electroencephalogram methods.15–18

More generally, our findings support a suggested function of

the ACC in shaping future behavior as a function of reward

history,69 such that mental fatigue may ensue when the costs

(that is, exertion) associated with continued task performance

are calculated to outweigh the benefits (that is, reward).70

Interestingly, although prior work led us to anticipate reduced

dACC error-related activity, and possibly more prominent

fatigue, in the cocaine subjects,71 the dACC response to error

decreased with task repetition to a similar extent in all

subjects. One explanation for these null dACC activation

differences between the groups could be the lack of

respective differences in task performance. Consistent with

this idea, previous studies have indicated that when error-

related performance differs between the groups, dACC error-

related activity differs in parallel.72–74 In contrast, and similarly

to the current study, one study showed that when opiate

addicted individuals and healthy controls did not exhibit

performance differences on the Multi-Source Interference

Task, group differences in the dACC were also non-

significant.75

The interesting dissociation between groups occurred in

the dopaminergic midbrain. Healthy individuals increased

Figure 3 Midbrain response to error as a function of time-on-task. (a) More % blood-oxygenation-level-dependent (BOLD) signal change to error (compared with all
correct trials) in the midbrain during the fourth task repetition in controls, but during the first task repetition in the cocaine subjects. Such higher error-induced BOLD signal
change during the fourth task repetition correlated with (b) faster reaction time (RT) and (c) dopamine D2 receptor availability in caudate, as measured by positron emission
tomography (PET) (one outlier was excluded; for display purposes, the scores of the cocaine subjects were standardized to the mean and s.d. of controls). (d) Midbrain
responses as a function of time-on-task were reversed in both study groups during methylphenidate (note that the correct congruent baseline means that BOLD responses
below zero do not necessarily indicate deactivations). Asterisks denote a significant difference between first and last task runs (repetitions).
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midbrain activity to error when fatigue was putatively escalat-

ing, whereas cocaine abusers decreased midbrain activity to

error in this context (possibly indicating an aberrant response

in this latter group). These results extend the hypothesized

function of dopamine in sustaining effort during task perfor-

mance36–38 into human executive function, cognitive control

and mental fatigue. These results help shed light on previous

research involving midbrain morphological dysfunction in

disease states characterized by fatigue. For example,

decreased midbrain white matter volume was associated with

a longer duration of illness in chronic fatigue syndrome,76 and

polio survivors who later developed fatigue as a consequence

of infection were found post-mortem to have lesions of various

subcortical regions including the midbrain.77 Given the

midbrain-RT correlation during the last task repetition, we

interpret the midbrain activity in the current study as

potentially marking sustained motivation—to our knowledge

demonstrated for the first time during mental fatigue—that

was presumably deployed when self-regulatory resources

were needed most. This interpretation supports other neuroi-

maging studies of healthy individuals, which, although using

different paradigms, have similarly implicated the midbrain in

endogenous motivation.41–43 This interpretation also agrees

with a body of exercise literature indicating that reduced

dopamine neurotransmission may contribute to early-onset

fatigue—possibly because of diminished motivation

(reviewed in Davis and Bailey78); in contrast, increased

exercise appears to facilitate midbrain dopamine neurotrans-

mission as indicated by enhanced tyrosine hydroxylase

mRNA expression and reduced D2 autoreceptor mRNA.79

Finally, our interpretation is consistent with recent theorizing

on dopamine, where a subpopulation of dopamine neurons is

hypothesized to respond to motivational salience (detecting

and responding to important events, and providing impetus to

persist toward desirable outcomes).80 Seemingly contra-

dictory midbrain results in related studies (for example,

deactivation of the midbrain after errors was observed using

the stop signal paradigm,81 while midbrain activation was not

reported in other studies that inspected Stroop repetition

effects52,82) are likely attributable to differences in task design

(for example, shorter time course of interest: response after

only 100ms in the previous stop signal study) and dependent

measures (for example, previous Stroop repetition studies

investigated conflict, whereas we focused on error).

Our unique multimodal methodological approach, which

included data from a relevant disease state (cocaine

abusers), preliminary PET data and administration of a

dopamine agonist, methylphenidate, collectively suggested

that dopamine could underlie these midbrain effects. Indeed,

cocaine subjects showed decreased dopamine D2 receptor

availability compared with controls even in this small sample,

increasing validity of using this population. Moreover, pre-

liminary PET data, where higher midbrain signal to error

during the last task repetition correlated with higher dopamine

D2 receptor availability in caudate, directly linked the current

midbrain error-related activity to dopamine neurotransmis-

sion. Finally, methylphenidate produced a striking reversal of

midbrain effects in the cocaine subjects versus the controls.

This latter finding supports dopamine’s inverted U-shaped

effects on cognition57 and brain activity,83 where increased

extracellular dopamine, afforded here through methylpheni-

date, is hypothesized to selectively benefit those with the

greatest need (possibly normalizing response in cocaine

subjects due to restoration of dopamine signaling but

degrading response in healthy controls due to excessive

dopamine signaling). In agreement with this idea, dopamine

agonists (for example, the dopamine D1/D2 receptor agonist

pergolide) have been shown to improve fatigue in medically ill

patients (for example, Parkinson’s disease84), and stimulant

medications (indirect dopamine agonists) have helped sustain

cognitive and behavioral performance in healthy military

personnel under conditions of extreme fatigue.85 Thus, our

current findings highlight methylphenidate’s potentially cor-

rective impact on brain and behavior in cocaine addiction.86,87

In particular, methylphenidate may have helped normalize the

dopaminergic perturbations that characterize cocaine addic-

tion (for example, reduced dopamine receptor availability and

release).56 Future clinical intervention studies will need to

evaluate the therapeutic implications of these findings (for

example, the possibility of enhancing motivation in addicted

individuals during mental fatigue).

This study has several limitations. First, although previous

research guided interpretations of the current activations, the

correlational nature of fMRI constrains our ability to definitely

conclude that a particular cognitive process (for example,

mental fatigue) was engaged in this study. Other potential

dACC-related cognitive processes may have included vigi-

lance, attention or executive function decline. However,

current brain-behavior correlations lessen this concern (for

example, correlations between dACC and post-error slowing

or sleepiness but not task interest, and between midbrain and

RT). Moreover, the pattern of effects observed during task

performance (increased errors with increased time-on-task

during congruent trials) appears consistent with mental

fatigue. Second, current PET results require replication with

larger samples. Third, although we speculated that the easier

and more frequent congruent trials were best suited for

tapping into time-on-task effects as reflective of mental fatigue

in the current task design, novelty may have also contributed

to the null results during the (less frequent) incongruent trials,

counteracting potentially similar mental fatigue effects during

these more difficult trials. This consideration needs to be

addressed with future tasks designed for this purpose. Fourth,

although post-error slowing is thought to rely on top-down

control processes, in the current study (after correction for

covariates) post-error slowing did not differ between the

groups as a function of time-on-task (Results) and did not

correlate with task performance at the nominal Po0.01

statistical threshold for correlations (Supplementary

Material), and therefore conclusions about this variable vis-

à-vis cognitive functioning should be appropriately tempered.

Nevertheless, given that the repetition� group interaction

was initially significant (before correction for covariates), we

would predict that larger sample sizes might be able to detect

impairments in initial post-error slowing and other indicators of

more careful task performance in addicted individuals. Fifth,

because methylphenidate also blocks the norepinephrine

transporter88 and because norepinephrine may contribute to

motivated, reward-directed behaviors by modifying dopamine

activity in the midbrain,89 the potential contribution of
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norepinephrine to these results awaits further study (for

example, through administration of selective dopamine or

norepinephrine agonists or antagonists). However, reducing

this concern are: (A) PET data used raclopride, a selective

dopamine antagonist; (B) an region of interest analysis of the

locus coeruleus did not reveal effects in either sample

(Supplementary Material); (C) as discussed above, selective

dopamine agonists have previously produced salubrious

effects on fatigue;84 and (D) even if effects were due to

norepinephrine transporter blockade, dopamine could still be

involved since norepinephrine transporters also have affinity

for dopamine.88

In summary, our results suggest the important and novel

conclusion that a putatively healthy—and motivationally

relevant—dopaminergic response to error during mental

fatigue is compromised in individuals addicted to cocaine.

Strengthening this response through pharmacological inter-

vention, perhaps especially if combined with select cognitive

exercises90 or self-control interventions,91 might help

addicted individuals sustain motivation both to engage in

therapeutic activities and to maintain abstinence in situations

that could trigger relapse.
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