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This article reviews the effort to understand the physics of high temperature superconductors from
the point of view of doping a Mott insulator. The basic electronic structure of the cuprates is re-
viewed, emphasizing the physics of strong correlation and establishing the model of a doped Mott
insulator as a starting point. A variety of experiments are discussed, focusing on the region of the
phase diagram close to the Mott insulator (the underdoped region) where the behavior is most
anomalous. The normal state in this region exhibits the pseudogap phenomenon. In contrast,
the quasiparticles in the superconducting state are well defined and behave according to theory.
We introduce Anderson’s idea of the resonating valence bond (RVB) and argue that it gives a
qualitative account of the data. The importance of phase fluctuation is discussed, leading to a
theory of the transition temperature which is driven by phase fluctuation and thermal excitation
of quasiparticles. However, we argue that phase fluctuation can only explain the pseudogap phe-
nomenology over a limited temperature range, and some additional physics is needed to explain
the onset of singlet formation at very high temperatures. We then describe the numerical method
of projected wavefunction which turns out to be a very useful technique to implement the strong
correlation constraint, and leads to a number of predictions which are in agreement with experi-
ments. The remainder of the paper deals with an analytic treatment of the t-J model, with the
goal of putting the RVB idea on a more formal footing. The slave-boson is introduced to enforce
the constraint of no double occupation. The implementation of the local constraint leads natu-
rally to gauge theories. We follow the historical order and first review the U(1) formulation of the
gauge theory. Some inadequacies of this formulation for underdoping are discussed, leading to the
SU(2) formulation. Here we digress with a rather thorough discussion of the role of gauge theory
in describing the spin liquid phase of the undoped Mott insulator. We emphasize the difference
between the high energy gauge group in the formulation of the problem versus the low energy
gauge group which is an emergent phenomenon. Several possible routes to deconfinement based
on different emergent gauge groups are discussed, which lead to the physics of fractionalization
and spin-charge separation. We next describe the extension of the SU(2) formulation to nonzero
doping. We focus on a part of the mean field phase diagram called the staggered flux liquid phase.
We show that inclusion of gauge fluctuation provides a reasonable description of the pseudogap
phase. We emphasize that d-wave superconductivity can be considered as evolving from a stable
U(1) spin liquid. We apply these ideas to the high Tc cuprates, and discuss their implications for
the vortex structure and the phase diagram. A possible test of the topological structure of the
pseudogap phase is discussed.

PACS numbers: 74.20.Mn, 71.27.+a
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I. INTRODUCTION

The discovery of high temperature superconductivity
in cuprates (Bednorz and Mueller, 1986) and the rapid
raising of the transition temperature to well above the
melting point of nitrogen (Wu et al., 1987) ushered in an
era of great excitement for the condensed matter physics
community. For decades prior to this discovery, the high-
est Tc had been stuck at 23 K. Not only was the old
record Tc shattered, but the fact that high Tc supercon-
ductivity was discovered in a rather unexpected material,
a transition metal oxide, made it clear that some novel
mechanism must be at work. The intervening years have
seen great strides in high Tc research. First and foremost,
the growth and characterization of cuprate single crystals
and thin films have advanced to the point where sample
quality and reproducibility problems which plagued the
field in the early days are no longer issues. At the same
time, basically all conceivable experimental tools have
been applied to the cuprates. Indeed, the need for more
and more refined data has spurred the development of ex-
perimental techniques such as angle resolved photoemis-
sion spectroscopy (ARPES) and low temperature scan-
ning tunneling microscopy (STM). Today the cuprate is

FIG. 1 Schematic phase diagram of high Tc superconduc-
tors showing hole doping (right side) and electron doping (left
side). From Damascelli et al., 2003.

arguably the best studied material outside of the semi-
conductor family and a great deal of facts are known.
It is also clear that many of the physical properties are
unusual, particularly in the metallic state above the su-
perconductor. Superconductivity is only one aspect of
a rich phase diagram which must be understood in its
totality.

While there are hundreds of high Tc compounds, they
all share a layered structure made up of one or more
copper-oxygen planes. They all fit into a “universal”
phase diagram shown in Fig. 1. We start with the so-
called “parent compound,” in this case La2CuO4. There
is now general agreement that the parent compound is
an insulator, and should be classified as a Mott insula-
tor. The concept of Mott insulation was introduced many
years ago (Mott, 1949) to describe a situation where a
material should be metallic according to band theory, but
is insulating due to strong electron-electron repulsion. In
our case, in the copper-oxygen layer there is an odd num-
ber of electrons per unit cell. More specifically, the cop-
per ion is doubly ionized and is in a d9 configuration, so
that there is a single hole in the d shell per unit cell. Ac-
cording to band theory, the band is half-filled and must
be metallic. Nevertheless, there is a strong repulsive en-
ergy cost to put two electrons (or holes) on the same ion,
and when this energy (commonly called U) dominates
over the hopping energy t, the ground state is an insula-
tor due to strong correlation effects. It also follows that
the Mott insulator should be an antiferromagnet (AF),
because when neighboring spins are oppositely aligned,
one can gain an energy 4t2/U by virtual hopping. This
is called the exchange energy J . The parent compound
is indeed an antiferromagnetic insulator. The ordering
temperature TN ≈ 300K shown in Fig. 1 is in fact mis-
leadingly low because it is governed by a small interlayer
coupling, which is furthermore frustrated in La2CuO4

(see Kastner et al., 1998). The exchange energy J is
in fact extraordinarily high, of order 1500 K, and the
parent compound shows strong antiferromagnetic corre-
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lation much above TN .

The parent compound can be doped by substitut-
ing some of the trivalent La by divalent Sr. The re-
sult is that x holes are added to the Cu-O plane in
La2−xSrxCuO4. This is called hole doping. In the com-
pound Nd2−xCexCuO4, the reverse happens in that x
electrons are added to the Cu-O plane. This is called elec-
tron doping. As we can see from Fig. 1, on the hole dop-
ing side the AF order is rapidly suppressed and is gone
by 3 to 5% hole concentration. Almost immediately after
the suppression of AF, superconductivity appears, rang-
ing from x = 6% to 25%. The dome-shaped Tc is charac-
teristic of all hole-doped cuprates, even though the max-
imum Tc varies from about 40 K in the La2−xSrxCuO4

(LSCO) family to 93 K and higher in other families such
as YBa2Cu3O6+y (YBCO) and Ba2Sr2CaCu2O8+y (Bi-
2212). On the electron doped side, AF is more robust
and survives up to x = 0.14, beyond which a region of su-
perconductivity arises. One view is that the carriers are
more prone to be localized on the electron doped side, so
that electron doping to closer to dilution by nonmagnetic
ions, which is less effective in suppressing AF order than
itinerant carriers. Another possibility is that the next
neighbor hopping term favors AF on the electron doped
side (Singh and Ghosh, 2002). It is as though a more ro-
bust AF region is covering up the more interesting phase
diagram revealed on the hole doped side. In this review
we shall focus on the hole doped materials, even though
we will address the issue of the particle-hole asymmetry
of the phase diagram from time to time.

The region in the phase diagram with doping x less
than that of the maximum Tc is called the underdoped
region. The metallic state above Tc has been under in-
tense study and exhibits many unusual properties not
encountered before in any other metal. This region of
the phase diagram has been called the pseudogap phase.
It is not a well defined phase in that a definite finite tem-
perature phase boundary has never been found. The line
drawn in Fig. 1 should be regarded as a cross-over. Since
we view the high Tc problem as synonymous with that of
doping a Mott insulator, the underdoped region is where
the battleground between Mott insulator and supercon-
ductivity is drawn and this is where we shall concentrate
on in this review.

The region of the normal state above the optimal Tc
also exhibits unusual properties. The resistivity is lin-
ear in T and the Hall coefficient is temperature depen-
dent (see Chien et al., 1991). These were cited as exam-
ples of non-Fermi liquid behavior since the early days of
high Tc. Beyond optimal doping (called the overdoped
region), sanity gradually returns. The normal state be-
haves more normally in that the temperature dependence
of the resistivity resembles T 2 over a temperature range
which increases with further overdoping. The anomalous
region above optimal doping is sometimes referred to as
the “strange metal” region. We offer a qualitative de-
scription of this region in section IX, but in our mind the
understanding of the “strange metal” is even more rudi-

mentary that of the “pseudogap.” A popular notion is
that the strange metal is characterized by a quantum crit-
ical point lying under the superconducting dome (Varma,
1997; Castellani et al., 1997; Tallon and Loram, 2000) In
our view, unless the nature of the ordered side of a quan-
tum critical point is classified, the simple statement of
quantum criticality does not teach us too much about
the behavior in the critical region. For this reason, we
prefer to concentrate on the underdoped region and leave
the strange metal phase to future studies.

Contrary to the experimental situation, the develop-
ment of high Tc theory follows a rather tortuous path and
people often have the impression that the field is highly
contentious and without a clear direction or consensus.
We do not agree with this assessment and would like to
clearly state our point of view from the outset. Our start-
ing point is, as already stated, that the physics of high Tc
superconductivity is the physics of doping a Mott insu-
lator. Strong correlation is the driving force behind the
phase diagram. We believe that there is a general consen-
sus on this starting point. The simplest model which cap-
tures the strong correlation physics is the Hubbard model
and its strong coupling limit, the t-J model. Our view
is that one should focus on understanding these simple
models before adding various elaborations. For example,
further neighbor hopping certainly is significant and as
we shall discuss, plays an important role in understand-
ing the particle-hole asymmetry of the phase diagram.
Electron-phonon coupling can generally be expected to
be strong in transition metal oxides, and we shall discuss
their role in affecting spectral line shape. However, these
discussions must be made in the context of strong cor-
relation. The logical step is to first understand whether
simple models such as the t-J model contains enough
physics to explain the appearance of superconductivity
and pseudogaps in the phase diagram.

The strong correlation viewpoint was put forward by
Anderson, 1987, who revived his earlier work on a possi-
ble spin liquid state in a frustrated antiferromagnet. This
state, called the resonating valence band (RVB), has no
long range AF order and is a unique spin singlet ground
state. It has spin 1/2 fermionic excitations which are
called spinons. The idea is that when doped with holes
the RVB is a singlet state with coherent mobile carri-
ers, and is indistinguishable in terms of symmetry from
a singlet BCS superconductor. The process of hole dop-
ing was further developed by Kivelson et al., 1987 who
argue that the combination of the doped hole with the
spinon form a bosonic excitation. This excitation, called
the holon, carries charge but no spin whereas the spinon
carries spin 1/2 but no charge, and the notion of spin-
charge separation was born. Meanwhile, a slave-boson
theory was formulated by Baskaran et al., 1987. Many
authors contributed to the development of the mean field
theory, culminating in the paper by Kotliar and Liu, 1988
who found that the superconducting state should have
d-symmetry and that a state with spin gap properties
should exist above the superconducting temperature in
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the underdoped region. The possibility of d-wave super-
conductivity has been discussed in terms of the exchange
of spin fluctuations (Scalapino et al., 1986, 1987; Miyake
et al., 1986; Emery, 1983, 1986; Monthonx and Pines,
1993). These discussions are either based on phenomeno-
logical coupling between spins and fermions or via RPA
treatment for the Harbbard model which is basically a
weak coupling expansion. In contrast, the salve-boson
theory was developed in the limit of strong repulsion.
Details of the mean field theory will be discussed in sec-
tion VIII.

At about the same time, the proposal by Anderson,
1987 of using projected mean field states as trial wave-
functions was implemented on the computer by Gros,
1988a, 1988b. The idea is to remove by hand on a com-
puter all components of the mean field wavefunction with
doubly occupied sites, and use this as a variational wave-
function for the t-J model. Gros, 1988a, 1988b concluded
that the projected d-wave superconductor is the varia-
tional ground state for the t-J model over a range of
doping. The projected wavefunction method remains one
of the best numerical tools to tackle the t-J or Hubbard
model and is reviewed in section VI.

It was soon realized that inclusion of fluctuations about
the mean field invariably leads to gauge theory (Baskaran
and Anderson, 1988; Ioffe and Larkin, 1989; Nagaosa and
Lee, 1990). The gauge field fluctuations can be treated at
a Gaussian level and these early developments together
with some of the difficulties are reviewed in section IX.

In hindsight, the slave-boson mean field theory and the
projected wavefunction studies contain many of the qual-
itative aspects of the hole doped phase diagram. It is in-
deed quite remarkable that the main tools of treating the
t-J model, i.e. projected trial wavefunction, slave-boson
mean field, and gauge theory, were in place a couple of
years after the discovery of high Tc. In some way the
theory was ahead of its time, because the majority view
in the early days was that the pairing symmetry was s-
wave, and the pseudogap phenomenology remains to be
discovered. (The first hint came from Knight shift mea-
surements in 1989 shown in Fig. 4(a).) Some of the early
history and recent extensions are reviewed by Anderson
et al., 2004.

The gauge theory approach is a difficult one to pursue
systematically because it is a strong coupling problem.
One important development is the realization that the
original U(1) gauge theory should be extended to SU(2)
in order to make a smooth connection to the underdoped
limit (Wen and Lee, 1996) This is discussed in sections
XI and XII. More generally, it was gradually realized
that the concepts of confinement/deconfinement which
are central to QCD also play a key role here, except that
the presence of matter field make this problem even more
complex. Since gauge theories are not so familiar to con-
densed matter physicists, these concepts are discussed
in some detail in section X. One of the notable recent
advances is that the notion of the spin liquid and its re-
lation to deconfinement in gauge theory has been greatly

clarified and several soluble models and candidates based
on numerical exact diagonalization have been proposed.
It remains true, however, that so far no two-dimensional
spin liquid has been convincingly realized experimentally.

Our overall philosophy is that the RVB idea of a spin
liquid and its relation to superconductivity contains the
essence of the physics and gives a qualitative description
of the underdoped phase diagram. The goal of our re-
search is to put these ideas on a more quantitative foot-
ing. Given the strong coupling nature of the problem,
the only way progress can be made is for theory to work
in consort with experiment. Our aim is to make as many
predictions as possible, beyond saying that the pseudo-
gap is a RVB spin liquid, and challenge the experimental-
ists to perform tests. Ideas along these lines are reviewed
in section XII.

High Tc research is an enormous field and we cannot
hope to be complete in our references. Here we refer to
a number of excellent review articles on various aspects
of the subject. Imada et al., 1998 reviewed the general
topic of metal-insulator transition. Orenstein and Millis,
2000 and Norman and Pepin, 2003 have provided highly
readable accounts of experiments and general theoreti-
cal approaches. Early numerical work was reviewed by
Dagotto, 1994. Kastner et al., 1998 summarized the ear-
lier optical and magnetic neutron scattering data mainly
on La2−xSrxCuO4. Major reviews of angle resolved pho-
toemission data (ARPES) have been provided by Cam-
puzano et al., 2003 and Damascelli et al., 2003. Op-
tics measurements on underdoped materials are reviewed
by Timusk and Statt, 1999. The volumes edited by
Ginzberg, 1989 contain excellent reviews of early NMR
work by C.P. Slichter and early transport measurement
by N.P. Ong among others. Discussions of stripe physics
are recently given by Carlson et al., 2003 and Kivelson
et al., 2003. A discussion of spin liquid states is given
by Sachdev, 2003 with an emphasis on dimer order and
by Wen, 2004 with an emphasis on quantum order. For
an account of experiments and early RVB theory, see the
book by Anderson, 1997.

II. BASIC ELECTRONIC STRUCTURE OF THE

CUPRATES

It is generally agreed that the physics of high Tc super-
conductivity is that of the copper oxygen layer, as shown
in Fig. 2. In the parent compound such as La2CuO4,
the formal valence of Cu is 2+, which means that its
electronic state is in the d9 configuration. The copper
is surrounded by six oxygens in an octahedral environ-
ment (the apical oxygen lying above and below Cu are
not shown in Fig. 2). The distortion from a perfect oc-
tahedron due to the shift of the apical oxygens splits the
eg orbitals so that the highest partially occupied d or-
bital is x2 − y2. The lobes of this orbital point directly
to the p orbital of the neighboring oxygen, forming a
strong covalent bond with a large hopping integral tpd.
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FIG. 2 The two-dimensional copper-oxygen layer (left) is sim-
plified to the one-band model (right). Bottom figure shows
the copper d and oxygen p orbitals in the hole picture. A
single hole with S = 1/2 occupies the copper d orbital in the
insulator.

As we shall see, the strength of this covalent bonding is
responsible for the unusually high energy scale for the
exchange interaction. Thus the electronic state of the
cuprates can be described by the so-called 3 band model,
where in each unit cell we have the Cu dx2−y2 orbital
and two oxygen p orbitals (Emery, 1987; Varma et al.,
1987). The Cu orbital is singly occupied while the p or-
bitals are doubly occupied, but these are admixed by tpd.
In addition, admixtures between the oxygen orbitals may
be included. These tight-binding parameters may be ob-
tained by fits to band structure calculations (Mattheiss,
1987; Yu et al., 1987). However, the largest energy in the
problem is the correlation energy for doubly occupying
the copper orbital. To describe these correlation ener-
gies, it is more convenient to go to the hole picture. The
Cu d9 configuration is represented by energy level Ed oc-
cupied by a single hole with S = 1

2 . The oxygen p orbital
is empty of holes and lies at energy Ep which is higher
than Ed. The energy to doubly occupy Ed (leading to a
d8 configuration) is Ud, which is very large and can be
considered infinity. The lowest energy excitation is the
charge transfer excitation where the hole hops from d to
p with amplitude −tpd. If Ep − Ed is sufficiently large
compared with tpd, the hole will form a local moment on
Cu. This is referred to as a charge transfer insulator in
the scheme of Zaanen et al., 1985. Essentially, Ep − Ed
plays the role of the Hubbard U in the one-band model
of the Mott insulator. Experimentally an energy gap of
2.0 eV is observed and interpreted as the charge transfer
excitation (see Kastner et al., 1998).

Just as in the one-band Mott-Hubbard insulator,
where virtual hopping to doubly occupied states leads

to an exchange interaction JS1 · S2 where J = 4t2/U ,
in the charge-transfer insulator, the local moments on
nearest neighbor Cu prefer antiferromagnetic alignment
because both spins can virtually hop to the Ep orbital.
Ignoring the Up for doubly occupying the p orbital with
holes, the exchange integral is given by

J =
t4pd

(Ep − Ed)3
. (1)

The relatively small size of the charge transfer gap means
that we are not deep in the insulating phase and the
exchange term is expected to be large. Indeed exper-
imentally the insulator is found to be in an antiferro-
magnetic ground state. By fitting Raman scattering to
two magnon excitations (Sulewsky et al., 1990), the ex-
change energy is found to be J = 0.13 eV. This is one
of the largest exchange energies known and is exceeded
only by that of the ladder compounds which involve the
same Cu-O bonding. This value of J is confirmed by fit-
ting spin wave energy to theory, where an additional ring
exchange terms is found (Coldea et al., 2001).

By substituting divalent Sr for trivalent La, the elec-
tron count on the Cu-O layer can be changed in a process
called doping. For example, in La2−xSrxCuO4, x holes
per Cu is added to the layer. As seen in Fig. 2, due to
the large Ud, the hole will reside on the oxygen p or-
bital. The hole can hop via tpd and due to translational
symmetry, the holes are mobile and form a metal, unless
localization due to disorder or some other phase transi-
tion intervenes. The full description of the hole hopping
in the three-band model is complicated, and a number
of theories consider this essential to the understanding of
high Tc superconductivity (Emery, 1987; Varma et al.,
1987). On the other hand, there is strong evidence that
the low energy physics (on a scale small compared with
tpd and Ep − Ed) can be understood in terms of an ef-
fective one-band model, and we shall follow this route in
this review. The essential insight is that the doped hole
resonates on the four oxygen sites surrounding a Cu and
the spin of the doped hole combines with the spin on the
Cu to form a spin singlet. This is known as the Zhang-
Rice singlet (Zhang and Rice, 1988). This state is split
off by an energy of order t2pd/(Ep − Ed) because the sin-
glet gains energy by virtual hopping. On the other hand,
the Zhang-Rice singlet can hop from site to site. Since
the hopping is a two step process, the effective hopping
integral t is also of order t2pd/(Ep − Ed). Since t is the
same parametrically as the binding energy of the singlet,
the justification of this point of view relies on a large nu-
merical factor for the binding energy which is obtained
by studying small clusters.

By focusing on the low lying singlet, the hole doped
three-band model simplifies to a one-band tight bind-
ing model on the square lattice, with an effective nearest
neighbor hopping integral t given earlier and with Ep−Ed
playing a role analogous to U . In the large Ep−Ed limit
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this maps onto the t-J model

H = P



−
∑

〈ij〉,σ
tijc

†
iσciσ

+ J
∑

〈ij〉

(

Si · Sj −
1

2
ninj

)



P (2)

where the projection operator P restricts the Hilbert
space to one which excludes double occupation of any
site. J is given by 4t2/U and we can see that it is the
same functional form as that of the three-band model de-
scribed earlier. It is also possible to dope with electrons
rather than holes. The typical electron doped system is
Nd2−xCexCuO4+δ (NCCO). The added electron corre-
sponds to removal of a hole from the copper site in the
hole picture (Fig. 2), i.e. the Cu ion is in the d10 configu-
ration. This vacancy can hop with a teff and the mapping
to the one-band model is more direct than the hole doped
case. Note that in the full three-band model the object
which is hopping is the Zhang-Rice singlet for hole doping
and the Cu d10 configuration for electron doping. These
have rather different spatial structure and are physically
quite distinct. For example, the strength of their cou-
pling to lattice distortions may be quite different. When
mapped to the one-band model, the nearest neighbor
hopping t has the same parametric dependence, but could
have a different numerical constant. As we shall see, the
value of t derived from cluster calculations turn out to
be surprisingly similar for electron and hole doping. For
a bi-partate lattice, the t-J model with nearest neighbor
t has particle-hole symmetry because the sign of t can
be absorbed by changing the sign of the orbital on one
sublattice. Experimentally the phase diagram exhibits
strong particle-hole asymmetry. On the electron doped
side, the antiferromagnetic insulator survives up to much
higher doping concentration (up to x ≈ 0.2) and the su-
perconducting transition temperature is quite low (about
30 K). Many of the properties of the superconductor re-
semble that of the overdoped region of the hole doped side
and the pseudogap phenomenon, which is so prominent
in the underdoped region, is not observed with electron
doping. It is as though the greater stability of the anti-
ferromagnet has covered up any anomalous regime that
might exist otherwise. Precisely why is not clear at the
moment. One possibility is that polaron effects may be
stronger on the electron doped side, leading to carrier lo-
calization over a broader range of doping. There has been
some success in modeling the contrast in the single hole
spectrum by introducing further neighbor coupling into
the one-band model which breaks the particle-hole sym-
metry (Shih et al., 2004). This will be discussed further
below.

We conclude that the electron correlation is strong
enough to produce a Mott insulator at half filling. Fur-
thermore, the one band t-J model captures the essence
of the low energy electronic excitations of the cuprates.

FIG. 3 The Knight shift for YB2Cu4O8. It is an underdoped
material with Tc = 79K. From Curro et al., 1997.

Particle-hole asymmetry may be accounted for by in-
cluding further neighbor hopping t′. This point of view
has been tested extensively by Hybertson et al., 1990
who used ab initio local density functional theory to
generate input parameters for the three-band Hubbard
model and then solve the spectra exactly on finite clus-
ters. The results are compared with the low energy spec-
tra of the one-band Hubbard model and the t − t′ − J
model. They found an excellent overlap of the low ly-
ing wavefunctions for both the one-band Hubbard and
the t − t′ − J model and were able to extract effective
parameters. They found J to be 128 ± 5 meV, in excel-
lent agreement with experimental values. Furthermore
they found t ≈ 0.41 eV and 0.44 eV for electron and hole
doping, respectively. The near particle-hole symmetry in
t is surprising because the underlying electronic states
are very different in the two cases, as already discussed.
Based on their results, the commonly used parameter J/t
for the t-J model is 1/3. They also found a significant
next nearest neighbor t′ term, again almost the same for
electron and hole doping.

More recently, Andersen et al., 1996 have pointed out
that in addition to the three-band model, an additional
Cu 4s orbital has a strong influence on further neighbor
hopping t′ and t′′, where t′ is the hopping across the diag-
onal and t′′ is hopping to the next-nearest neighbor along
a straight line. Recently Pavarini et al., 2001 emphasized
the importance of the apical oxygen in modulating the
energy of the Cu 4s orbital and found a sensitive depen-
dence of t′/t on the apical oxygen distance. They also
pointed out an empirical correlation between optimal Tc
and t′/t. As we will discuss in sections VI.D and VII,
t′ may play an important role in determining Tc and in
explaining the difference between electron and hole dop-
ing. However, in view of the fact that on-site repulsion
is the largest energy scale in the problem, it would make
sense to begin our modeling of the cuprates with the t-J
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(b)

Heisenberg
model,  theory

FIG. 4 (a) Knight shift data of YBCO for a variety of doping
(from Alloul et al., 1989). The zero reference level for the
spin contribution is indicated by the arrow and the dashed
line represents the prediction of the 2D S = 1

2
Heisenberg

model for J = 0.13 eV. (b) Uniform magnetic susceptibility
for LSCO (from Nakano et al., 1994). The orbital contribu-
tion χ0 is shown (see text) and the solid line represents the
Heisenberg model prediction.

model and ask to what extent the phase diagram can be
accounted for. As we shall see, even this is not a simple
task and will constitute the major thrust of this review.

III. PHENOMENOLOGY OF THE UNDERDOPED

CUPRATES

The essence of the problem of doping into a Mott in-
sulator is readily seen from Fig. 2. When a vacancy is
introduced into an antiferromagnetic spin background, it
would like to hop with amplitude t to lower its kinetic
energy. However, after one hop its neighboring spin finds
itself in a ferromagnetic environment, at an energy cost
of 3

2J if the spins are treated as classical S = 1
2 . It is clear

FIG. 5 The specific heat coefficient γ for YBa2Cu3O6+y (top)
and La2−xSrxCuO4 (bottom). Curves are labeled by the oxy-
gen content y in the top figure and by the hole concentration
x in the bottom figure. Optimal and overdoped samples are
shown in the inset. The jump in γ indicates the supercon-
ducting transition. Note the reduction of the jump size with
underdoping. (From Loram et al., 1993 and Loram et al.,
2001).

that the holes are very effective in destroying the anti-
ferromagnetic background. This is particularly so when
t ≫ J when the hole is strongly delocalized. The basic
physics is the competition between the exchange J and
the kinetic energy which is of order t per hole or xt per
unit area. When xt ≫ J we expect the kinetic energy
to win and the system should be a Fermi liquid metal
with weak residual antiferromagnetic correlation. When
xt ≤ J , however, the outcome is much less clear because
the system would like to maintain the antiferromagnetic
correlation while allowing the hole to move as freely as
possible. Experimentally we know that Néel order is de-
stroyed with 3% hole doping, after which d-wave super-
conducting state emerges as the ground state up to 30%
doping. Exactly how and why superconductivity emerges
as the best compromise is the centerpiece of the high Tc



8

puzzle but we already see that the simple competition
between J and xt sets the correct scale x = J/t = 1

3
for the appearance of nontrivial ground states. We shall
focus our attention on the so-called underdoped region,
where this competition rages most fiercely. Indeed it is
known experimentally that the “normal” state above the
superconducting Tc behaves differently from any other
metallic state that we have known about up to now. Es-
sentially an energy gap appears in some properties and
not others. This region of the phase diagram is referred
to as the pseudogap region and is well documented exper-
imentally. We review below some of the key properties.

A. The pseudogap phenomenon in the normal state

As seen in Fig. 3 Knight shift measurement in the
YBCO 124 compound shows that while the spin sus-
ceptibility χs is almost temperature independent be-
tween 700 K and 300 K, as in an ordinary metal, it de-
creases below 300 K and by the time the Tc of 80 K is
reached, the system has lost 80% of the spin susceptibil-
ity (Curro et al., 1997). To emphasize the universality
of this phenomenon, we reproduce in Fig. 4 some old
data on YBCO and LSCO. Figure 4(a) shows the Knight
shift data from Alloul et al., 1989. We have subtracted
the orbital contribution, which is generally agreed to be
150 ppm (Takigawa et al., 1993), and drawn in the zero
line to highlight the spin contribution to the Knight shift
which is proportional to χs. The proportionality constant
is known, which allows us to draw in the Knight shift
which corresponds to the 2D square S = 1

2 Heisenberg
antiferromagnet with J = 0.13 eV (Ding and Makivic,
1991; Sandvik et al., 1997). The point of this exercise is
to show that in the underdoped region, the spin suscep-
tibility drops below that of the Heisenberg model at low
temperatures before the onset of superconductivity. This
trend continues even in the severely underdoped limit
(O0.53 to O0.41), showing that the χs reduction cannot
simply be understood as fluctuations towards the antifer-
romagnet. Note that the discrepancy is worse if J were
replaced by a smaller Jeff due to doping, since χs ∼ J−1

eff .
The data seen in this light strongly point to singlet for-
mation as the origin of the pseudogap seen in the uniform
spin susceptibility.

It is worth noting that the trend shown in Fig. 4(a)
is not so apparent if one looks at the measured spin sus-
ceptibility directly (Tranquada et al., 1988). This is be-
cause the van Vleck part of the spin susceptibility is dop-
ing dependent, due to the changing chain contribution.
This problem does not arise for LSCO, and in Fig. 4(b)
we show the uniform susceptibility data (Nakano et al.,
1994). The zero of the spin part is determined by com-
paring susceptibility measurements to 17O Knight shift
data (Ishida et al., 1991). Nakano et al., 1994 find an
excellent fit for the x = 0.15 sample (see Fig. 9 of this
reference) and determine the orbital contribution for this
sample to be χ0 ∼ 0.4 × 10−7 emu/g. This again allows

FIG. 6 The frequency dependent conductivity with electric
field parallel to the plane (σa(ω), top figure) and perpendic-
ular to the plane (σc(ω) bottom figure) in an underdoped
YBCO crystal. From Uchida, 1997.

us to plot the theoretical prediction for the Heisenberg
model. Just as for YBCO, χs for the underdoped sam-
ples (x =0.1 and 0.08) drops below that of the Heisenberg
model. In fact, the behavior of χs for the two systems is
remarkably similar, especially in the underdoped region.1

A second indication of the pseudogap comes from the
linear T coefficient of the specific heat, which shows a
marked decrease below room temperature (see Fig. 5).
Furthermore, the specific heat jump at Tc is greatly re-
duced with decreasing doping. It is apparent that the
spins are forming into singlets and the spin entropy is
gradually lost. On the other hand, as shown in Fig. 6
the frequency dependent conductivity behaves very dif-
ferently depending on whether the electric field is in the
ab plane (σab) or perpendicular to it (σc).

At low frequencies (below 500 cm−1) σab shows a
typical Drude-like behavior for a metal with a width

1 We note that a comparison of χs for YBCO and LSCO was made
by Millis and Monien, 1993. Their YBCO analysis is similar
to ours. However, for LSCO they find a rather different χ0 by
matching the measurement above 600 K to that of the Heisenberg
model. Consequently, their χs looks different for YBCO and
LSCO. We believe their procedure is not really justified.
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FIG. 7 (a–c) Spectra from underdoped Bi-2212 (Tc = 85K)
taken at different k points along the Fermi surface shown in
(d). Note the pullback of the spectrum from the Fermi sur-
face as determined by the Pt reference (red lines) for T > Tc.
(e) Temperature dependence of the leading-edge midpoints.
(from Norman et al., 1998) Bottom figure shows the temper-
ature T ∗ where the pseudogap determined from the leading
edge first appears plotted as a function of doping for Bi-2212
samples. Triangles are determined from data such as shown
in Fig. 7(a) and squares are lower bound estimates. Circles
show the energy gap ∆ measured at (0, π) at low tempera-
tures. (from Campuzano et al., 2003).

which decreases with temperature, but an area (spectral
weight) which is independent of temperature (Santander-
Syro et al., 2002). Thus there is no sign of the pseudogap
in the spectral weight. This is surprising because in other
examples where an energy gap appears in a metal, such
as the onset of charge or spin density waves, there is a
redistribution of the spectral weight from the Drude part
to higher frequencies. An important observation con-
cerning the spectral weight is that the integrated area
under the Drude peak is found to be proportional to x
(Orenstein et al., 1990; Cooper et al., 1993; Uchida et al.,
1991; Padilla et al., 2004). In the superconducting state
this weight collapses to form the delta function peak,
with the result that the superfluid density ns/m is also
proportional to x. It is as though only the doped holes
contribute to charge transport in the plane. In contrast,
angle-resolved photoemission shows a Fermi surface at
optimal doping very similar to that predicted by band
theory, with an area corresponding to (1 − x) electrons
(see Fig. 7(d)). With underdoping, this Fermi surface
is partially gapped in an unusual manner which we shall
next discuss.

In contrast to the metallic behavior of σab, it was dis-
covered by Homes et al., 1993 that below 300 K σc(ω) is
gradually reduced for frequencies below 500 cm−1 and a
deep hole is carved out of σc(ω) by the time Tc is reached.
This is clearly seen in the lower panel of Fig. 6.

Finally, angle-resolved photoemission shows that an
energy gap (in the form of a pulling back of the leading
edge of the electronic spectrum from the Fermi energy) is
observed near momentum (0, π). Note that the lineshape
is extremely broad and completely incoherent. The on-
set of superconductivity is marked by the appearance of
a small coherent peak at this gap edge (Fig. 7). The size
of the pull back of the leading edge is the same as the
energy gap of the superconducting state as measured by
the location of the coherence peak. As shown in Fig. 7
this gap energy increases with decreasing doping, while
the superconducting Tc decreases. This trend is also seen
in tunneling data.

It is possible to map out the Fermi surface by track-
ing the momentum of the minimum excitation energy
in the superconducting state for each momentum direc-
tion. Along the Fermi surface the energy gap does ex-
actly what is expected for a d-wave superconductor. It
is maximal near (0, π) and vanishes along the line con-
nection (0, 0) and (π, π) where the excitation is often re-
ferred to as nodal quasiparticles. Above Tc the gapless
region expands to cover a finite region near the nodal
point, beyond which the pseudogap gradually opens as
one moves towards (0, π). This unusual behavior is some-
times referred to as the Fermi arc (Loeser et al., 1996;
Marshall et al., 1996; Ding et al., 1996). It is worth
noting that unlike the anti-nodal direction (near (0, π))
the lineshape is relatively sharp along the nodal direction
even above Tc. From the width in momentum space, a
lifetime which is linear in temperature has been extracted
for a sample near optimal doping (Valla et al., 1999). A
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FIG. 8 (A) Doping dependence of the ARPES spectra at
(0, π) at T ≪ Tc for overdoped (OD), optimally doped (OP),
and underdoped (UD) materials labeled by their Tc’s. (B) The
spectral weight of the coherent peak in Fig. 8(a) normalized
to the background is plotted vs. doping x. From Feng et al.,
2000.

narrow lineshape in the nodel direction has also been ob-
served in LSCO (Yoshida et al., 2003) and in Na doped
Ca2CuO2Cl2 (Ronning et al., 2003). So the notion of rel-
atively well defined nodal excitations in the normal state
is most likely a universal feature.

As mentioned earlier, the onset of superconductivity is
marked by the appearance of a sharp coherence peak near
(0, π). The spectral weight of this peak is small and gets
even smaller with decreasing doping, as shown in Fig.
8(b). Note that this behavior is totally different from
conventional superconductors. There the quasiparticles
are well defined in the normal state and according to BCS
theory, the sharp peak pulls back from the Fermi energy
and opens an energy gap in the superconducting state.

In the past few years, low temperature STM data have
become available, mainly on Bi-2212 samples. STM pro-
vides a measurement of the local density of states ρ(E, r)
with atomic resolution. It is complementary to ARPES
in that it provides real space information but no direct
momentum space information. One important outcome
is that STM reveals spatial inhomogeneity of the Bi-2212
on roughly 50 to 100 Å length scale, which becomes more
and more significant with underdoping. As shown in
Fig. 9(f) spectra with different energy gaps are associated
with different patches and with progressively more under-
doping, patches with large gaps become more and more
pre-dominant. Since ARPES is measuring the same sur-
face, it becomes necessary to reinterpret the ARPES data
with inhomogeneity in mind. In particular, the decrease
of the weight of the coherent peak shown in Fig. 8(b)
may simply be due to a reduction of the fraction of the
sample which has sharp coherent peaks.

A second remarkable observation by STM is that the
low lying density of states (ρ(E, r) for E . 10 to 15

FIG. 9 From McElroy et al., 2004. STM images showing the
spatial distribution of energy gaps for a variety of samples
which are progressively more underdoped from A to E. Panel
F shows the average spectrum for a given energy gap.

meV) is remarkably homogeneous. This is clearly seen
in Fig. 9(f). It is reasonable to associate this low en-
ergy excitation with the quasiparticles near the nodes.
Indeed, the low lying quasiparticles exhibit interference
effects due to scattering by impurities, which is direct
evidence for their spatial coherence over long distances.
Then the combined STM and ARPES data suggest a kind
of phase separation in momentum space, i.e. the spectra
in the anti-nodal region (near 0, π) is highly inhomoge-
neous in space whereas the quasiparticles near the nodal
region are homogeneous and coherent. The nodal quasi-
particles must be extended and capable of averaging over
the spatial homogeneity, while the anti-nodal quasiparti-
cles appear more localized. In this picture the pseudogap
phenomenon mainly has to do with the anti-nodal region.

McElroy et al., 2004 argued that there is a limiting
spectrum (the broadest curve in Fig. 9(f)) which char-
acterizes the extreme underdoped region at zero temper-
ature. It has no coherent peak at all, but shows a re-
duction of spectral weight up to a very high energy of
100 to 200 meV. Very recently, Hanaguri et al., 2004
provided support of this point of view in their study of
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Na doped Ca2CuO2Cl2. In this material the apical oxy-
gen in the CuO4 cage is replaced by Cl and the crystal
cleaves easily. For Na doping ranging from x = 0.08 to
0.12, a tunneling spectrum very similar to the limiting
spectrum for Bi-2212 is observed. This material appears
free of the inhomogeneity which plagues the Bi-2212 sur-
face. ARPES experiments on these crystals are becoming
available (Ronning et al., 2003) and the combination of
STM and ARPES should yield much information on the
real and momentum space dependence of the electron
spectrum. There is much excitement concerning the dis-
covery of a static 4×4 pattern in this material, and their
relation to the incommensurate pattern seen in the vortex
core of Bi-2212 (Hoffman et al., 2002) and reported also
in the absence of magnetic field, albeit in a much weaker
form (Howland et al., 2003; Vershinin et al., 2004). How
this spatial modulation is related to the pseudogap spec-
trum is a topic of current debate.

In the literature, the pseudogap behavior is often asso-
ciated with anomalous behavior of the nuclear spin relax-
ation rate 1

T1
. In normal metals the nuclear spin relaxes

by exciting low energy particle-hole excitations, leading
to the Koringa behavior, i.e. 1

T1T
is temperature inde-

pendent. In high Tc materials, it is rather 1
T1

which is
temperature independent, and the enhanced relaxation
(relative to Koringa) as the temperature is reduced is
ascribed to antiferromagnetic spin fluctuations. It was
found that in underdoped YBCO, the nuclear spin relax-
ation rate at the copper site reaches a peak at a tem-
perature T ∗

1 and decreases rapidly below this tempera-
ture (Warren et al., 1989; H. Yasuoka, 1989; Takigawa
et al., 1991). The resistivity also shows a decrease below
T ∗

1 . In some literature T ∗
1 is referred to as the pseudo-

gap scale. However, we note that T ∗
1 is lower than the

energy scale we have been discussing so far, especially
compared with that for the uniform spin susceptibility
and the c-axis conductivity. Furthermore, the gap in 1

T1

is not universally observed in cuprates. It is not seen in
LSCO. In YBa2Cu4O8, which is naturally underdoped,
the gap in 1

T1T
is wiped out by 1% Zn doping, while the

Knight shift remains unaffected (Zheng et al., 2003). It
is known from neutron scattering that the low lying spin
excitations near (π, π) is sensitive to disorder. Since 1

T1

at the copper site is dominated by these fluctuations, it
is reasonable that 1

T1
is sensitive as well. In contrast,

the gap-like behavior we described thus far in a variety
of physical properties is universally observed across dif-
ferent families of cuprates (wherever data exist) and are
robust. Thus we prefer not to consider T ∗

1 as the pseu-
dogap temperature scale.

B. Neutron scattering, resonance and stripes

Neutron scattering provides a direct measure of the
spin excitation spectrum. Early work (see Kastner et al.,
1998) has shown that the long range Néel order gives
way to short range order with progressively shorter cor-

FIG. 10 From Matsuda et al., 2000. Plot of the incommen-
surability δ vs. hole concentration x. In the superconducting
state, the open circles denote the position of the fluctuating
spin density wave observed by neutron scattering. (Data from
Yamada et al., 1998.) In the insulator the spin density wave
becomes static at low temperatures and its orientation is ro-
tated by 45◦. The dashed line (δ = x) is the prediction of the
stripe model which assumes a fixed density of holes along the
stripe.

relation length with doping, so that at optimal doping,
the static spin correlation length is no more than 2 or
3 lattice spacings. Much of the early work was focused
on the La2−xSrxCuO4 family, because of the availability
of large single crystals. It was found that there is en-
hanced spin scattering at low energies, centered around
the incommensurate positions q0 =

(

±π
2 ,±δ

)

, (Cheong
et al., 1991). Yamada et al., 1998 found that δ in-
creases systematically with doping, as shown in Fig. 10.
Meanwhile it was noted that in the La2CuO4 family,
there is a marked suppression of Tc near x = 1

8 . This
suppression is particularly strong with Ba doping, and
Tc is completely destroyed if some Nd is substituted for
La, as in La1.6−xNd0.4SrxCuO4 for x = 1

8 . Tranquada
et al., 1995 discovered static spin density wave and charge
density wave order in this system, which onsets below
about 50 K. The period of the spin and charge density
waves are 8 and 4 lattice constants, respectively. The
static order is modeled by a stripe picture where the
holes are concentrated in period 4 charge stripes sep-
arated by spin ordered regions with anti-phase domain
walls. Recently, the same kind of stripe order was ob-
served in La1.875Ba0.125CuO4 (Fujita et al., 2004). Note
that in this model there is one hole per two sites along
the charge stripe. It is tempting to interpret the low
energy spin density wave observed in LSCO as a slowly
fluctuating form of stripe order, even though the associ-
ated charge order (presumably dynamical also) has not
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yet been seen. The most convincing argument for this
interpretation comes from the observation that over a
range of doping x = 0.06 to x = 0.125, the observed
incommensurability δ is given precisely by the stripe pic-
ture, i.e. δ = x, while δ saturates at approximately 1

8 for
x & 0.125 (see Fig.10). However, it must be noted that
in this interpretation, the charge stripe must be incom-
pressible, i.e. they behave as charge insulators. Upon
changing x, it is energetically more favorable to add or
remove stripes and change the average stripe spacing,
rather than changing the hole density on each stripe,
which is pinned at 1

4 filling. It is difficult to reconcile
this picture with the fact that LSCO is metallic and su-
perconducting in the same doping range. An alternative
interpretation of the incommensurate spin scattering is
that it is due to Fermi surface nesting (Littlewood et al.,
1993; Si et al., 1993; Tanamoto et al., 1993). However,
in this case the x dependence of δ requires some fine
tuning. Regardless of interpretation, it is clear that in
the LSCO family, there are low lying spin density wave
fluctuations which are almost ready to condense. At low
temperatures, static SDW order is stabilized by Zn dop-
ing (Kimura et al., 1999), near x = 1

8 (Wakimoto et al.,
1999), and in oxygen doped systems (Lee et al., 1999).
However, in the latter case, there is evidence from µSR
(Savici et al., 2002) that there may be microscopic phase
separations in this material (not too surprising in view of
the STM data on Bi-2202). It was also found that SDW
order is stabilized in the vicinity of vortex cores (Kitano
et al., 2000; Lake et al., 2001; Khaykovich et al., 2002).

The key question is then whether the fluctuating stripe
picture is special to the LSCO family or plays a signifi-
cant role in all the cuprates. Outside of the LSCO family,
the spin response is dominated by a narrow resonance at
(π, π). The resonance was first discovered at 41 meV
for optimally doped YBCO (Rossat-Mignod et al., 1991;
Mook et al., 1993). Careful subtraction of an acciden-
tally degenerate phonon line reveals that the resonance
appears only below Tc at optimal doping (Fong et al.,
1995). Now it is known that with underdoping, the reso-
nance moves down in energy and survives into the pseu-
dogap regime above Tc. The resonance moves smoothly
to almost zero energy at the edge of the transition to Néel
order in YBa2Cu3O6.35 (Buyers et al., 2004) and clearly
plays the role of a soft mode at that transition.

The resonance was interpreted as a spin triplet ex-
citon bound below 2∆0 (Fong et al., 1995). This idea
was elaborated upon by a number of RPA calculations
(Liu et al., 1995; Bulut and Scalapino, 1996; Norman,
2000; Norman, 2001; Kao et al., 2000; Onufrieva and
Pfeuty, 2002; Brinckmann and Lee, 1999; Brinckmann
and Lee, 2002; Abanov et al., 2002). An alternative pic-
ture making use of the particle-particle channel was pro-
posed (Demler and Zhang, 1995). However, as explained
by Tchernyshyov et al., 2001 and by Norman and Pepin,
2003, this theory predicts an anti-bound resonance above
the two-particle continuum, which is not in accord with
experiments.

FIG. 11 Neutron scattering from YBCO6.5. This sample has
Tc = 59 K and the experiment was performed at 6 K (from
Stock et al., 2004a). Top panel refers to in-phase fluctuations
between the bilayer which shows a resonance located at (π, π)
(q = 0 in the figure) and at energy 33 meV. Incommensurate
peaks disperse down from the resonance. Broad peaks also
disperse upward from the resonance, forming the hourglass
pattern. Solid line is the spin wave spectrum of the insu-
lating parent compound. Bottom panel denotes out-of-phase
fluctuations between the bilayers.

Further support of the triplet exciton idea comes from
the observation that incommensurate branches extend
below the resonance energy (Bourges et al., 2000). This
behavior is predicted by RPA-type theories (Norman,
2000; Onufrieva and Pfeuty, 2002; Brinckmann and Lee,
2002) in that the gap in the particle-hole continuum ex-
tends over a region near (π, π), where the resonance can
be formed. With further underdoping this incommensu-
rate branch extends to lower energies (see Fig. 11). Now
it becomes clear that the low energy incommensurate
scattering previously reported for underdoped YBCO
(Mook et al., 2000) is part of this downward dispersing
branch (Stock et al., 2004b; Pailhes et al., 2004).
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It should be noted that while the resonance is promi-
nent due to its sharpness, its spectral weight is actually
quite small, of order 2% of the total spin moment sum
rule for optimal doping and increasing somewhat with
underdoping. There is thus considerable controversy over
its significance in terms of its contribution to the electron
self-energy and towards pairing (see Norman and Pepin,
2003). The transfer of this spectral weight from above
to below Tc has been studied in detail by Stock et al.,
2004b. These authors emphasized that in the pseudo-
gap state above Tc in YBa2Cu3O6.5, the scattering below
the resonance is gapless and in fact increases in strength
with decreasing temperature. This is in contrast with the
sharp drop seen in 1

T1T
below 150 K. Either a gap open

up at very low energy (below 4 meV) or the (π, π) spins
fluctuating seen by neutrons are not the dominant contri-
bution to the nuclear spin relaxation, i.e. the latter may
be due to excitations which are smeared out in momen-
tum space and undetected by neutrons. We note that
a similar discrepancy between neutron scattering spec-
tral weight and 1

T1T
was noted for LSCO (Aeppli et al.,

1995). This reinforces our view that the decrease in 1
T1T

should not be considered a signature of the pseudogap.
We also note that an enhanced (π, π) scattering together
with singlet formation is just what is predicted by the
SU(2) theory in section XI.D.

Recently, neutron scattering has been extended to en-
ergies much above the resonance. It is found that very
broad features disperse upward from the resonance, re-
sulting in the “hourglass” structure shown in Fig. 11
which was first proposed by Bourges et al., 2000 (Hayden
et al., 2004; Stock et al., 2004b). Interestingly, there has
also been a significant evolution of the understanding of
the neutron scattering in the LSCO family. For a long
time it has been thought that the LSCO family does not
exhibit the resonance which shows up prominently below
Tc in YBCO and other compounds. However, neutron
scattering does show a broad peak around 50 meV which
is temperature independent. Tranquada et al., 2004 stud-
ied La1.875Ba0.125CuO4 which exhibits static charge and
spin stripes below 50 K, and a greatly suppressed Tc.
Their data also exhibits an “hourglass”-type dispersion,
remarkably similar to that of underdoped YBCO. In par-
ticular, the incommensurate scattering which was previ-
ously believed to be dispersionless now exhibits down-
ward dispersion (Fujita et al., 2004). The same phe-
nomenon is also seen in optimally doped La2−xSrxCuO4

(Christensen et al., 2004). It is remarkable that in these
materials known to have static or dynamic stripes, the in-
commensurate low energy excitations are not spin waves
emanating from

(

π
2 ± δ

)

as one might have expected, but
instead are connected to the peak at (π, π) in the hour-
glass fashion. Tranquada et al., 2004 fit the k integrated
intensity to a model of a two-leg ladder. It is not clear
how unique this fit is because one may expect high en-
ergy excitations to be relatively insensitive to details of
the model. What is emerging though is a picture of a
universal hourglass shaped spectrum which is common to

FIG. 12 Neutron scattering from La1.875Ba0.125CuO4 at 12 K
(> Tc) (from Tranquada et al., 2004). Right panel shows the
hourglass pattern of the excitation spectrum (cf Fig. 11).
Solid line is a fit to a two-leg ladder spin model. Left panel
shows the momentum integrated scattering intensity. Dashed
line is a Lorenztian fit to the rising intensity at the incommen-
surate positions. Sharp peak at 40 meV could be a phonon.

LSCO and YBCO families. The high energy excitations
appear common while the major difference seems to be in
the re-arrangement of spectral weight at low energy. In
LBCO, significant weight has been transferred to the low
energy incommensurate scattering, as shown in Fig. 12,
and is associated with stripes. In our view the univer-
sality supports the picture that all the cuprates share
the same short distance and high energy physics, which
include the pseudogap behavior. Stripe formation is a
competing state which becomes prominent in the LSCO
family, especially near x = 1

8 , and may dominate the
low energy and low temperature (below 50 K) physics.
There is a school of thought which holds the opposite
view (see Carlson et al., 2003), that fluctuating stripes
are responsible for the pseudogap behavior and the ap-
pearance of superconductivity. From this point of view
the same data have been interpreted as an indication that
stripe fluctuations are also important in the YBCO fam-
ily (Tranquada et al., 2004). Clearly, this is a topic of
much current debate.

C. Quasiparticles in the superconducting state

In contrast with the anomalous properties of the nor-
mal state, the low temperature properties of the super-
conductor seem relatively normal. There are two ma-
jor differences with conventional BCS superconductors,
however. First, due to the proximity to the Mott in-
sulator, the superfluid density of the superconductor is
small, and vanishes with decreasing hole concentration.
Second, because the pairing is d-wave, the gap vanishes
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on four points on the Fermi surface (called gap nodes), so
that the quasiparticle excitations are gapless and affect
the physical properties even at the lowest temperatures.
We will focus on these nodal quasiparticles in this sub-
section.

The nodal quasiparticles clearly contribute to the ther-
mal dynamical quantities such as the specific heat. Be-
cause their density of states vanish linearly in energy,
they give rise to a T 2 term which dominates the low tem-
perature specific heat. In practice, disorder rounds off
the linear density of states, giving instead an αT + βT 3

behavior. An interesting effect in the presence of a mag-
netic field was proposed by Volovik, 1993. He argued that
in the presence of a vector potential or superfluid flow,
the quasiparticle dispersion E(k) =

√

(ǫk − µ)2 + ∆2
k is

shifted by

EA(k) = E(k) +

(

1

2e
∇θ − A

)

· jk (3)

where jk is the current carried by “normal state” quasi-
particles with momentum k and is usually taken to be
−e∂ǫk∂k

. Note that since the BCS quasiparticle is a super-
position of a particle and a hole, the charge is not a good
quantum number. However, the particle component with
momentum k and the hole component with momentum
−k each carry the same electrical current jk = −e∂ǫk∂k

and it makes sense to consider this to be the current car-
ried by the quasiparticle. Note that jk/e is very different

from the group velocity ∂E(k)
∂k

.
In a magnetic field which exceeds Hc1, vortices enter

the sample. The superfluid flow ∇θ ∼ 2π
r where r is the

distance to the vortex core. On average, 1
2 |∇θ| ≈ π/R

where R = (φ0/H)1/2 is the average spacing between
vortices and φ0 = hc/2e is the flux quantum. Volovik
then predicts a shift of the quasiparticle spectra by ≈
evF (H/φ0)

1/2 which in turn gives a contribution to the

specific heat proportional to
√
H. This contribution has

been observed experimentally (Moler et al., 1994).
The quasiparticles contribute to the low temperature

transport properties as well. Lee, 1993 considered the
frequency-dependent conductivity σ(ω) due to quasipar-
ticle excitations. In the low temperature limit, he found
that the low frequency limit of the conductivity is uni-
versal in the sense that it does not depend on impurity
strength, but only on the ratio vF /v∆ where v∆ is the
velocity of the nodal quasiparticle in the direction of the

maximum gap ∆0, i.e. σ(ω → 0) = e2πvF

hv∆
, if vF ≫ v∆.

This result was derived within the self-consistent t-matrix
approximation and can easily be understood as follows.
In the presence of impurity scattering, the density of
states at zero energy becomes finite. At the same time,
the scattering rate is proportional to the self-consistent
density of states. Since the conductivity is proportional
to the density of states and inversely to the scattering
rate, the impurity dependence cancels.

The frequency-dependent σ(ω) is difficult to measure
and it was realized that thermal conductivity κ may pro-

FIG. 13 Figure from Sutherland et al., 2003. Doping de-
pendence of the superconducting gap ∆0 obtained from the
quasiparticle velocity v∆ using eq. (4) (filled symbols). Here
we assume ∆ = ∆0 cos 2φ, so that ∆0 = ~kF v∆/2, and we
plot data for YBCO alongside Bi-2212 (Chiao et al., 2000)
and Tl-2201 (Proust et al., 2002). For comparison, a BCS
gap of the form ∆BCS = 2.14kBTc is also plotted. The value
of the energy gap in Bi-2212, as determined by ARPES, is
shown as measured in the superconducting state (Campuzano
et al., 1999) and the normal state (Norman et al., 1998) (open
symbols). The thick dashed line is a guide to the eye.

vide a better test of the theory because according to the
Wiedemann-Franz law, κ/T is proportional to the con-
ductivity and should be universal. Unlike σ(ω), thermal
conductivity does not have a superfluid contribution and
can be measured at DC. More detailed considerations
by Durst and Lee, 2000 show that σ(ω) has two non-
universal corrections: one due to backscattering effects,
which distinguishes the transport rate from the impurity
rate which enters the density of state; and a second one
due to Fermi liquid corrections. On the other hand, these
corrections do not exist for thermal conductivity. Con-
sequently, the Wiedemann-Franz law is violated, but the
thermal conductivity per layer is truly universal and is
given by

κ

T
=

k2
B

3~c

(

vF
v∆

+
v∆
vF

)

(4)

We note that this result is obtained within the self-
consistent t-matrix approximation which is expected to
break down if the impurity scattering is strong, leading
to localization effects. The localization of nodal quasi-
particles is a complex subject. Due to particle-hole mix-
ing in the superconductor, zero energy is a special point
and quasiparticle localization belongs to a different uni-
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versality class (Senthil and Fisher, 1999) from the stan-
dard ones. Senthil and Fisher also pointed out that since
quasiparticles carry well defined spin, the Wiedemann-
Franz law for spin conductivity should hold and spin
conductivity should be universal. We note that Durst
and Lee, 2000 argued that Fermi liquid corrections enter
the spin conductivity, but we now believe their argument
on this point is faulty.

Thermal conductivity has been measured to mK tem-
peratures in a variety of YBCO and BCCSO samples.
The universal nature of κ/T has been demonstrated by
studying samples with different Zn doping and showing
that κ/T extrapolates to the same constant at low tem-
peratures (Taillefer et al., 1997) A magnetic field depen-
dence analogous to the Volovik effect for the specific heat
has also been observed (Chiao et al., 2000) Using eq. (4),
the experimental data can be used to extract the ratio
vF /v∆. In the case of BCCSO where photoemission data
for vF and the energy gap is available, the extracted
ratio vF /v∆ is in excellent agreement with ARPES re-
sults, assuming a simple d-wave extrapolation of the en-
ergy gap from the node to the maximum gap ∆0. In
particular, the trend that ∆0 increases with decreasing
doping x is directly observed as a decrease of vF /v∆ ex-
tracted from κ/T . A summary of the data is shown in
Fig. 13 (Sutherland et al., 2003). Results of such sys-
tematic studies strongly support the notion that in clean
samples the nodal quasiparticles behave exactly as one
expects for well defined quasiparticles in a d-wave super-
conductor. We should add that in LSCO the ratio vF /v∆
extracted from κ/T seems anomalously small, suggesting
that strong disorder may be playing a role here to inval-
idate eq. (4).

Lee and Wen, 1997 pointed out that the nodal quasi-
particles also manifest themselves in the linear T depen-
dence of the superfluid density. They showed that by
treating them as well defined quasiparticles in the sense
of Landau, a general expression of the linear T coefficient
can be written down, independent of the microscopic ori-
gin of the superconductivity. We have

ns(T )

m
=
ns(0)

m
− 2 ln 2

π
α2

(

vF
v∆

)

T (5)

The only assumption made is that the quasiparticles
carry an electric current

j(k) = −eαvF (6)

where α is a phenomenological Landau parameter which
was left out in the original Lee-Wen paper but added in
by Millis et al., 1998. While the linear T dependence
is well known in the conventional BCS theory of a d-
wave superconductor, the same theory gives ns/m of or-
der unity. It is therefore useful to write ns in this phe-
nomenological way, and choose ns(T = 0) to be of or-
der x as we discussed in section III.A. The key question
raised by eq. (6) is whether α depends on x or not. There
is experimental evidence that the linear T coefficient of

FIG. 14 The London penetration depth measured in a series
of YBCO film with different oxygen concentration and Tc’s.
The plot shows λ−2 plotted vs. temperature. Data provided
by T.R. Lemberger and published in Boyce et al., 2000.

ns(T )/m which is directly related to London penetration
depth measurements, is almost independent of x for x
less than optimal doping. Figure 14 shows data obtained
for a series of thin films of YBCO (Boyce et al., 2000;
Stajis et al., 2003) The thin film data are in full agree-
ment with earlier but less extensive data on bulk crystals
(Bonn et al., 1996). However, we note that very recent
data on severely underdoped YBCO crystal (Tc < 20K)

show that d(ns/m)
dT is roughly linear in Tc (Brown et al.,

2004).

Since vF /v∆ is known to go to a constant for small x
(and, indeed, decreases with decreasing x), the indepen-
dence of the linear T term in ns/m on x means that α
approaches a constant for small x. By combining with
vF /v∆ extrapolated from thermal conductivity, α2 has
been estimated to be 0.5 (see Ioffe and Millis, 2002a for
an excellent summary). This is an important result be-
cause it states that despite the proximity to the Mott
insulator, the nodal quasiparticles carry a current which
is similar to that of the tight-binding Fermi liquid band.
We note that the simplest microscopic theory which gives
correctly ns(T = 0) to be proportional to x is the slave-
boson mean-field theory to be discussed in section IX.B.
That theory predicts α to be proportional to x and the
resulting x2T term is in strong disagreement with exper-
iment. The search for a microscopic theory which gives
correctly both ns(T = 0) and the linear T term is one of
the open problems that faces us today.

The unusual combination of a small ns(T = 0) and a
large linear T reduction due to quasiparticles has a num-
ber of immediate consequences. Simply by extrapolating
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the linear T dependence, we can conclude that ns van-
ishes at the temperature scale proportional to x and Tc
must be bound by it. Furthermore, at Tc the number of
quasiparticles which are thermally excited is still small,
and not sufficient to close the gap as in standard BCS
theory. Thus the transition must not be thought of as
a gap-closing transition, and the effect of an energy gap
must persist considerably above Tc. This can potentially
explain at least part of the pseudogap phenomenon. As
we shall see in the next section, when combined with
phase fluctuations, the quasiparticle excitations explain
the magnitude of Tc in the underdoped cuprates and ac-
count for a wide phase fluctuation region above Tc, but
not the full pseudogap phenomenon.

The disconnect between the gap energy ∆0 and kTc
introduces two length scales, ξ0 = ~vF /∆0 and R2 =
~vF /kTc, where kTc is proportional to x. Around a vor-
tex, the supercurrent induces a population of quasipar-
ticles by the Volovik effect, and in analogy to eq. (5)
causes a reduction in ns. Lee and Wen, 1997 show that
at a radius of R2 the circulating supercurrent exceeds the
critical current and inside that radius the superconductor
looses its phase stiffness. They suggest that the system
becomes normal once the large core radius R2 overlaps
and Hc2 ≈ φ0/R

2
2, in contrast with H∗

c2 ≈ φ0/ξ
2
0 as in

conventional BCS theory. Note that Hc2 decreases while
H∗
c2 increases with underdoping. Experimentally the re-

sistive transition to the normal state indeed takes place
at an Hc2 which decreases with decreasing Tc. However,
there are signs that vortices survive above this magnetic
field up to H∗

c2, as will be discussed in section. V.B.

Finally, we comment on suggestions in the literature
that classical fluctuations of the superconducting phase
can lead to a linear reduction of ns at low temperatures
(Carlson et al., 1999). Just as in the case of lattice dis-
placements, such fluctuations must be treated quantum
mechanically at low temperatures (as phonons in that
case) to avoid the 3kB low temperature limit for the
specific heat. In the case of phonons, the characteris-
tic temperature scale is the phonon frequency. In the
case of the superconductor, the phase mode is pushed
up to the plasma frequency by long-range Coulomb in-
teraction. Nevertheless, due to the coupling to the
low-lying particle-hole excitations, the cross-over from
classical to quantum fluctuations must be treated with
some care. Paramekanti et al., 2000, 2002 and Benfatto
et al., 2001 have calculated that the cross-over happens
at quite a high temperature scale and we believe the low-
temperature linear reduction of ns is entirely due to ther-
mal excitations of quasiparticles.

IV. INTRODUCTION TO RVB AND A SIMPLE

EXPLANATION OF THE PSEUDOGAP

We explained in the last section that the Néel spin or-
der is incompatible with hole hopping. The question is
whether there is another arrangement of the spin which

achieves a better compromise between exchange energy
and the kinetic energy of the hole. For S = 1

2 it ap-
pears possible to take advantage of the special stability
of the singlet state. The ground state of two spins S
coupled with antiferromagnetic Heisenberg exchange is a
spin singlet with energy −S(S + 1)J . Compared with
the classical large spin limit, we see that quantum me-
chanics provides an additional stability in the term unity
in (S + 1) and this contribution is strongest for S = 1

2 .
Let us consider a one-dimensional spin chain. A Néel
ground state with Sz = ± 1

2 gives an energy of − 1
4J per

site. On the other hand, a simple trial wavefunction of
singlet dimers already gives a lower energy of − 3

8J per
site. This trial wavefunction breaks translational sym-
metry and the exact ground state can be considered to
be a linear superposition of singlet pairs which are not
limited to nearest neighbors, resulting in a ground state
energy of 0.443 J. In a square and cubic lattice the Néel
energy is − 1

2J and − 3
4J per site, respectively, while the

dimer variational energy stays at − 3
8J . It is clear that in

a 3D cubic lattice, the Néel state is a far superior start-
ing point, and in two dimensions the singlet state may
present a serious competition. Historically, the notion of
a linear superposition of spin singlet pairs spanning dif-
ferent ranges, called the resonating valence bond (RVB),
was introduced by Anderson, 1973 and Fazekas and An-
derson, 1974 as a possible ground state for the S = 1

2
antiferromagnetic Heisenberg model on a triangular lat-
tice. The triangular lattice is of special interest because
an Ising-like ordering of the spins is frustrated. Subse-
quently, it was decided that the ground state forms a√

3×
√

3 superlattice where the moments lie on the same
plane and form 120◦ angles between neighboring sites
(Huse and Elser, 1988). Up to now there is no known
spin Hamiltonian with full S(U2) spin rotational sym-
metry outside of one dimension which is known to have
an RVB ground state. However, see section X.H for ex-
amples which either violate spin rotation or which permit
charge fluctuations.

The Néel state has long range order of the stag-
gered magnetization and an infinite degeneracy of ground
states leading to Goldstone modes which are magnons.
In contrast, the RVB state is a unique singlet ground
state with either short range or power law decay of an-
tiferromagnetic order. This state of affairs is sometimes
referred to as a spin liquid. However, the term spin liq-
uid is often used more generally to denote any kind of
short range or power law decay, i.e. the absence of long
range order, even when the unit cell is doubled, either
spontaneously or explicitly. For example, the ladder sys-
tem has two states per unit cell and in the limit of strong
coupling across the rung, the ground state is naturally
a spin singlet with short range antiferromagnetic order.
Another example is the spontaneously dimerized ground
state for the frustrated spin chains when the next-nearest
neighbors exchange J ′ is sufficiently large. This kind of
ground state is more properly called a valence band solid
and is smoothly connected to spin singlet ground states
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(a) (b)

FIG. 15 A cartoon representation of the RVB liquid or sin-
glets. Solid bond represents a spin singlet configuration and
circle represents a vacancy. In (b) an electron is removed from
the plane in photoemission or c-axis conductivity experiment.
This necessitates the breaking of a singlet.

often observed for systems with an even number of elec-
trons per unit cell, the extreme example being Si. Thus
we think it is better to reserve the term spin liquid to
cases where there is an odd number of electrons per unit
cell.

Soon after the discovery of high Tc superconductors,
Anderson, 1987 revived the RVB idea and proposed that
with the introduction of holes the Néel state is destroyed
and the spins form a superposition of singlets. The va-
cancy can hop in the background of what he envisioned
as a liquid of singlets and a better compromise between
the hole kinetic energy and the spin exchange energy
may be achieved. Many elaborations of this idea fol-
lowed, but here we argue that the basic physical picture
described above gives a simple account of the pseudo-
gap phenomenon. The singlet formation explains the de-
crease of the uniform spin susceptibility and the reduc-
tion of the specific heat γ. The vacancies are responsi-
ble for transport in the plane. The conductivity spectral
weight in the ab plane is given by the hole concentration x
and is unaffected by the singlet formation. On the other
hand, for c-axis conductivity, an electron is transported
between planes. Since an electron carries spin 1

2 , it is
necessary to break a singlet. This explains the gap for-
mation in σc(ω) and the energy scale of this gap should
be correlated with that of the uniform susceptibility. In
photoemission, an electron leaves the solid and reaches
the detector, the pull back of the leading edge simply
reflects the energy cost to break a singlet.

A second concept associated with the RVB idea is the
notion of spinons and holons, and spin charge separa-
tions. Anderson postulated that the spin excitations in
an RVB state are S = 1

2 fermions which he called spinons.
This is in contrast with excitations in a Néel state which
are S = 1 magnons or S = 0 gapped singlet excitations.

Initially the spinons are suggested to form a Fermi sur-
face, with Fermi volume equal to that of 1 − x fermions.
Later it was proposed that the Fermi surface is gapped
to form d-wave type structure, with maximum gap near
(0, π). This k dependence of the energy gap is needed to

explain the momentum dependence observed in photoe-
mission.

The concept of spinons is a familiar one in one-
dimensional spin chains where they are well understood
to be domain walls. In two dimensions the concept is a
novel one which does not involve domain walls. Instead,
a rough physical picture is as follows. If we assume a
background of short range singlet bonds, forming the so-
called short-range RVB state, a cartoon of the spinon is
shown in Fig. 15. If the singlet bonds are “liquid,” two
S = 1

2 formed by breaking a single bond can drift apart,
with the liquid of singlet bonds filling in the space be-
tween them. They behave as free particles and are called
spinons. The concept of holons follows naturally (Kivel-
son et al., 1987) as the vacancy left over by removing a
spinon. A holon carries charge e but no spin.

V. PHASE FLUCTUATION VS. COMPETING ORDER

One of the hallmarks of doping a Mott insulator is that
the spectral weight of the frequency dependent conduc-
tivity σ(ω) should go to zero in the limit of small doping.
Indeed, σ(ω) shows a Drude-like peak at low frequen-
cies and its area was shown to be proportional to the
hole concentration (Orenstein et al., 1990; Cooper et al.,
1993; Uchida et al., 1991; Padilla et al., 2004). Results
from exact diagonalization of small samples are consis-
tent with a Drude weight of order xt (Dagotto et al.,
1992). When the metal becomes superconducting, all the
spectral weight collapses into a δ-function if the sample
is in the clean limit. The London penetration depth for
field penetration perpendicular to the ab plane is given
by

λ−2
⊥ =

4πn3d
s e

2

m∗c2
, (7)

where n3d
s /m

∗ is the spectral weight and n3d
s is the 3d

superfluid charge density. As an example, if we take λ⊥ =
1600 Angstrom for YBa2Cu3O6.9, and take n3d

s to be
the hole density, we find from eq. (7) m∗ ≈ 2me which
corresponds to an effective hopping t∗ = 1

3 t. The notion

that λ−2
⊥ is proportional to xt is also predicted by slave-

boson theory, as will be discussed in section IX.B.
Uemura et al., 1989 discovered empirically a linear re-

lation between λ−2
⊥ measured by µSR and the supercon-

ducting Tc. He interpreted this relation as indicative of
Bose condensation of holes, since in two dimensions the
Bose-Einstein condensation temeprature is proportional
to the areal density. Since λ−2

⊥ is proportional to the 3d
density, in principle, some adjustment for the layer spac-
ing should be made. Furthermore, λ−2

⊥ is highly sensitive
to disorder, and it is now known that in many systems,
not all the spectral weight collapses to the δ-function,
i.e. some residual normal conductivity is left, presum-
ably due to inhomogeneity (Basov et al., 1994; Corson
et al., 2000). Thus the Uemura plot should be viewed as
providing a qualitative trend, rather than a quantitative
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FIG. 16 The phase stiffness Tθ measured at different frequen-
cies (Tθ = ~

2ns/m∗). The solid dots give the bare stiffness
obtained by extrapolation to infinite frequency. Tc of this
sample is 74 K.This is where the phase stiffness measured at
low frequency would vanish according to BKT theory. Note
the linear decrease of the bare stiffness with T which extends
considerably above Tc. This decrease is due to thermal ex-
citations of nodal quasiparticles. Inset shows the time scale
of the phase fluctuation. Hatched region denotes ~

τ
= kTc.

From Corson et al., 1999.

Tθ N=3

N=2

N=1

TT T Tc1 c2 c3

T  =8T/θ π

FIG. 17 Schematic plot of the phase stiffness Tθ = ~
2ns/m∗

for superconductors with N coupled layers. The linear de-
crease with temperature is due to the thermal excitation of
quasiparticles. The transition temperatures TcN , N = 1, 2, 3
are estimated by the interception with the BKT line Tθ =
8T/π.

relation. Nevertheless, it is important in that it draws a
relationship between Tc and carrier density.

A. A theory of Tc

The next important step was taken by Emery and
Kivelson, 1995, who noted that it is the superfluid density
which controls the phase stiffness of the superconducting
order parameter ∆ = |∆|eθ, i.e. the energy density cost

of a phase twist is

H =
1

2
K0
s (∇θ)2 (8)

Here the superscript on K0
s denotes the bare stiffness

on a short distance scale. For two-dimensional layers
the stiffness Ks = ~

2(ns/2)/2m∗, i.e. the kinetic energy
of Cooper pairs. The spectral weight ns/m

∗ and the
stiffness are given by

Ks =
1

4

~
2ns
m∗ =

1

4

~
2n3d

s c0
m∗ (9)

where c0 is the spacing between the layers and using Eqs.
(7) and (9), can be directly measured in terms of λ⊥. If
K0
s is small due to the proximity to the Mott insulator,

then phase fluctuation is strong and the Tc in the under-
doped cuprates may be governed by phase fluctuations.
The theory of phase fluctuations in two dimensions is
well understood due to the work of Berezinski, 1971 and
Kosterlitz and Thouless, 1973. The BKT transition is
described by the thermal unbinding of vortex anti-vortex
pairs. The energy of a single vortex is given by

Evortex = Ec + 2πK0
s ln(L/ξ0) (10)

where L is the sample size, ξ0 is the BCS coherence length
which serves as a short distance cut-off, and Ec is the core
energy. For vortex anti-vortex pairs, the sample size L is
replaced by the separation of the pairs. The vortex un-
binding transition is driven by the balance between this
energy and the entropy which also scales logarithmically
with the vortex separation. At Tc, Ks is predicted to
jump between zero and a finite value Ks(Tc) given by a
universal relation

kTc = (π/2)Ks(Tc) =
π

8

~
2ns
m∗ (11)

(Nelson and Kosterlitz, 1977). The precise value of Tc
depends on Ks(T = 0) and weakly on the core energy. In
the limit of very large core energy, kTc = 1.5K0

s , whereas
for an XY model on a square lattice Ec is basically zero
if ξ0 in eq. (10) is replaced by the lattice constant and
Tc = 0.95K0

s . Thus K0
s should give a reasonable guide to

Tc in the phase fluctuation scenario. Emery and Kivel-
son estimated K0

s from λ⊥ data for a variety of materials
and concluded that K0

s is indeed on the scale of Tc. How-
ever, they assumed that each layer is fluctuating indepen-
dently, even for systems with strongly Josephson coupled
bi-layers. Subsequent work using microwave conductivity
has confirmed the BKT nature of the phase transition,
but concluded that in BSCCO, it is the bi-layer which
should be considered as a unit, i.e. the superconducting
phase is strongly correlated between the two layers of a
bi-layer (Corson et al., 1999). This increases the K0

s es-
timate by a factor of 2. For example, for λ⊥ = 1600
Angstroms, Emery and Kivelson quoted K0

s to be 145 K
for YBCO. This should really be replaced by 290 K, a
factor of 3 higher than Tc.
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We can get around this difficulty by realizing that Ks

is reduced by thermal excitation of quasiparticles and
the bare K0

s in the BKT theory should include this ef-
fect. In Section III.B we showed empirical evidence that
the linear T coefficient of ns(T ) is relatively indepen-
dent of x. The bare K0

s is measured as the high fre-
quency limit in a microwave experiment (Corson et al.,
1999). As seen in Fig. 16, the bare phase stiffness
T 0
θ ≡ ~

2n0
s/m

∗ continues to decrease linearly with T
above Tc = 74 K. Given the universal relation eq. (11),
an estimate of Tc can be obtained by the interception of
the straight line Tθ = (8/π)kT with the bare stiffness.
This yields an estimate of the BKT transition tempera-
ture of ≈ 60 K. The somewhat higher actual Tc of 74 K
is due to three dimensional ordering effects between bi-
layers. Now we can extend this procedure to a multi-
layer superconductor. In Fig.17 we show schematically
T 0
θ = ~

2n0
s/m

∗ plot of single-layer, bi-layer and tri-layer
systems (N = 1, 2, 3) assuming that the layers are iden-
tical. We expect n0

s(T = 0), which is the areal density
per N layers, to scale linearly with N . On the other
hand, the linear T slope also scales with N , because the
number of thermally excited quasiparticles per area scale
with N . The extrapolated “Tc’s” are therefore the same.
Now we may estimate Tc(N) from the interception of the
line T 0

θ = (8/π)kT . We see that Tc increases monotoni-
cally with N , but much slower than linear. This trend is
in agreement with what is seen experimentally, notably
in the Tl and Hg compounds. As N increases further,
the assumption that the layers are identical breaks down
as the charge density of each layer begins to differ. We
therefore conclude that the combination of phase fluctua-
tions and the thermal excitation of d-wave quasiparticles
can account for Tc in underdoped cuprates, including the
qualitative trend as a function of the number of layers
within a unit cell.

This theory of Tc receives confirmation from measure-
ment of the oxygen isotope effect of Tc and on the pen-
etration depth. It is found that there is substantial iso-
tope effect on the ns/m

∗ for both underdoped and op-
timally doped YBCO films. On the other hand, there
is significant isotope effect on Tc in underdoped YBCO
(Khasanov et al., 2003), but no effect on optimally doped
samples (Khasanov et al., 2004). Setting aside the origin
of the isotope effect on n/m∗, the remarkable doping de-
pendence of the isotope effect on Tc is readily explained
in our theory, since Tc is controlled by ns/m

∗ in the un-
derdoped but not in the overdoped region. In fact, a
more detailed examination of the data for two under-
doped samples show that ns(T )/m∗ appears to be shifted
down by a constant when O16 is replaced by O18. This
suggests that there is no isotope effect on the tempera-
ture dependent term in eq. 5 which depends on vF . This
is consistent with direct ARPES measurements (Gweon
et al., 2004). Thus the data is consistent with an iso-
tope effect only on the zero temperature spectral weight
ns(0)/m∗. The latter is a complicated many body prop-
erty of the ground state which is not simply related to the

effective mass of the quasiparticles in the naive manner.

B. Cheap vortices and the Nernst effect

Emery and Kivelson, 1995, also suggested that the no-
tion of strong phase fluctuations may provide an explana-
tion of the pseudogap phenomenon. They proposed that
the pairing amplitude is formed at a temperature TMF

which is much higher than Tc and the region between
TMF and Tc is characterized by robust pairing ampli-
tude and energy gap.

This leaves open the microscopic origin of the robust
pairing amplitude and high TMF but we shall argue that
even as phenomenology, phase fluctuations alone cannot
be the full explanation of the pseudogap. Since Tc is
driven by the unbinding of vortices, let us examine the
vortex energy more carefully. As an extreme example, let
us suppose TMF is described by the standard BCS the-
ory. The vortex core energy in BCS theory is estimated

as Ec ≈ ∆2

0

EF a2 ξ
2
0 where ∆0 is the energy gap, ∆2

0/(EF a
2)

is the condensation energy per area, and ξ20 is the core
size. Using ξo = vF

∆0
, we conclude that Ec ≈ EF in BCS

theory, an enormous energy compared with Tc. Even if
we assume Ec to be of order of the exchange energy J or
the mean field energy TMF , it is still much larger than
Tc. We already note that in BKT theory, Tc is relatively
insensitive to the core energy. Now we emphasize that
despite the insensitivity of Tc to Ec, the physical proper-
ties above Tc are very sensitive to the core energy. This is
because BKT theory is an asymptotic long-distance the-
ory which becomes simple in the limit of dilute vortex or

large Ec. The typical vortex spacing which is n
− 1

2

v where
the vortex density nv goes as e−Ec/kT . Vortex unbinding
happens on a renormalized length scale, i.e. the typical
spacing between free vortices, which is much larger than

n
− 1

2

V . As a result, the physics of the system above Tc
is very sensitive to Ec. If Ec ≫ kTc, vortices are di-
lute and the system will behave like a superconductor
for all measurements performed on a reasonable spatial
or temporal scale. However, except for the close vicin-
ity of Tc, the pseudogap region is not characterized by
strong superconducting fluctuations, but rather behaves
like a metal. Thus a large vortex core energy can be
ruled out. The core energy must be small, of the order
Tc, i.e. it is comparable to the second term in eq. (10).
The notion of “cheap” vortices has two important con-
sequences. First, it is clear that the amplitude fluctu-
ation and phase fluctuation are controlled by the same
energy scale, kTc. This is because the vortex core is a
region where the pairing amplitude vanishes and, in ad-
dition, the phase θ winds by 2π. If we do away with the
phase winding and retain the amplitude fluctuation, this
should cost even less energy. Thus the temperature scale
where vortices proliferate is also the scale where ampli-
tude fluctuation proliferates. Then the notion of strong
phase fluctuations is applicable only on a temperature
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scale of say 2 Tc and this scale must become small as x
becomes small. Thus phase fluctuation cannot explain a
pseudogap phenomenon which extends to finite T in the
small x limit.

Second, the notion of a cheap vortex means that there
is a non-superconducting state which is very close in en-
ergy. In an ordinary superconductor, the core can be
thought of as a patch of normal metals with a finite den-
sity of states at the Fermi level. The reason the core
energy is large is because the energy gained by opening
up an energy gap is lost. In underdoped and in slightly
overdoped cuprates there is experimental evidence from
STM tunneling into the core that the energy gap is re-
tained inside the core (Maggio-Aprile et al., 1995; Pan
et al., 2000). The large peak in the density state pre-
dicted for d-wave BCS theory (Wang and MacDonald,
1995) is simply not there. The nature of the state in
the core, which one can think of as a competing state to
the superconductor, is highly nontrivial and is a topic of
current debate.

The above discussion is summarized by a schematic
phase diagram shown in Fig. 18. A temperature scale
of about 2 Tc in the underdoped region marks the range
of phase fluctuation. This is the region where the pic-
ture envisioned by Emery and Kivelson, 1995 may be
valid. Here the phase is locally well defined and vortices
are identifiable objects. Indeed, this is the region where a
large Nernst effect has been measured (Wang et al., 2002,
2003, 2001). The Nernst effect is the voltage transverse
to a thermal gradient in the presence of a magnetic field
perpendicular to the plane. It is exquisitely sensitive to
the presence of vortices, because vortices drift along the
thermal gradient and produce the phase winding which
supports a transverse voltage by the Josephson effect.
A large Nernst signal has been taken to be strong evi-
dence for the presence of well-defined vortices above Tc
(Wang et al., 2002, 2003, 2001). At higher temperatures,
vortices overlap and the Nernst signal smoothly crosses
over to that describable by Gaussian fluctuation of super-
conducting amplitude and phase (Ussishkin et al., 2002).
Very recently, the identification of the Nernst region with
fluctuating superconductivity was confirmed by the ob-
servation of diamagnetic fluctuations which persist up to
the same temperature as the onset of the Nernst signal
(Wang et al., 2004).

It remains necessary to explain why the resistivity
looks metallic-like in this temperature range and does
not show the strong magnetic field dependence one or-
dinarily expects for flux flow resistivity in the presence
of thermally excited vortices. The explanation may lie in
the breakdown of the standard Bardeen-Stephen model of
flux flow resistivity. Here the vortices have anomalously
low dissipation because in contrast to BCS superconduc-
tors, there are no states inside the core to dissipate. Ioffe
and Millis, 2002b proposed that the vortices are fast and
yield a large flux flow resistivity. In the two fluid model,
the conductivity is the sum of the flux flow conductivity
(the superfluid part) and the quasiparticle conductivity
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FIG. 18 Schematic phase diagram showing the phase fluc-
tuation regime where the Nernst effect is large. Note that
this regime is a small part of the pseudogap region for small
doping.

(the normal part). The small flux flow conductivity is
quickly shorted out by the nodal quasiparticle contribu-
tions, and the system behaves like a metal, but with car-
riers only in the nodal region. This is also reminiscent
of the Fermi arc picture. Unfortunately, a more detailed
modeling requires an understanding of the state inside
the large core radius R2 introduced in section III.C which
is not available up to now.

Instead of generating vortices thermally, one can also
generate them by applying a magnetic field. Wang et al.,
2003 have applied fields up to 45 T and found evidence
that the Nernst signal remains large beyond that field
in the underdoped samples. They estimate that the
field needed to suppress the Nernst signal to be of order
H∗
c2 ≈ φ0/ξ

2
0 where φ0 ≈ ~vF /∆0. This is the core size

consistent with what is reported by STM tunneling ex-
periments. At the same time, the field needed for a resis-
tive transition is much lower. Recently Sutherland et al.,
2004 showed that in YBCO6.35 superconductivity is de-
stroyed by annealing or by applying a modest magnetic
field. Beyond this point the material is a thermal metal,
with a thermal conductivity which is unchanged from
the superconducting side, where it is presumably due to
nodal quasiparticles and described by eq. (4). Thus this
field induced metal may be coexisting with pairing am-
plitude and may be a very interesting new metallic state.

What is the nature of the gapped state inside the vor-
tex core as revealed by STM tunneling and how is it re-
lated to the pseudogap region? A popular notion is that
the vortex core state is characterized by a competing or-
der. A variety of competing order has been proposed
in the literature. An early suggestion was that the core
has antiferromagnetic order and an explicit model was
constructed based on the SU(5) model of Zhang, 1997
(Arovas et al., 1997). However, this particular version
has been criticized for its failure to take into account
the strong Coulomb repulsion and the proximity to the
Mott insulator (Greiter, 1997; Baskaran and Anderson,
1998). Recently, more phenomenological version based
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on Landau theory have been proposed (Demler et al.,
2001; Chen et al., 2004) where the antiferromagnetism
may be incommensurate. As the temperature is raised
into the pseudogap regime, vortices proliferate and their
cores overlap and, according to this view, the pseudogap
is characterized by fluctuating competing order. The dy-
namic stripe picture (Carlson et al., 2003) is an example
of this point of view. Another proposal for competing
order is for orbital currents (Varma, 1997; Chakravarty
et al., 2002b). In this case the competing order is pro-
posed to persist in the pseudogap region but is “hidden”
from detection because of difficulties of coupling to the
order. Finally, as discussed earlier, the recent observa-
tion of checkerboard patterns in the vortex core and in
some underdoped cuprates has inspired various proposals
of charge density ordering.

Most of the proposals for competing order are phe-
nomenological in nature. For example, the proximity of
d-wave superconductivity to antiferromagnetism is sim-
ply assumed as an experimental fact. However, from a
microscopic point of view, the surprise is that d-wave su-
perconductivity turns out to be the winner of this compe-
tition. Our goal is a microscopic explanation of both the
superconducting and the pseudogap states. We shall give
a detailed proposal for the vortex core in section XII.C.
Here we mention that while our proposal also calls for
slowly varying orbital currents in the core, this fluctu-
ating order is simply one manifestation of a quantum
state. For example, enhanced antiferromagnetic fluctu-
ation is another manifestation. As discussed in section
VI.C, this picture is fundamentally different from com-
peting states described by Landau theory. In the pseudo-
gap phase, vortices proliferate and overlap and all orders
become very sort range. Apart from characterizing this
state as a spin liquid (or RVB), the only possibility of
order is a subtle one, called topological/quantum order.
These concepts are described in section X and a possible
experimental consequence is described in section XII.E.

C. Two kinds of pseudogaps

Since the pseudogap is fundamentally a cross-over phe-
nomenon, there is a lot of confusion about the size of
the pseudogap and the temperature scale where it is ob-
served. Upon surveying the experimental literature, it
seems to us that we should distinguish between two kinds
of pseudogaps. The first is clearly due to superconduct-
ing fluctuations. The energy scale of the pseudogap is the
same as the low temperature superconducting gap and it
extends over a surprisingly large range of temperatures
above Tc. This is what we called the Nernst region in the
last section. This kind of pseudogap has been observed
in STM tunneling, where it is found that a reduction of
the density of states persists above Tc even in overdoped
samples (Kugler et al., 2001). We believe the pull-back of
the leading edge observed in ARPES shown in Fig. 7(a)
should be understood along these lines. There is an-

other kind of pseudogap which is associated with singlet
formation. A clear signature of this phenomenon is the
downturn in uniform spin susceptibility shown in Figs. 3
and 4. The temperature scale of the onset is high and in-
creases up to 300 to 400 K with underdoping. The energy
scale associated with this pseudogap is also very large,
and can extend up to 100 meV or beyond. For exam-
ple, the onset of the reduction of the c-axis conductivity
(which one may interpret as twice the gap) has been re-
ported to exceed 1000 cm−1. This is also the energy scale
one associates with the limiting STM tunneling spectrum
observed in highly underdoped Bi-2212 (Fig. 9(f)) and
in Na doped Ca2CuO2Cl2 (Hanaguri et al., 2004). The
gap in these spectra is very broad and ill defined. In
the ARPES literature it is described as the “high-energy
pseudogap” (see Damascelli et al., 2003) or the “hump”
energy. These spectra evolve smoothly into that of the
insulating parent. This is most clearly demonstrated in
Na-doped Ca2CuO2Cl2 and the ARPES spectrum near
the antinodal point looks remarkably similar to that seen
by STM (Ronning et al., 2003). Examples of this kind of
a spectrum can be seen in the samples UD46 and UD30
shown in Fig. 8(a). In contrast to the low energy pseudo-
gap, a coherent quasiparticle peak is never seen at these
very high energies when the system enters the supercon-
ducting state. Instead, weak peaks may appear at lower
energies, but judging from the STM data, these may be
associated with inhomogeneity. In this connection, we
point out that the often quoted T ∗ line shown in Fig. 7
is actually a combination of the two kinds of pseudogaps.
The solid triangles marking the onset of the leading edge
refer to the fluctuating superconductor gap, while the
solid squares are lower bounds based on the observation
of the “hump.” Another example of this difference is that
in LSCO, the superconducting gap is believed to be much
smaller and the pull back of the leading edge is not seen
by ARPES. On the other hand, the singlet formation is
clearly seen in Fig. 3(b) and the broad hump-like spectra
is also seen by ARPES (Zhou et al., 2004).

We note that in contrast to superconducting fluctua-
tions which extend across the entire doping range but
are substantially reduced for overdoped samples, the on-
set of singlet formation seems to end rather abruptly near
optimal doping. The Knight shift is basically tempera-
ture independent just above Tc in optimally doped and
certainly in slightly overdoped samples (Takigawa et al.,
1993; Horvatic et al., 1993). For this reason, we propose
that the pseudogap line and the Nernst line may cross in
the vicinity of optimal doping, as sketched in Fig. 18. In
this connection it is interesting to note that the pseudo-
gap has also been seen inside the vortex core (Maggio-
Aprile et al., 1995; Pan et al., 2000). By definition, this
is where the superconducting amplitude is suppressed to
zero and the gap is surely not associated with the pairing
amplitude. We have argued that the gap offers a glimpse
of the state which lies behind the pseudogap associated
with singlet formation. It is interesting to note that the
gap in the vortex core has been reported in a somewhat
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overdoped sample (Hoogenboom et al., 2001). It is as
though at zero temperature the state with a gap in the
core is energetically favorable compared with the normal
metallic state up to quite high doping. It will be inter-
esting to extend these measurements to even more highly
overdoped samples to see when the gap in the vortex core
finally fills in. At the same time, it will be interesting to
extend the tunneling into the vortex core in overdoped
samples to higher temperatures, to see if the gap will fill
in at some temperature below Tc.

VI. PROJECTED TRIAL WAVEFUNCTIONS AND

OTHER NUMERICAL RESULTS

In the original RVB article, Anderson, 1987 proposed a
projected trial wavefunction as a description of the RVB
state.

Ψ = PG|ψ0〉 (12)

where PG =
∏

i(1 − ni↑ni↓) is called the Gutzwiller
projection operator. It has the effect of suppressing all
amplitudes in |ψ0〉 with double occupation, thereby en-
forcing the constant of the t-J model exactly. The un-
projected wavefunction contains variational parameters
and its choice is guided by mean-field theory (see section
XIII). The full motivation for the choice of |ψ0〉 becomes
clear only after the discussion of mean-field theory, but
we discuss the projected wavefunction first because the
results are concrete and the concepts are simple. The
projection operator is too complicated to be treated an-
alytically, but properties of the trial wavefunction can be
evaluated using Monte Carlo sampling.

A. The half-filled case

We shall first discuss the half-filled case, where the
problem reduces to the Heisenberg model. While the
original proposal was for |ψ0〉 to be the s-wave BCS wave-
function, it was soon found that the d-wave BCS state is
a better trial wavefunction, i.e. consider

Hd = −
∑

〈ij〉,σ

(

χijf
†
iσfiσ + c.c.

)

−
∑

i,σ

µf †
iσfiσ+

+
∑

〈ij〉

[

∆ij

(

f †
i↑f

†
j↓ − f †

i↓f
†
j↑

)

+ c.c.
]

(13)

where χij = χ0 for nearest neighbors, and ∆ij = ∆0 for
j = i+ x̂ and −∆0 for j = i+ ŷ. The eigenvalues are the
well known BCS spectrum

Ek =
√

(ǫk − µ)2 + ∆2
k (14)

where

ǫk = −2χ0 (cos kx + cos ky) (15)

∆k = 2∆0 (cos kx − cos ky) (16)

At half filling, µ = 0 and |ψ0〉 is the usual BCS wave-

function |ψ0〉 =
∏

k

(

uk + vkf
†
k↑f

†
−k↓

)

|0〉.
A variety of mean-field wavefunctions were soon dis-

covered which give identical energy and dispersion. No-
table among these is the staggered flux state (Affleck and
Marston, 1988). In this state the hopping χij is complex,
χij = χ0 exp

(

i(−1)ix+jy Φ0

)

, and the phase is arranged
in such a way that it describes free fermion hopping on a
lattice with a fictitious flux ±4Φ0 threading alternative
plaquettes. Remarkably, the eigenvalues of this problem
are identical to that of the d-wave superconductor given
by eq. (14), with

tanΦ0 =
∆0

χ0
. (17)

The case Φ0 = π/4, called the π flux phase, is special in
that it does not break the lattice translation symmetry.
As we can see from eq. (17), the corresponding d-wave
problem has a very large energy gap and its dispersion
is shown in Fig. 19. The key feature is that the energy
gap vanishes at the nodal points located at

(

±π
2 ,±π

2

)

.
Around the nodal points the dispersion rises linearly,
forming a cone which resembles the massless Dirac spec-
trum. For the π flux state the dispersion around the node
is isotropic. For Φ0 less than π/4 the gap is smaller and
the Dirac cone becomes progressively anisotropic. The
anisotropy can be characterized by two velocities, vF in
the direction towards (π, π) and v∆ in the direction to-
wards the maximum gap at (0, π).

The reason various mean-field theories have the same
energy was explained by Affleck et al., 1988 and Dagotto
et al., 1988 as being due to a certain SU(2) symmetry.
We defer a full discussion of the SU(2) symmetry to sec-
tion X but we only mention here that it corresponds to
the following particle-hole transformation

f †
i↑ → αif

†
i↑ + βifi↓ (18)

fi↓ → −β∗
i f

†
i↑ + α∗

ifi↓.

Note that the spin quantum number is conserved. It de-
scribes the physical idea that adding a spin-up fermion
or removing a spin-down fermion are the same state after
projection to the subspace of singly occupied fermions. It
is then not a surprise to learn that the Gutzwiller projec-
tion of the d-wave superconductor and that of the stag-
gered flux state gives the same trial wavefunction, up to a
trivial overall phase factor, provided µ = 0 and eq. (17) is
satisfied. A simple proof of this is given by Zhang et al.,
1988. The energy of this state is quite good. The best
estimate for the ground state energy of the square lat-
tice Heisenberg antiferromagnet which is a Néel ordered
state is 〈Si ·Sj〉 = −0.3346 J (Trivedi and Ceperley, 1989;
Runge, 1992). The projected π flux state (Gros, 1988a;
Yokoyama and Ogata, 1996) gives −0.319J, which is ex-
cellent considering that there is no variational parameter.
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We note that the projected d-wave state has power law
decay for the spin-spin correlation function. The equal
time spin-spin correlater decays as r−α where α has been
estimated to be 1.5 (Ivanov, 2000; Paramekanti et al.,
2004a). This projection has considerably enhanced the
spin correlation compared with the exponent of 4 for the
unprojected state. One might expect a better trial wave-
function by introducing a sublattice magnetization in the
mean-field Hamiltonian. A projection of this state gives
an energy which is marginally better than the projected
flux state, −0.3206J. It also has a sublattice magnetiza-
tion of 84% which is too classical. The best trial wave-
function is one which combines staggered flux and sublat-
tice magnetization before projection (Gros, 1988a,b; Lee
and Feng, 1988). It gives an energy of −0.332 J and a
sublattice magnetization of about 70%, both in excellent
agreement with the best estimates.

B. Doped case

In the presence of a hole, the projected wavefunction
eq. (12) has been studied for a variety of mean-field states
ψ0. Here PG stands for a double projection: the ampli-
tudes with double occupied sites are projected out and
only amplitudes with the desired number of holes are
kept. The ratio ∆0/χ0, µ/χ0 and hs/χ0, where hs is the
field conjugate to the sublattice magnetization, are the
variational parameters. It was found that the best state
is a projected d-wave superconductor and the sublattice
magnetization is nonzero for x < xc, where xc = 0.11 for
t/J = 3. (Yokoyama and Ogata, 1996) The energetics
of various state are shown in Fig. (20(a)). It is interest-
ing to note that the projected staggered-flux state always
lies above the projected d-wave superconductor, but the
energy difference is small and vanishes as x goes to zero,
as expected. The staggered-flux state also prefers anti-
ferromagnetic order for small x, and the critical xSFc is
now 0.08, considerably less than that for the projected
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FIG. 20 (a) Comparison of the energy of various projected
trial wavefunctions. From Ivanov, 2003. (b) The conden-
sation energy estimated from the difference of the projected
d-wave superconductor and the projected staggered flux state.
From Ivanov and Lee, 2003.

d-wave superconductor. The energy difference between
the projected flux state and projected d superconductor
(with antiferromagnetic order) is shown in Fig. (20(b)).
As we can see from Fig. (20(a)), inclusion of AF will
only give a small enhancement of the energy difference for
small x ≤ 0.05. The projected staggered flux state is the
lowest energy non-superconducting state that has been
constructed so far. For x > 0.18, the flux Φ0 vanishes
and this state connects smoothly to the projected Fermi
sea, which one ordinarily thinks of as the normal state.
It is then tempting to think of the projected staggered
flux state as the “normal” state in the underdoped region
(x < 0.18) and interpret the energy difference shown in
Fig. (20(b)) as the condensation energy. Such a state
may serve as the “competing” state that we have argued
must live inside the vortex core. The fact that the energy
difference vanishes at x = 0 guarantees that it is small
for small x.

Ivanov, 2003 pointed out that the concave nature of
the energy curves shown in Fig. 20(a) for small x indi-
cate that the system is prone to phase separation. Such
a phase separation may be suppressed by long-range
Coulomb interaction and the energy curves are indeed
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sensitive to nearest-neighbor repulsion. Thus we believe
that Fig. 20(a) still provides a useful comparison of dif-
ferent trial wavefunctions.

C. Properties of projected wavefunctions

It is interesting to put aside the question of energetics
and study the nature of the projected d-wave supercon-
ductor. A thorough study by Paramekanti et al., 2001,
2004b showed that it correctly captures many of the prop-
erties of the cuprate superconductors. For example, the
superfluid density vanishes linearly in x for small x. This
is to be expected since the projection operator is designed
to yield an insulator at half-filling. The momentum dis-
tribution exhibits a jump near the noninteracting Fermi
surface. The size of the jump is interpreted as the quasi-
particle weight z according to Fermi liquid theory and
again goes to zero smoothly as x → 0. Using the sum
rule and assuming Ferm liquid behavior for the nodal
quasiparticles, the Fermi velocity is estimated and found
to be insensitive to doping, in agreement with photoe-
mission experiments.

A distinctive feature of the projected staggered flux
state is that it breaks translational symmetry and orbital
currents circulate the plaquettes in a staggered fashion
as soon as x 6= 0. Motivated by the SU(2) symmetry
which predicts a close relationship between the projected
d-wave superconductor and the projected staggered flux
states, Ivanov et al., 2000 examined whether there are
signs of the orbital current in the projected d-wave super-
conductor. Since this state does not break translation or
time-reversal symmetry, there is no static current. How-
ever, the current-current correlation

Gj = 〈j(α)j(β)〉 (19)

where j(α) is the current on the α bond, shows a power
law-type decay and its magnitude is much larger than
the naive expectation that it should scale as x2. Note
that before projection the d-wave superconductor shows
no hint of the staggered current correlation. The corre-
lation that emerges is entirely a consequence of the pro-
jection. We believe the emergence of orbital current fluc-
tuations provides strong support for the importance of
SU(2) symmetry near half filling. Orbital current fluc-
tuations of similar magnitude were found in the exact
ground sate wavefunction of the t-J model on a small
lattice, two holes on 32 sites. (Leung, 2000; Lee and Sha,
2003) showed that the orbital current correlation has the
same power law decay as the hole-chirality correlation,

Gχh
= 〈χh(i)χh(j)〉

where χh is defined on a plaquette i as nh(4)S1 ·(S2×S3)
where 1 to 4 labels the sites around the plaquette and

nh(i) = 1 − c†iσciσ is the hole density operator. This is
in agreement with the notion that a hole moving around

the plaque experiences a Berry’s phase due to the non-
colinearity of the spin quantization axis of the instanta-
neous spin configurations. For S = 1

2 the Berry’s phase

is given by 1
2φ where φ is the solid angle subtended by

the instantaneous spin orientations S1, S2 and S3. (Wen
et al., 1989; Fradkin, 1991) This solid angle is related to
the spin chirality S1 · (S2 × S3). This phase drives the
hole in a clockwise or anti-clockwise direction depending
on its sign, just as a magnetic flux through the center of
the plaquette would. Thus the flux Φ0 of the staggered
flux state has its physical origin in the coupling between
the hole kinetic energy and the spin chirality.

It is important to emphasize that the projected d-wave
state possesses long range superconducting pairing order,
while at the same time exhibiting power law correlation
in antiferromagnetic order and staggered orbital current.
On the other hand, projection of a staggered flux phase
at finite doping will possess long range orbital current
order, but short range pairing and antiferromagnetic or-
der. A useful analogy is to think of these projected states
as a person with a variety of personalities. He may be
courteous and friendly at one time, and aggressive and
even belligerent at another, depending on his environ-
ment. Thus different versions of projected states shown
in Fig. 20(a) all have the same kinds of fluctuations; it is
just that one kind of order may dominate over the oth-
ers. Then it is easy to imagine that the system may shift
from one state to another in different environments. For
instance, in section XII.C we will argue that the pairing
state will switch to a projected staggered flux state inside
the vortex core. Note that this is a different picture from
the traditional Landau picture of competing states as ad-
vocated by Chakravarty et al., 2002b, for instance. These
authors suggested on phenomenological grounds that the
pseudogap region is characterized by staggered orbital
current order, which they call d-density waves (DDW).
The symmetry of this order is indistinguishable from the
doped staggered flux phase (Hsu et al., 1991; Lee, 2002).
According to Landau theory, the competition between
DDW and superconducting order will result in either a
first order transition or a region of co-existing phase at
low temperatures. This view of competing order is very
different from the one proposed here, where a single quan-
tum state possesses a variety of fluctuating orders.

D. Improvement of projected wavefunctions, effect of t′,
and the Gutzwiller approximation

The projected wavefunction is the starting point for
various schemes to further improve the trial wavefunc-
tion. Indeed, the variational energy can be lowered and
Sorella et al., 2002 provide strong evidence that a d-wave
superconducting state may be the ground state of the t-
J model. On the other hand, other workers (Heeb and
Rice, 1993; Shih et al., 1998) found that the supercon-
ducting tendency decreases with the improvement of the
trial wavefunctions. Studies based on other methods such
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as DMRG (White and Scalapino, 1999) found that next-
nearest neighbor hopping t′ with t′/t > 0 is needed to
stabilize the d-wave superconductor. Otherwise the holes
are segregated into strip-like structures. All these com-
putational schemes suffer from some form of approxima-
tion and cannot give definitive answers. What is clear is
that the d-wave superconductor is a highly competitive
candidate for the ground state of the t-J model.

Recently Shih et al., 2004 have examined the pairing
correlation in projected wavefunctions including the ef-
fect of t′. They find that for moderate doping (x & 0.1)
t′/t with a negative sign greatly enhances the pairing
correlation. The effect increases with increasing t′ and
is maximal around t′/t ≈ −0.4. Their result contradicts
expectations based on earlier DMRG work (White and
Scalapino, 1999) which found a suppression of supercon-
ductivity with negative t′/t. However, Shih et al. pointed
out that the earlier work was limited to very low doping
and is really not in disagreement with their finding for
x & 0.1. This result should be confirmed by improving
the wavefunction but the pair correlation with t′ is so
robust that the controversy surrounding the t′ = 0 case
may well be avoided. It should be noted that a negative
t′ is what band theory predicts. Furthermore, Pavarini
et al., 2001 have noted a correlation of Tc with |t′| and
shown that the Hg and Tl compounds which have the
highest TC have t′/t in the range −0.3 to −0.4. Thus
the role of t′ may well explain the variation of Tc among
different families of cuprates.

The Gutzwiller projection is a rather cumbersome ma-
chinery to implement and a simple approximate scheme
has been proposed, called the Gutzwiller approximation
(Zhang et al., 1988; Hsu, 1990). The essential step is to
construct an effective Hamiltonian

Heff = −gtt
∑

〈ij〉σ
c†iσciσ + gJ

∑

〈ij〉
Si · Sj (20)

and treat this in the Hartree-Fock-BCS approximation.
The projection operator in the original t-J model is elimi-
nated in favor of the reduction factors gt = 2x/(1+x) and
gJ = 4/(1 + x)2, which are estimated by assuming sta-
tistical independence of the population of the sites (Voll-
hardt, 1984). The important point is that gt = 2x/(1+x)
reduces the kinetic energy to zero in the x → 0 limit, in
an attempt to capture the physics of the approach to the
Mott insulator. The Gutzwiller approximation bears a
strong resemblance to the slave-boson mean-field theory
and is just as easy to handle analytically. It has the ad-
vantage that the energetics compare well with the Monte
Carlo projection results. The Gutzwiller approximation
has been applied to more complicated problems such as
impurity and vortex structure (Tsuchiura et al., 2003,
2000) with good results.

VII. THE SINGLE HOLE PROBLEM

The motion of a single hole doped into the antiferro-
magnet is a most fundamental issue to start with. The
t-J type model is again the canonical Hamiltonian to
study this problem. The key physics of the problem is
the competition between the antiferromagnetic (AF) cor-
relation/long range ordering and the kinetic energy of the
hole. The motion of the single hole distort the AF order-
ing when it hops between different sublattices. Shraiman
and Siggia, 1988 studied this distortion in a semiclassi-
cal way, and found the new coupling between the spin
current of the hole and the magnetization current of the
background. This coupling leads to the long range dipo-
lar distortion of the staggered magnetization and the
minimum of the hole dispersion at k = (π/2, π/2). This
position of the energy minimum is interpreted as follows.
Even if we start with the pure t-J model, the direct hop-
ping between nearest neighbor sites is suppressed, while
the second order processes in t leads to the effective
hopping between the sites belonging to the same sub-
lattice. This effective t′ and t′′ has the negative sign and
hence lower the energy of k = (π/2, π/2) compared with
k = (π, 0), (0, π).

The dynamics of the single hole, i.e. the spectral func-
tion of the Green’s function is also studied by analytic
method. When the spin excitation is approximated by
the magnon (spin wave), the Hamiltonian for the signle
hole is given by (Kane et al., 1989)

H =
t

N

∑

k,q

Mk,q[h†khk−qαq + h.c.] +
∑

q

Ωqα
†
qαq (21)

where

Ωq = 2J
√

1 − γ2
q (22)

with γq = (cos qx + cos qy)/2 and

M(k, q) = 4(uqγk−q + vqγk) (23)

with uk =
√

(1 + νk)/(2νk), vk =

−sign(γk)
√

(1 − νk)/(2νk), and νk =
√

1 − γ2
k. This

Hamiltonian dictates that the magnon is emitted or
absorbed every time the hole hops. The most widely ac-
cepted method to study this model is the self-consistent
Born approximation (SCBA) initiated by Kane, Lee and
Read where the Feynman diagrams with the crossing
magnon propagators are neglected. This leads to the
self-consistent equation for the hole propagator:

G(k, ω) = [ω −
∑

q

g(k, q)2G(k − q, ω − Ωq)]−1. (24)

The result is that there are two components of the spec-
tral function A(k, ω) = −(1/π)ImGR(k, ω): One is the
coherent sharp peak corresponding to the quasi-particle
and the other is the incoherent background. The former
has the lowest energy at k = (π/2, π/2) at the energy
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∼ −t and disperses of the order of J , while the latter
does not depend on the momentum k so much and ex-
tends over the energy of the order of t. Intuitively the
hole has to wait for the spins to flip to hop, which takes
a time of the order of J−1. Therefore the bandwidth is
reduced from ∼ t to ∼ J . This mass enhancement leads
to the reduced weight z ∼ J/t for the quasi-particle peak.
Later, more detailed studies have been done in SCBA(Liu
and Manousakis, 1992). The conclusions obtained are the
followings: (i) At k = (π/2, π/2), there appear two addi-
tional two peaks at E2,3 in addition to the ground state
delta-functional peak at E1.

These energies are given for J/t < 0.4 by

En/t = −b+ an(J/t)
2/3 (25)

where a1 = 2.16, a2 = 5.46, a3 = 7.81, and b = 3.28.
(ii) The spectral weight z at k = (π/2, π/2) scales as
z = 0.65(J/t)2/3.

These can be understood as the ”string” excitation
of the hole moving in the linear confining potential due
to the AF background. It has also been interpreted in
terms of the confining interaction between spinon and
holon (Laughlin, 1997). Exact diagonalization stud-
ies have reached consistent results with SCBA. Ex-
perimentally angle-resolved-photoemission spectroscopy
(ARPES)(Wells et al., 1995; Ronning et al., 1998) in
undoped cuprates has revealed the spectral function of
the single doped hole. The energy dispersion of the hole
looks like that of the π-flux state shifted by the Mott
gap to the low energy (Laughlin, 1997). However, in real
materials the second (t′) and third (t”) nearest neighbor
hoppings are important. The calculated energy disper-
sion is found to be sensitive to t′ and t′′. For t′ = t′′ = 0,
the dispersion is flat between (π/2, π/2) and (0, π) and
does not agree with the data. It turns out that the data
is well fitted by J/t = 0.3, t′/t = −0.3, t”/t = 0.2.
On the other hand, ARPES in slightly electron-doped
Ne2−xCexCuO2 showed that the electron is doped into
the point k = (π, 0) and (0, π) (Armitage et al., 2001).
This difference will be discussed below.

The variational wavefunction approach to the antifer-
romagnet and single hole problem has been pursued by
several authors (Lee et al., 2003a,b). A good ground state
variational wavefunction (vwf) at half-filling is

|Ψ0〉 = PG

[

∑

k

(Aka
†
k↑a

†
−k↓ +Bkb

†
k↑b

†
−k↓

]N/2

|0〉 (26)

with N being the number of atoms. The operators a†kσ,

b†kσ are those for the upper and lower bands split by
SDW with the energy ±ξk, respectively, and Ak = (Ek +

ξk)/∆k, Bk = (−Ek +ξk)/∆k with Ek =
√

ξ2k + ∆2
k and

∆k = (3/8)J∆(cos kx − cos ky). The picture here is that
in addition to the SDW, the RVB singlet formation rep-
resented by ∆ is taken into account. As mentioned in the
last section, this vwf gives much better energy compared
to that with ∆ = 0. Hence the ground state is far from

the classical Nëel state and includes strong quantum fluc-
tuations. Next the vwf in the case of single doped hole
with momentum q and Sz = 1/2 is

|Ψq〉 = PGc
†
q↑

[

∑

k( 6=q)
(Aka

†
k↑a

†
−k↓ +Bkb

†
k↑b

†
−k↓

]N/2−1

|0〉(27)

This vwf does not contain the information of t′,t′′ ex-
cept the very small dependence of Ak, and Bk. The ro-
bustness of this vwf is the consequence of the large quan-
tum fluctuation already present in the half-filled case, so
that the hole motion is possible even without disturb-
ing the spin liquid-like state. Although the vwf does not
depends on the parameters t′,t′′, the energy dispersion
E(k) is given by the expectation value as

E(k) = 〈Ψk|Ht−J +Ht′−t′′ |Ψk〉, (28)

and depends on these parameters. This expression gives
a reasonable agreement with the experiments both in
undoped material (Ronning et al., 1998) and electron-
doped material (Armitage et al., 2001). Here an im-
portant question is the relation between the hole- and
electron-doped cases. There is a particle-hole symme-
try operation which relates the t-t′-t′′-J model for a hole
to that for an electron. The conclusion is that the sign
change of t′, and t′′ together with the shift in the momen-
tum by (π, π) gives the mapping between the two cases.
Using this transformation, one can explain the difference
between hole- and electron-doped cases in terms of the
common vwf eq. (27). The former has the minimum at
k = (π/2, π/2) while the latter at k = (π, 0), (0, π).

Exact diagonalization study (Tohyama et al., 2000) has
shown that the electronic state is very different between
k = (π/2, π/2) and k = (π, 0) for the appropriate values
of t′ and t′′ for hole doped case. The spectral weight be-
comes very small at (π, 0) and the hole is surrounded by
anti-parallel spins sitting on the same sublattice. Both
these features are captured by a trial wavefunction which
differs from eq. (27) in that the momentum q of the bro-
ken pair is different from the momentum of the inserted
electron. This can also be interpreted as the decay of
the quasiparticle state via the emission of a spin wave
(Lee et al., 2003b). There are thus two types of wf’s
with qualitatively different nature, i.e., one describes the
quasi-particle state and another which is highly incoher-
ent and may be realized as a spin-charge separated state.

One important discrepancy between experiment and
theory is the line-shape of the spectral function. Namely
the experiments show broad peak with the width of the
order of ∼ 0.3eV in contrast to the delta-functional peak
expected for the ground state at k = (π/2, π/2). One
may attribute this large width to the disorder effect in
the sample. However the ARPES in the overdoped re-
gion shows even sharper peak at the Fermi energy even
though the doping introduces further disorder. There-
fore the disorder effect is unlikely to explain this discrep-
ancy. Recently the electron-phonon coupling to the single
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hole in t-J model has been studied using quantum Monte
Carlo simulation (Mishchenko and Nagaosa, 2004). It is
found that the small polaron formation in the presence of
strong correlation reduces the dispersion and the weight
of the zero-phonon line, while the center of mass of the
spectral weight for the originally ”quasi-particle” peak
remain the same as the pure t-J model, even though the
shape is broadened. Therefore the polaron effect is a
promising scenario to explain the spectral shape.

Recently, Shen et al., 2004 pointed out that the po-
laron picture also explains a long standing puzzle regard-
ing the location of the chemical potential with doping.
Naive expectation based on doping a Hubbard model pre-
dicts that the chemical potential should lie at the top of
the valence band, whereas experimentally in Na-doped
Ca2CuO2Cl2 it was found that the chemical potential ap-
pears to lie somewhere in mid-gap, i.e. with a small but
finite density of holes, the chemical potential is several
tenths of eV higher than the energy of the peak position
of the one-hole spectrum. This is naturally explained if
the one-hole spectrum has been shifted down by polaron
effects, so that the top of the valence band should be at
the zero-phonon line, rather than the center of mass of
the one-hole spectrum.

VIII. SLAVE BOSON FORMULATION OF t-J MODEL

AND MEAN FIELD THEORY

As has been discussed in II, it is widely believed that
the low energy physics of high-Tc cuprates is described
in terms of t-J type model, which is given by (Lee and
Nagaosa, 1992)

H =
∑

〈ij〉
J

(

Si · Sj − 1

4
ninj

)

−
∑

ij

tij

(

c†iσcjσ + H.c.
)

.(29)

where tij = t, t′, t′′ for the nearest, second nearest and
3rd nearest neighbor pairs, respectively. The effect of
the strong Coulomb repulsion is represented by the fact

that the electron operators c†iσ and ciσ are the projected
ones, where the double occupation is forbidden. This is
written as the inequality

∑

σ

c†iσciσ ≤ 1, (30)

which is very difficult to handle. A powerful method to
treat this constraint is so called the slave-boson method
(Barnes, 1976; Coleman, 1984). In most general form,
the electron operator is represented as

c†iσ = f †
iσbi + ǫσσ′fiσ′d†i (31)

where ǫ↑↓ = −ǫ↓↑ = 1 is the antisymmetric tensor. f †
iσ,

fiσ are the fermion operators, while bi, d
†
i are the slave-

boson operators. This representation together with the
constraint

f †
i↑fi↑ + f †

i↓fi↓ + b†ibi + d†idi = 1 (32)

reproduces all the algebra of the electron (fermion) op-
erators. From eqs. (31) and (32), the physical meaning
of these operators is clear. Namely, there are 4 states
per site and b†, b corresponds to the vacant state, d†,d to
double occupancy, and f †

σ, fσ to the single electron with
spin σ. With this formalism it is easy to exclude the
double occupancy just by deleting d†, d from the above
equations (31) and (32). Then the projected electron
operator is written as

c†iσ = f †
iσbi (33)

with the condition

f †
i↑fi↑ + f †

i↓fi↓ + b†ibi = 1. (34)

This constraint can be enforced with a Lagrangian mul-
tiplier λi. Note that unlike eq. (31), eq. (33) is not
an operator identity and the R.H.S. does not satisfy the
fermion commutation relation. Rather, the requirement
is that both sides have the correct matrix elements in the
reduced Hilbert space with no doubly occupied states.
For example, the Heisenberg exchange term is written in

terms of f †
iσ, fiσ only (Baskaran et al., 1987)

Si · Sj = −1

4
f †

iσfjσf
†
jβfiβ

− 1

4

(

f †
i↑f

†
j↓ − f †

i↓f
†
j↑

)

(fj↓fi↑ − fj↑fi↓)

+
1

4

(

f †
iαfiα

)

. (35)

We write

ninj = (1 − b†ibi)(1 − b†jbj). (36)

Then Si · Sj − 1
4ninj can be written in terms of the

first two terms of eq. (35) plus quadratic terms, pro-
vided we ignore the nearest-neighbor hole-hole interac-

tion 1
4b

†
ibib

†
jbj . We then decouple the exchange term in

both the particle-hole and particle-particle channels via
the Hubbard-Stratonovich (HS) transformation.

Then the partition function is written in the form

Z =

∫

DfDf †DbDλDχD∆exp

(

−
∫ β

0

dτL1

)

(37)

where

L1 = J̃
∑

〈ij〉

(

|χij |2 + |∆ij |2
)

+
∑

iσ

f †
iσ(∂τ − iλi)fiσ

− J̃





∑

〈ij〉
χ∗

ij

(

∑

σ

f †
iσfjσ

)

+ c.c.



 (38)

+ J̃





∑

〈ij〉
∆ij

(

f †
i↑f

†
j↓ − f †

i↓f
†
j↑

)

+ c.c.





+
∑

i

b∗i (∂τ − iλi + µB)bi −
∑

ij

tijbib
∗
jf

†
iσfjσ,
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with χij representing fermion hopping and ∆ij repre-
senting fermion pairing corresponding to the two ways
of representing the exchange interaction in terms of the
fermion operators. From eqs. (35) and (38) it is con-

cluded that J̃ = J/4, but in practice the choice of J̃ij is
not so trivial, namely one would like to study the saddle
point approximation (SPA) and the Gaussian fluctuation
around it, and requires SPA to reproduce the mean field
theory. The latter requirement is satisfied when only one
HS variable is relevant, but not for the multicomponent
HS variables (Negele and Orland, 1987; Ubbens and Lee,
1992). In the latter case, it is better to chose the pa-
rameters in the Lagrangian to reproduce the mean field
theory. In the present case, J̃ = 3J/8 reproduces the
mean field self-consistent equation which is obtained by
the Feynman variational principle (Brinckmann and Lee,
2001).

We note that L1 in eq. (38) is invariant under a local
U(1) transformation

fi → eiθifi

bi → eiθibi

χij → e−iθiχije
iθj

∆ij → eiθi∆ije
iθj

λi → λi + ∂τθi (39)

which is called U(1) gauge transformation. Due to such a
U(1) gauge invariance, the phase fluctuations of χij and
λi have a dynamics of U(1) gauge field (see section IX).

Now we describe the various mean field theory corre-
sponding to the saddle point solution to the functional
integral. The mean field conditions are

χij =
∑

σ

〈f †
iσfjσ〉 (40)

∆ij = 〈fi↑fj↓ − fi↓fi↑〉 (41)

Let us first consider the t-J model in the undoped case,
i.e. the half-filled case. There are no bosons in this case,
and the theory is purely that of fermions. The original
one, i.e. uniform RVB state, proposed by Baskaran-Zou-
Anderson (Baskaran et al., 1987) is given by

χij = χ = real (42)

for all the bond and ∆ij = 0. The fermion spectrum is
that of the tight binding model

HuRVB = −
∑

kσ

2J̃χ(cos kx + cos ky)f
†
kσfkσ, (43)

with the saddle point value to the Lagrange multiplier
λi = 0. The so called “spinon Fermi surface” is large,
i.e. it is given by the condition kx ± ky = ±π with a di-
verging density of states (van Hove singularity) at the
Fermi energy. Soon after, many authors found lower
energy states than the uniform RVB state. One can
easily understand that lower energy states exist because

the Fermi surface is perfectly nested with the nesting

wavevector ~Q = (π, π) and the various instabilities with
~Q are expected. Of particular importance are the d-wave
state [see (Eq. 13)] and the staggered flux state [see (Eq.
17)] which give identical energy dispersion. This was ex-
plained as being due to a local SU(2) symmetry when the
spin problem is formulated in terms of fermions (Affleck
et al., 1988; Dagotto et al., 1988). We write

Φi↑ =

(

fi↑
f †

i↓

)

, Φi↓ =

(

fi↓
−f †

i↑

)

, (44)

Then eq. (38) can be written in the more compact form

L1 =
J̃

2

∑

〈ij〉
Tr[U †

ijUij ] +
J̃

2

∑

〈ij〉,σ

(

Φ†
iσUijΦjσ + c.c.

)

+
∑

iσ

f †
iσ(∂τ − iλi)fiσ

+
∑

i

b∗i (∂τ − iλi + µB)bi

−
∑

ij

tijbib
∗
jf

†
iσfjσ, (45)

where

Uij =

(−χ∗
ij ∆ij

∆∗
ij χij

)

. (46)

At half filling b = µB = 0 and the mean field solution
corresponds to λi = 0. The Lagrangian is invariant under

Φiσ → WiΦiσ (47)

Uij → WiUijW
†
j (48)

where Wi is an SU(2) matrix [see eq. (18)]. We reserve a
fuller discussion of the SU(2) gauge symmetry to Section
X, but here we just give a simple example. In terms of
the link variable Uij , the π-flux and d-RVB states are
represented as

Uπ-flux
ij = −χ(τ3 − i(−1)ix+jy ), (49)

and

Udi,i+µ = −χ(τ3 + ηµτ
1), (50)

respectively. These two are related by

USFij = W †
i U

d
ijWj (51)

where

Wj = exp
[

i(−1)jx+jy
π

4
τ1
]

. (52)

Therefore the SU(2) transformation of the fermion vari-
able

Φ′
i = WiΦi (53)
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FIG. 21 Schematic phase diagram of the U(1) mean field
theory. The solid line denotes the onset of the uniform RVB
state (χ 6= 0). The dashed line denotes the onset of fermion
pairing (∆ 6= 0) and the dotted line denotes mean field Bose
condensation (b 6= 0). The four regions are (I) Fermi liquid
χ 6= 0, b 6= 0; (II) spin gap χ 6= 0, ∆ 6= 0; (III) d-wave
superconductor χ 6= 0, ∆ 6= 0, b 6= 0; and (IV) strange metal
χ 6= 0 (Lee and Nagaosa, 1992).

relates the π-flux and d-RVB states. Here some remarks
are in order. First it should be noted that we are dis-
cussing the Mott insulating state and its spin dynam-
ics. The charge transport is completely suppressed by
the constraint eq. (34). This will be discussed in sec.
X where the mean field theory is elaborated into gauge
theory. Secondly, it is now established that the ground
state of the two-dimensional antiferromagnetic Heisen-
berg model shows the antiferromagnetic long range order-
ing (AFLRO). This corresponds to the third (and most
naive) way of decoupling the exchange interaction, i.e.

Si · Sj =
1

4
f †

iασ
µ
αβfiβf

†
jγσ

µ
γδfjδ (54)

However even with the AFLRO, the singlet formation
represented by χij and ∆ij dominates and AFLRO oc-
curs on top of it. This view has been stressed by Hsu (Hsu
et al., 1991; Hsu, 1990) generalizing the π-flux state to
include the AFRLO, and is in accord with the energetics
of the projected wavefunctions, as discussed in section
VI.A.

Now we turn to the doped case, i.e. x 6= 0. Then the
behavior of the bosons are crucial for the charge dynam-
ics. At the mean field theory, the bosons are free and
condensed at TBE . In three-dimensional system, TBE
is finite while TBE = 0 for purely two-dimensional sys-
tem. Theories assume weak three dimensional hopping
between layers, and obtain the finite TBE roughly pro-
portional to the boson density x (Kotliar and Liu, 1988;
Suzumura et al., 1988). This materializes the original
idea by Anderson (Anderson, 1987) that the preformed
spin superconductivity (RVB) turns into the real super-
conductivity via the Bose condensation of holons. Kotliar
and Liu, 1988 and Suzumura et al., 1988 found the d-

wave superconductivity in the slave-boson mean field the-
ory presented above, and the schematic phase diagram is
given in Fig. 21. There are 5 phases classified by the order
parameters χ, ∆, and b = 〈bi〉 for the Bose condensation.
In the incoherent state at high temperature, all the or-
der parameters are zero. In the uniform RVB state (IV
in Fig. 21), only χ is finite. In the spin gap state (II),
∆ and χ are nonzero while b = 0. This corresponds to
the spin singlet “superconductivity” with the incoherent
charge motion, and can be viewed as the precursor phase
of the superconductivity. This state has been interpreted
as the pseudogap phase (Fukuyama, 1992). We note that
at the mean field level, the SU(2) symmetry is broken by
the nonzero µB in eq. (45) and the d-wave pairing state
is chosen because it has lower energy than the staggered
flux state. We shall return to this point in Section X.
In the Fermi liquid state (I), both χ and b are nonzero
while ∆ = 0. This state is similar to the slave-boson
description of heavy fermion state. Lastly when all the
order parameter is nonzero, we obtain the d-wave super-
conducting state (III). This mean field theory, in spite
of its simplicity, captures rather well the experimental
features as described in sections III and IV.

Before closing this section, we mention the slave
fermion method and its mean field theory (Arovas and
Auerbach, 1988; Yoshioka, 1989; Chakraborty et al.,
1990). One can exchange the statistics of fermion and
boson in eqs. (31) and (33). Then the bosons has
the spin index, i.e. biσ while the fermion becomes spin-
less, i.e. fi. This boson is called Schwinger boson, and
is suitable to describe the AFLRO state. The large
N -limit of Schwinger boson theory gives the AFLRO
state for S = 1/2. The holes are represented by the
spinless fermion forming a small hole pockets around
k = (π/2, π/2). The size of the hole pocket is twice as
large as the usual doped SDW state due to the absence of
the spin index. Therefore the slave fermion method vio-
lates the Luttinger theorem. Finally we mention that by
introducing a phase-string in the slave fermion approach,
one obtains a phase-string formulation of high Tc super-
conductivity (Weng et al., 2000; Weng, 2003). In such
an approach both spin-1/2 neutral particles and spin-0
charged particles are bosons with a non-trivial mutual
statistics between them.

IX. U(1) GAUGE THEORY OF THE URVB STATE

The mean field theory only enforces the constraint on
the average. Furthermore, the fermions and bosons in-
troduce redundancy in representing the original electron,
which results in an extra gauge degree of freedom. The
fermions and bosons are not gauge invariant and should
not be thought of as physical particles. To include these
effects we need to consider fluctuations around the mean
field saddle points, which immediately become gauge the-
ories, as first pointed out by Baskaran and Anderson,
1988. Here, we review the early work on the U(1) gauge
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theory, which treats gauge fluctuations on the Gaussian
level (Ioffe and Larkin, 1989; Nagaosa and Lee, 1990; Lee
and Nagaosa, 1992; Ioffe and Kotliar, 1990). The the-
ory can be worked out in some detail, leading to a non-
trivial recipe for obtaining physical response functions in
terms of the fermion and boson ones, called the Ioffe-
Larkin composition rule. It highlights the importance of
calculating gauge invariant quantities and the fact that
the fermion and bosons only enter as useful intermedi-
ate steps. The Gaussian U(1) gauge theory was mainly
designed for the high temperature limit of the optimally
doped cuprate, i.e. the so-called strange metal phase in
Fig. 21. We will describe its failure in the underdoped
region, which leads to the SU(2) formulation of the next
two sections. The Gaussian theory also misses the con-
finement physics which is important for the ground state.

A. Effective gauge action and non-Fermi-liquid behavior

As has been discussed in section III, the phenomenol-
ogy of the optimally doped Mott insulator is required to
describe the two seemingly contradicting features, i.e. the
doped insulator with small hole carrier concentration and
the electrons forming the large Fermi surface. The for-
mer is supported various transport and optical proper-
ties, representatively the Drude weight proportional to
x, while the latter by the angle resolved photoemission
spectra (ARPES) in the normal state of optimal doped
samples. In the conventional single-particle picture, the
reduction of the 1st Brillouin zone due to the antifer-
romagnetic long range ordering (AFLRO) distinguishes
these two. Namely small hole pockets with area x are
formed in the reduced 1st BZ in the AFLRO state, while
the large metallic Fermi surface of area 1 − x appears
otherwise. The challenge for the theory of the optimally
doped case is that aspects of the doped insulator ap-
pear in some experiments even with the large Fermi sur-
face. Also it is noted that the ARPES shows that there
is no sharp peak corresponding to the quasi-particle in
the normal state, especially at the anti-nodal region near
k = (π, 0). The fermi surface is defined by a rather broad
peak dispersing near the Fermi energy. These strongly
suggests that the normal state of high temperature super-
conductors is not described in terms of the usual Landau
Fermi liquid picture.

A promising theoretical framework to describe this
dilemma is the slave-boson formalism introduced above.
It has the two species of particles, i.e. fermions and
bosons, due to the strong correlation, and the electron
is “fractionalized” into these two particles. However,
one must not take naively this conclusion, because the
fermions and bosons cannot be regarded as “physical”
particles in that they are not gauge invariant as ex-
plained below. Furthermore, they are not noninteracting
particles; they are strongly coupled to the gauge field.
This arises from the fact that the conservation of the
gauge charge Qi =

∑

σ f
†
iσfiσ + b†ibi can be derived by

the Noether theorem starting from the local U(1) gauge
transformation

fiσ → eiϕifiσ

bi → eiϕibiσ. (55)

Therefore the constraint eq. (34) is equivalent to a local
gauge symmetry. The Green’s functions for fermions and

bosons GF (i, j; τ) = −〈Tτfiσ(τ)f
†
jσ〉 and GB(i, j; τ) =

−〈Tτbi(τ)b†j〉 transforms as

GF (i, j; τ) → ei(ϕi−ϕj)GF (i, j; τ)

GB(i, j; τ) → ei(ϕi−ϕj)GB(i, j; τ). (56)

Therefore these fermions and bosons are not gauge invari-
ant and should be regarded as only the particles which
are useful in the intermediate step of the theory to calcu-
late the physical (gauge invariant) quantities as will be
done in the next section.

At the mean field level, the constraint was replaced by
the averaged one 〈Qi〉 = 1. This average is controlled
by the saddle point value of the Lagrange multiplier field
〈λi〉 = λ. Originally λi is the functional integral variable
and is a function of (imaginary) time. When this integra-
tion is done exactly, the constraint is imposed. Therefore
we have to go beyond the mean field theory and take into
account the fluctuation around it. In other words, the lo-
cal gauge symmetry is restored by the gauge fields which
transform as

aij → aij + ϕi − ϕj

a0(i) → a0(i) +
∂ϕi(τ)

∂τ
, (57)

corresponding to eq. (55). The fields satisfying this con-
dition are already in the Lagrangian eq. (38). Namely
the phase of the HS variable χij and the fluctuation part
of the Lagrange multiplier a0(i) = λi are these fields.

Let us study this U(1) gauge theory for the uRVB
state in the phase diagram Fig. 21. This state is ex-
pected to describe the normal state of the optimally
doped cuprates, where the SU(2) particle-hole symme-
try described by eq. (44) is not so important. Here we
neglect ∆-field, and consider χ and λ field. There are
amplitude and phase fluctuations of χ-field, but the for-
mer one is massive and does not play important roles in
the low energy limit. Therefore the relevant Lagrangian
to start with is

L1 =
∑

i,σ

f∗
iσ

(

∂

∂τ
− µF + ia0(ri)

)

fiσ

+
∑

i

b∗i

(

∂

∂τ
− µB + ia0(ri)

)

bi

− J̃χ
∑

〈ij〉σ
(eiaijf∗

iσfjσ + h.c.)

− tη
∑

〈ij〉
(eiaij b∗ibj + h.c.) (58)
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where η is the saddle point value of another HS vari-
able to decouple the hopping term. We can take η = χ
using eq. (40). Here the lattice structure and the peri-
odicity with respect to aij → aij + 2π are evident, and
the problem is that of the lattice gauge theory coupled
to the fermions and bosons. It is also noted here that
there is no dynamics of the gauge field at this starting
Lagrangian. Namely the coupling constant of the gauge
field is infinity, and the system is in the strong coupling
limit. This is because the gauge field represents the con-
straint; by integrating over the gauge field we obtain the
original problem with the constraint. This raises the is-
sue of confinement as will be discussed in section IX.D
and XI.F. Here we exchange the order of the integration
between the gauge field (aij , a0) and the matter fields
(fermions and bosons). Namely the matter fields are in-
tegrated over first, and we obtain the effective action for
the gauge field.

e−Seff.(a) =

∫

Df∗DfDb∗Dbe−
∫

β

0
L1 (59)

However this integration can not be done exactly, and the
approximation is introduced here. The most standard
one is the Gaussian approximation or RPA, where the
effective action is obtained by perturbation theory up to
the quadratic order in a. For this purpose we introduce
here the continuum approximation to the Lagrangian L1

in eq. (58).

L =

∫

d2r

[

∑

σ

f∗
σ(r)

(

∂

∂τ
− µF + ia0(r)

)

fσ(r)

+ b∗(r)

(

∂

∂τ
− µB + ia0(r)

)

b(r)

− 1

2mF

∑

σ,j=x,y

f∗
σ(r)

(

∂

∂xj
+ iaj

)2

fσ(r)

− 1

2mB

∑

j=x,y

b∗(r)

(

∂

∂xj
+ iaj

)2

b(r)

]

, (60)

where the vector field a is introduced by aij = (ri −
rj) · a[(ri + rj)/2]. Note 1/mF ≈ J and 1/mB ≈ t.
The coupling between the matter fields and gauge field
is given by

Lint. =

∫

d2r(jFµ + jBµ )aµ (61)

where jFµ (jBµ ) is the fermion (boson) current density.
Note that integration over a0 recovers the constraint

eq. (34) and integration over the vector potential a yields
the constraint

jF + jB = 0, (62)

i.e. the fermion and boson can move only by exchanging
places. Thus the Gaussian approximation apparently en-
forces the local constraint exactly (Lee, 2000). We must

caution that this is true only in the continuum limit, and
an important lattice effect related to the 2π periodic-
ity of the phase variable has been ignored. These latter
effects lead to instantons and confinement, as will be dis-
cussed later in section IX.D. Thus it is not surprising
that the “exact” treatment of D.H. Lee yields the same
Ioffe-Larkin composition rule which is derived based on
the Gaussian theory (see section IX.C).

We now proceed to reverse the order of integration. We
integrate out the fermion and boson fields to obtain an
effective action for aµ. We then consider the coupling of
the fermions and bosons to the gauge fluctuations which
are controlled by the effective action. To avoid double
counting, it may be useful to consider this procedure in
the renormalization group sense, i.e. we integrate out the
high energy fermion and boson fields to produce an ef-
fective action of the gauge field which in turn modifies
the low energy matter field. This way we convert the ini-
tial problem of infinite coupling to one of finite coupling.
The coupling is of order unity but may be formally or-
ganized as a 1/N expansion by artificially introducing N
species of fermions. Alternatively, we can think of this
as an RPA approximation, i.e. a sum of fermion and bo-
son bubbles. The effective action for aµ is given by the
following

SRPA
eff. (a) = (ΠF

µν(q) + ΠB
µν(q))aµ(q)aν(−q) (63)

where q = (q, ωn) is a three dimensional vector. The
current-current correlation function ΠFµν(q) (ΠB

µν(q)) of
the fermions (bosons) is given by

Πα
µν(q) = 〈jαµ (q)jαν (−q)〉 (64)

with α = F,B. Taking the transverse gauge by imposing
the gauge fixing condition

∇ · a = 0 (65)

the scalar (µ = 0) and vector parts of the gauge field
dynamics are decoupled. The scalar part Πα

00(q) cor-
responds to the density-density response function and
does not show any singular behavior in the low en-
ergy/momentum limit. On the other hand, the trans-
verse current-current response function shows singular
behavior for small q and ω. Explicitly the fermion cor-
relation function is given by

ΠF
T (q) = iωσTF1(q, ω) − χFq2 (66)

where χF = 1/(24πmF ) is the fermion Landau diamag-
netic susceptibililty. The first term describes the dissipa-
tion and the static limit of σTF1 (real part of the fermion
conductivity) for ω < γq is σTF1(q, ω) = ρF /(mFγq)
where ρF is the fermion density and

γq = τ−1
tr for |q| < (vF τtr)

−1

= vF |q|/2 for |q| > (vF τtr)
−1 (67)
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where τtr is the transport lifetime due to the scatterings
by the disorder and/or the gauge field. A similar expres-
sion is obtained for the bosonic contribution as

ΠB
T (q) = iωσTB1(q, ω) − χBq2 (68)

where χB = n(0)/(48πmB) where n(ǫ) is the Bose oc-
cupation factor. χB diverges at the Bose condensation

temperature T
(0)
BE = 2πx/mB when we assume a weak 3D

transfer of the bosons. Assuming that the temperature

is higher than T
(0)
BE, the boson conductivity is estimated

as

σTB1
∼= x1/2/|q| (69)

for |q| > ℓ−1
B , where ℓB is the mean free path of the

bosons. It can be seen from eqs. (67) and (69), σTB1 ≪
σTF1.

Summarizing, the propagator of the transverse gauge
field is given by

〈aα(q)aβ(−q)〉 = (δαβ − qαqβ/|q|2)DT (q) (70)

DT (q) = [ΠF
T (q) + ΠB

T (q)]−1 ∼= [iωσ(q) − χdq
2]−1. (71)

Here

σ(q) ∼= k0/|q| for |q|ℓ > 1
∼= k0ℓ for |q|ℓ < 1 (72)

where ℓ is the fermion mean free path and k0 is of the
order kF of the fermions.

This gauge field is coupled to the fermions and bosons
and leads to their inelastic scatterings. By estimating
the lowest order self-energies of the fermion and boson
propagators, it is found that these are diverging at any
finite temperature. It is because of the singular behavior
of DT (q) for small |q| and ω. This kind of singularity
was first noted by Reizer, 1989 for the problem of elec-
trons coupled to a transverse electromagnetic field, even
though related effects such as non-Fermi liquid correc-
tions for the specific heat have been noted earlier (Hol-
stein et al., 1973). However this does not cause any trou-
ble since the propagators of fermions and bosons are not
the gauge invariant quantity and hence is not physical as
discussed above. As the representative of gauge invariant
quantities, we consider the conductivity of fermions and
bosons. (Note that these are not still “physical” because
one must combine these to obtain the physical conduc-
tivity as discussed in the next section.) For example the
integral for the (inverse of) transport life-time τtr con-
tains the factor 1 − cos θ where θ is the angle between
the initial and final momentum for the scattering. This
factor scales with |q|2 for small q, and gets rid of the
divergence. The explicit estimate gives

1

τFtr
∼= ξ

4/3
k for ξk > kT

∼= T 4/3 for ξk < kT (73)

for the fermions while

1

τBtr
∼= kT

mBχd
(74)

for bosons. These results are interpreted as the scattering
by the fluctuating gauge flux whose propagator is given
by the loop representing the particle-hole propagator for
the two-particle current-current correlation function.

Now some words on the physical meaning of the gauge
field are in order. For simplicity let us consider the three
sites, and that the electron is moving around these. The
quantum mechanical amplitude for this process is

P123 = 〈χ12χ23χ34〉 = 〈f †
1αf2αf

†
2βf3βf

†
3γf1γ〉. (75)

One can prove that

(P123 − P132)/(4i) = S1 · (S2 × S3) (76)

and the righthand side of the above equation corre-
sponds to the solid angle subtended by the three vectors
S1,S2,S3, and is called spin chirality (Wen et al., 1989).
Therefore the gauge field fluctuation is regarded as that
of the spin chirality. Recently it is discussed that the spin
chirality will produce the anomalous Hall effect in some
ferromagnets such as manganites and pyrochlore oxides,
where the non-coplanar spin configurations are realized
by thermal excitation of the Skymion or the strong spin
anisotropy in the ground state (Ye et al., 1999; Taguchi
et al., 2001). This phenomenon can be interpreted as the
static limit of the gauge field, while the gauge field dis-
cussed here has both quantum and thermal fluctuations.

B. Ioffe-Larkin composition rule

In order to discuss the physical properties of the total
system, we have to combine the information obtained for
fermions and bosons. This has been first discussed by
Ioffe and Larkin, 1989. Let us start with the physical
conductivity σ, which is given by

σ−1 = σ−1
F + σ−1

B (77)

in terms of the conductivities of fermions (σF ) and bosons
(σB). This formula corresponds to the sequential circuit
(not parallel) of the two resistance, and is intuitively un-
derstood from the fact that both fermions and bosons
have to move subject to the constraint. This formula
can be derived in terms of the shift of the gauge field
a, and resultant backflow effect. In the presence of the
external electric field E, the gauge field a and hence the
internal electric field e is induced. Let us assume that
the external electric field E is coupled to the fermions.
Then the effective electric field seen by the fermions is

eF = E + e (78)

while that for the boson is

eB = e. (79)
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The fermion current jF and boson current jB are in-
duced, respectively as

jF = σF eF , jB = σF eB. (80)

The constraint jF + jB = 0 given by eq. (62) leads to
the relation

e = − σF
σF + σB

E. (81)

The physical current j given by

j = jF = −jB =
σFσB
σF + σB

E (82)

leading to the expression for the physical conductivity σ
in eq. (77). It is also noted here that the same result is
obtained if instead we couple the e.m. field to bosons. In
this case the internal electric field e is different, but eF
and eB remain unchanged. Therefore it is not a phys-
ical question which particle is charged, i.e. fermion or
boson. This is related to the fact that both fermions and
bosons are not physical particles as repeatedly stated.
Note that σF ≫ σB in the uRVB state, we conclude
that σ ∼= σB = xτBtr /mB which is inversely proportional
to the temperature T . Furthermore the Drude weight
of the optical conductivity is determined by x/mB as is
observed experimentally. It remains true that the super-
fluidity density ρS in the superconducting state is given
by the missing oscillator strength below the gap, this also
means that ρs ∝ x.

A more formal way of deriving the physical electromag-
netic response follows. We can generalize the discussion
of the effective action Seff.(a) for the gauge field to in-
clude the external e.m. field Aµ. Let us couple Aµ again
to the fermions. Then the effective action becomes in-
stead of eq. (63)

SRPA
eff. (a,A) = ΠF

µν(q)(aµ(q) +Aµ(q))(aν (−q) +Aν(−q))
+ ΠB

µν(q)aµ(q)aν(−q). (83)

Then after integrating over the gauge field aµ, we end up
with the effective action for Aµ only as

SRPA
eff. (A) = Πµν(q)Aµ(q)Aν(−q) (84)

with the physical e.m. response function

Πα(q)−1 = (ΠF
α (q))−1 + (ΠB

α (q))−1 (85)

where α = 0 or T stands for the longitudinal and the
transverse parts. Then the physical diamagnetic suscep-
tibility χ̃ is given by χ̃−1 = χ−1

F + χ−1
B . Again in the su-

perconducting state, ΠF
T ∝ ρFs and ΠB

T ∝ ρBs , where ρFs
and ρBs are superfluidity density of the fermion pairing
and boson condensation. This leads to the composition
rule for ρs as ρ−1

s = (ρFs )−1 + (ρBs )−1 ∼= (ρBs )−1 ∝ x−1

with ρFs ≫ ρBs , reproducing the same result as sug-
gested from the Drude weight. On the other hand the
temperature dependence of ρFs is of the form ρFs (T ) =

ρFs (0)(1 − aT ) where a is given by the nodal fermion
dispersion, while the temperature dependence of ρBs is
expected to be higher power in T and negligible. The
Ioffe-Larkin composition rule then predicts that

ρs(T ) ≈ ρBs (1 − ρBs
ρFs

)

≈ ρBs (0) − (ρBs (0))2

ρFs (0)
aT. (86)

Since ρBs (0) ∼ x, this predicts that the temperature de-
pendence of the superfluid density is proportional to x2.
Comparison with eq. (5) implies that α ∼ x in the slave-
boson theory. As shown in Fig. 14, this prediction does
not agree with experiment and is probably an indication
of the breakdown of gaussian fluctuations which under-
lines the Ioffe-Larkin rule.

We conclude this section by remarking that the Ioffe-
Larkin rule can be extended to various other physical
quantities. For example the Hall constant RH is given
by

RH =
RFHχB +RFHχF

χB + χF
(87)

while the thermopower S = SB + SF and the electronic
thermal conductivity κ = κB+κF are sum of the bosonic
and fermionic contributions.

Compared with the two-particle correlation functions
discussed above, the single particle Green’s function is
more complicated. At the mean field level, the elec-
tron Green’s function is given by the product of those
of fermions and boson in the (r, τ) space. Therefore in
the momentum-frequency space, it is given by the convo-
lution. The spectral function is composed of the two con-
tributions, one is the quasi-particle peak with the weight
∼ x while the other is the incoherent background. Even
the former one is broadened due to the momentum dis-
tribution of the noncondensed bosons, i.e. there is no
quasi-particle peak in the strict sense. This absence of
the delta-functional peak occurs also in the SU(2) theory
in sec. XI indicating that the fermions are not free and
hence can not be regarded as the quasi-particle. On the
other hand, the dispersion of this “quasi-particle” peak
is determined by that of fermions, and hence its locus
of zero energy constitutes the large Fermi surface enclos-
ing the area 1 − x. However this simple calculation does
not reproduce some of the novel features in the ARPES
experiments such as the “Fermi arc” in underdoped sam-
ples, which will be discussed later in section XI.

Combined with the discussion on the transport prop-
erties and the electron Green’s function, the present uni-
form RVB state in the U(1) formulation offers an expla-
nation on the dichotomy between the doped Mott insu-
lator and the metal with large Fermi surface. In partic-
ular, the conclusion that the conductivity is dominated
by the boson conductivity σ ≈ σB ≈ xτBtr/mB ≈ xtT
explains the linear T resistivity which has been taken as
a sign of non-Fermi liquid behavior from the beginning
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of high Tc research. However, we must caution that this

conclusion was reached for T > T
(0)
BE while in the ex-

periment the linear T behavior persists to much lower
temperature near optimal doping. It is possible that
gauge fluctuations suppress the effective Bose conden-
sation. Lee et al., 1996 attempted to include the effect
of strong gauge fluctuations on the boson conductivity
by assuming a quasi-static gauge fluctuation and treat-
ing the problem by quantum Monte Carlo. The picture
is that the boson tends to make self-retracing paths to
cancel out the effect of the gauge field (Nagaosa and Lee,
1991). They indeed find that the boson conductivity re-
mains linear in T down to much lower temperature than

T
(0)
BE .

C. Ginzburg-Landau theory and vortex structure

Up to now, we have focused on the uRVB state where
the pairing amplitude ∆ of the fermions is zero. In this
subsection we review the phenomenological Ginzburg-
Landau theory to treat this pairing field. The free energy
for a single CuO2 layer is given by

F = FF [ψ,a,A] + FB[φ,a] + Fgauge[a] (88)

with

FF [ψ,a,A] =
H2
cF

8π

∫

d2r

[

2ξ2F |(∇− 2ia − i
2e

c
A)ψ|2

+ 2sign(T − T
(0)
D )|ψ|2 + |ψ|4

]

, (89)

FB [ψ,a] =
H2
cB

8π

∫

d2r

[

2ξ2B|(∇− ia)φ|2

+ 2sign(T − T
(0)
BE)|φ|2 + |φ|4

]

, (90)

and

Fgauge[a] =

∫

d2r

[

χF [∇× (a + (e/c)A)]2 + χB(∇× a)2
]

(91)

where A is the e.m. vector potential, c is the veloc-
ity of light, and ~ is put to be unity. In the above
equations, the optimal value of the order parameter is
scaled to be unity, and hence the correlation lengths
ξB, ξF and the thermodynamic critical fields HcF , HcB

are temperature dependent both for fermion pairing and
Bose condensation. It is noted that the penetration
length of the fermion pairing (boson condensation) λF
(λB) is related to HcF (HcB) as HcF = φ0/(2

√
2πξFλF )

(HcB = φ0/(
√

2πξBλB)). We take the lattice constant
as the unit of length. Then ξF (0) ∼ J/∆, ξB ∼ x−1/2,
and the condensation energy per unit area is given by
HcF (0)2/(8π) ∼ ∆2/J , and HcB(0)2/(8π) ∼ tx2.

Now we consider the consequences derived from this
GL free energy. One is on the interplay between

the Berezinskii-Kosterlitz-Thouless (BKT) transitions
for the fermion pairing and boson condensation. We
consider the type II limit, and neglect A for the mo-
ment. As is well known, the binding-unbinding of the
topological vortex excitations leads to the novel phase
transition (BKT transition) in 2D. This is due to the
logarithmic divergence of the vortex energy with respect
to the sample size. This energy is competing with the en-
tropy term which is also logarithmically diverging. Above
some critical temperature the entropy dominates, and the
free vortex excitations are liberated resulting in the ex-
ponential decay of the order parameter. However this
logarithmic divergence is cut-off when the order parame-
ter is coupled to the massless gauge field a. Namely the
gauge field screens the vortex current, and |(∇−ia)φ| and
|(∇− 2ia)ψ| decays exponentially beyond some penetra-
tion lengths. This means that the BKT transition for
the fermion pairing and boson condensation disappear
when the gauge field a is massless. In other words, these
two order parameters are coupled through the gauge
field, and the BKT transition occurs only simultane-
ously where the gauge field becomes massive due to the
Higgs mechanism. Therefore the phase transition lines
for fermion pairing and boson condensation in the phase
diagram Fig. 21 become the crossover lines and only the
superconducting transition remains to be the real BKT
transition.

Now we turn to the vortex structures in the super-
conducting state. The most intriguing issue here is the
quantization of the magnetic flux. Because the boson has
charge e while the fermion pairing −2e, the question is
whether the hc/e vortex may be more stable than the
conventional hc/2e vortex. To study this issue, we com-
pare the energy cost of the two types of vortex structure,
i.e. (i) type A: the fermion pairing order parameter ψ
vanished at the core, with its phase winding around it.
The boson condensation does not vanish and the vortex
core state is the Fermi liquid. The flux quantization is
hc/2e. (ii) type B: the Bose condensation is destroyed at
the core and the fermion pairing remains finite. Then the
vortex core state is the spin gap state. The flux quanti-
zation is hc/e in this case. The energy of each vortex is
estimated as follows. First the Ioffe-Larkin composition
rule results in the penetration length λ of the magnetic
field as

λ2 = λ2
F + λ2

B, (92)

which is equivalent to ρ−1
s = (ρFs )−1 + (ρBs )−1 derived

in the previous subsection. The contribution from the
region where the distance from the core is larger than
ξF , ξB is estimated similarly to the usual case.

E0 =

[

φ0

4πλ

]2

ln

[

λ

max(ξF , ξB)

]

(93)

for the type A, and 4E0 for the type B because the quan-
tized flux is doubled in the latter case. The core energy
Ec is given by the condensation energy per area times
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the area of the core. For type A vortex

E(A)
c ≈ H2

cF ξ
2
F ≈ J (94)

while for type B vortex

E(B)
c ≈ H2

cBξ
2
B ≈ tx. (95)

Then the vortex energies are estimated to be E(A) ≈
E0 + E

(A)
c and E(B) = 4E0 + E

(B)
c , respectively. Note

that E0 is proportional to λ−2 which is dominated by

λ−2
B = x and hence E0, E

(B)
c are proportional to x while

E
(A)
c is a constant of order J . The latter energy is in

agreement with the estimate of the vortex in the BCS
theory discussed in Section V.B and is the dominant en-
ergy for sufficiently small x. We come to the conclusion
that type B vortex (with hc/e flux quantization) will be
more stable in the underdoped region. This conclusion
was reached by Sachdev, 1992 and by Nagaosa and Lee,
1992 and appears to be a general feature of the U(1)
gauge theory. Unfortunately, the experimental search for
stable hc/e vortices have so far come up negative (Wynn
et al., 2001). In section XII.C we will describe how this
problem is fixed by the SU(2) gauge theory, which is
designed to be more accurate for small doping.

D. Confinement-deconfinement problem

Despite the qualitative success of the mean field and
U(1) gauge field theory, there are several difficulties with
this picture. One is that the gauge fluctuations are strong
and one can not have a well controlled small expansion
parameter, except rather formal ones such as the large
N expansion. This issue is closely related to the con-
finement problem in lattice gauge theory, and will be
discussed below and also in section X.H and XI.F.

The coupling constant of the gauge field is defined as
the inverse of the coefficient of f2

µν in the Lagrangian.
It is well-known that the strong coupling gauge field
leads to confinement. In the confining phase, only the
gauge singlet particles appear in the physical spectrum,
which corresponds for example to the physical electron
and magnon in the present context. Below we give a brief
introduction to this issue.

Up to now the discussion is at the Gaussian fluctua-
tion level where the effective action for the gauge field
has been truncated at the quadratic order in the contin-
uum approximation. However we are starting from the
infinite-coupling limit, and even if the finite coupling is
produced by integrating over the matter field, the strong
coupling effect must be considered seriously. In the orig-
inal problem the gauge field is defined on the lattice and
the periodicity with respect to aij → aij + 2π must be
taken into account. Namely the relevant model is that
of the compact lattice gauge theory. Let us first consider
the most fundamental model without the matter field;

Sgauge = −1

g

∑

plaquette

(1 − cos fµν) (96)

where

fµν = ai,i+µ + ai+µ,i+µ+ν − ai+ν,i+µ+ν − ai,i+ν (97)

is the flux penetrating through the plaquette in the
(d+1)-dimensional space, and µ, ν = x, y, · · · . Now
Sgauge is a periodic function of fµν with period 2π and
one can consider tunneling between different potential
minima. This leads to the “Bloch state” of fµν when
the potential barrier height 1/g is low enough, while it
is “localized” near one minimum when 1/g is high. The
former corresponds to the quantum disordered fµν , and
leads to the linear confining force as shown below (con-
fining state). On the other hand, in the latter case, one
can neglect the compact nature of the gauge field, and
the analysis in previous sections are justified (deconfining
state). For this confinement-deconfinement transition,
one can define the following order parameter, i.e. the
Wilson loop:

W (C) = 〈exp[iq

∮

C

dxµaµ(x)]〉 (98)

where the loop C consists of the paths of length T along
the time direction and those of length R along the spa-
tial direction. It is related to the gauge potential V (R)
between the two static gauge charges ±q with opposite
sign put at the distance R as

W (C) = exp[−V (R)T ]. (99)

There are two types of behavior of W (C), i.e. (i) area
law: W (C) ∼ e−αRT , and (ii) perimeter law: W (C) ∼
e−β(R+T ), where α, β are constants. In the first case (i),
the potential V (R) is increasing linearly in R, and hence
the two gauge charges can never be free. Therefore it
corresponds to confinement, while the other case (ii) to
deconfinement.

It is known that the compact QED (pure gauge model)
in (2+1)D is always confining however small the coupling
constant is (Polyakov, 1987). The argument is based on
the instanton configuration, which is enabled by the com-
pactness of the gauge field. This instanton is the source
of the flux with the field distribution

b(x) =
x

2|x|3 . (100)

where x = (r, τ) is the (2+1)D coordinates in the imagi-
nary time formalism, and b(x) = (ey(x),−ex(x), b(x)) is
the combination of the “electric field” eα(x) and “mag-
netic field” b(x). This corresponds to the tunneling phe-
nomenon of the flux because the total flux slightly above
(future) or below (past) of the instanton differs by 2π.
The anti-instanton corresponds to the sink of the flux.
This instanton/anti-instanton corresponds to the singu-
lar configuration in the continuous approximation, but
is allowed in the compact model on a lattice. Therefore
(anti)instantons take into account the compact nature of
the original model in the continuum approximation. It
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is also clear from eq. (100) that the (anti)instanton be-
haves as the (negative) positive magnetic charge. Then
it is evident that when we plug in the (anti)instanton
configurations into the action

S =

∫

d3x
1

2g
[b(x)]2 (101)

( g is the coupling constant), we obtain the Coulomb
1/|x|-interaction between the (anti)instantons as

Sinst =
∑

i<j

qiqj
|xi − xj |

. (102)

where qi is the magnetic charge, which is
√
g/2 for in-

stanton and −√
g/2 for anti-instanton.

Now it is well-known that the Coulomb gas in 3D is
always in the screening phase, namely the long range
Coulomb interaction is screened to be the short range
one due to the cloud of the opposite charges surround-
ing the charge. Therefore the creation energy of the
(anti)instanton is finite and the free magnetic charges
are liberated. This free magnetic charges disorder the
gauge field and makes the Wilson loop show the area
law, i.e. confinement.

The discussion up to now is for the pure gauge model
without matter field. With matter field the confine-
ment issue becomes very subtle since the Wilson loop
does not work as the order parameter any more. Fur-
thermore the confinement disappears above some transi-
tion temperature even in the pure gauge model. In the
presence of matter field, the confinement-deconfinement
transition at finite temperature is replaced by the grad-
ual crossover to the plasma phase in the high temper-
ature limit (Polyakov, 1978; Susskind, 1979; Svetitsky,
1986). Therefore we can expect that the slave-boson the-
ory without confinement describes the physics of the in-
termediate energy scale even though the ground state is
the confining state. Indeed, within the U(1) gauge the-
ory, the ground states are either antiferromagnetic, su-
perconductor or Fermi-liquid and are all confining. Nev-
ertheless, the pseudogap region which exists only at fi-
nite temperatures may be considered “deconfined” and
describable by fermions and bosons coupled to noncom-
pact gauge fields. We emphasize once again that in this
scenario the fermions and bosons are not to be consid-
ered free physical objects. Their interaction with gauge
fields are important and physical gauge-invariant quan-
tities are governed by the Ioffe-Larkin rule within the
Gaussian approximation.

It is of great interest to ask the question of whether
a deconfined ground state is possible in a U(1) gauge
theory in the presence of matter field. This issue was first
addressed in a seminal paper by Fradkin and Shenker,
1979 who considered a boson field coupled to a compact
U(1) gauge field. The following bosonic action is added
to Sgauge :

SB = t
∑

i

cos (∆µθ(ri) − qaµ(ri)) (103)

Here the Bose field is represented by phase fluctuation
only, ∆µ is the lattice derivative and aµ(ri) = ai,i+µ is
the gauge field on the link i, i + µ and q is an integer.
It is interesting to consider the phase diagram in the t, g
plane. Along the t = 0 line, we have pure gauge theory
which is always confining in 2 + 1 dimension. For g ≪ 1,
gauge fluctuations are weak and SB reduces to the XY
model weakly coupled to a U(1) gauge field, which ex-
hibits an ordered phase called the Higgs phase at zero
temperature. Note that in the Higgs phase, the gauge
field is gapped by the Anderson-Higgs mechanism. On
the other hand, it is also gapped in the confinement phase
due to the screening of magnetic charges described ear-
lier. There is no easy way to distinguish between these
two phases and the central result of Fradkin and Shenker
is that for q = 1 the Higgs phase and the confinement
phases are smoothly connected to each other. Indeed,
it was argued by Nagaosa and Lee, 2000 that for the
1+2D case the entire t-g plane is covered by the Higgs-
confinement phase, with the exception of the line g = 0,
which contains the XY transition.

The situation is dramatically different for q = 2, i.e. if
the boson field corresponds to a pairing field. Then it is
possible to distinguish between the Higgs phase and the
confinement phase by asking whether two q = ±1 have a
linear confinement potential between them or not. In this
case there is a phase boundary between the confined and
the Higgs phase, and the Higgs phase (the pairing phase)
is deconfined. One way of understanding this deconfine-
ment is that the paired phase has a residual Z2 gauge
symmetry, i.e. the pairing order parameter is invariant
under a sign change of the underlying q = 1 fields which
make up the pair. Furthermore, it is known that the Z2

gauge theory has a confinement-deconfinement transition
in 2 + 1 dimensions. Thus the conclusion is that a com-
pact U(1) gauge theory coupled to a pair field can have
a deconfined phase. This is indeed the route to a decon-
fined ground state proposed by Read and Sachdev, 1991
and Wen, 1991. In the context of the U(1) gauge theory,
the fermion pair field ∆ plays the role of the q = 2 boson
field in eq. (103). In such a phase, the spinon and holons
are deconfined, leading to the phenomenon of spin and
charge fractionalization. A third elementary excitation
in this theory is the Z2 vortex, which is gapped.

Senthil and Fisher, 2000 pointed out that the square
root of ∆ carried unit gauge charge and one can combine
this with the fermion to form a gauge invariant spinon
and with the boson to form a gauge invariant “chargon”.
The spinon and chargon only carry Z2 gauge charges and
can be considered almost free, They propose an exper-
iment to look for the gapped Z2 vortex but the results
have so far been negative. The connection between the
U(1) slave-boson theory and their Z2 gauge theory was
clarified by Senthil and Fisher, 2001a.

There is yet another route to a deconfined ground
state, and that is a coupling of a compact U(1) gauge field
to gapless fermions. Nagaosa, 1993 suggested that dissi-
pation due to gapless excitations lead to deconfinement.
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The special case of coupling to gapless Dirac fermions
is of special interest. This route (called the U(1) spin
liquid) appears naturally in the SU(2) formulation and
will be discussed in detail in section XI.F. The hope ex-
pressed in section XII is to use the proximity to this de-
confined state to understand the pseudogap state. This
is a more attractive scenario compared with the reliance
purely on finite temperature to see deconfinement effects
as described earlier in this section.

In the literature there have been some confusing dis-
cussions of the role of confinement in the gauge theory ap-
proach to strong correlation. In particular, Nayak, 2000,
2001 has claimed that slave particles are always confined
in U(1) gauge theories. His argument is based on the
fact that since these gauge fields are introduced to en-
force constraint, they do not have restoring force and the
coupling constant is infinite. What he overlooks is the
possibility that partially integrating out the matter fields
will generate restoring forces, which brings the problem
to one of strong but finite coupling, and then sweeping
conclusions can no longer be made. Comments by Ichi-
nose and Matsui, 2001, Ichinose et al., 2001, and by Os-
hikawa, 2003 have clarified the issues and in our opinion
adequately answered Nayak’s objections. For example,
Ichinose and Matsui, 2001 pointed out that 3 + 1 dimen-
sional SU(3) gauge theory coupled to N fermions is in
the deconfined phase even at infinite coupling for N > 7.
Another counter example is found by Wen, 2002b, Rant-
ner and Wen, 2002 and Hermele et al., 2004 who showed
that the U(1) gauge theory coupled to massless Dirac
fermions is in a gapless phase (or the deconfined phase)
for sufficiently large N (see section XI.F). There is also
numerical evidence from Monte Carlo studies that the
SU(N) Hubbard-Heisenberg model at N = 4 exhibits a
gapless spin liquid phase, i.e. a Mott insulator with power
law spin correlation without breaking of lattice transla-
tion symmetry (Assaad, 2004). This spin liquid state is
strongly suggestive of the stability of a deconfined phase
with U(1) gauge field coupled to Dirac fermions.

E. Limitations of the U(1) gauge theory

The U(1) gauge theory, which only includes Gaussian
fluctuations about mean field theory, suffers from sev-
eral limitations which are especially serious in the un-
derdoped regime. Apart from the confinement issue dis-
cussed in the last section, we first mention a difficulty
with the linear T coefficient of the superfluid density. As
long as the gauge fluctuation is treated as Gaussian, the
Ioffe-Larkin law holds and one predicts that the super-
fluid density ρs(T ) behaves as ρs(T ) ≈ ax − bx2T . The
ax term agrees with experiment while the −bx2T term
does not (Lee and Wen, 1997; Ioffe and Millis, 2001) as
already explained in section V.A. This failure is traced to
the fact that in the Gaussian approximation, the current
carried by the quasiparticles in the superconducting state
is proportional to xvF . We believe this failure is a sign

that nonperturbative effects again become important and
confinement takes place, so that the low energy quasi-
particles near the nodes behave like BCS quasiparticles
which carry the full current vF . This is certainly beyond
the Gaussian fluctuation treatment described here.

A second difficulty is that experimentally it is known
from neutron scattering that spin correlations at (π, π)
are enhanced in the underdoped regime. This happens
at the same time while a spin gap is forming in the pseu-
dogap regime. The U(1) mean field theory explains the
existence of the spin gap as due to fermion pairing. How-
ever, this reduces the fermion density of states and it is
not clear how one can get an enhancement of the spin cor-
relation unless one introduces phenomenologically RPA
interactions (Brinckmann and Lee, 2001). The problem
is more serious because the gauge field is gapped in the
fermion paired state and one cannot use gauge fluctua-
tion to enhance the spin correlation. The gapping of the
gauge field also tends to suppress fermion pairing self-
consistently (Ubbens and Lee, 1994). We shall see that
both these difficulties are resolved by the SU(2) formu-
lation.

A third difficulty has to do with the structure of the
vortex core in the underdoped limit.(Wen and Lee, 1996)
As mentioned in section IX.C, the U(1) gauge theory pre-
dicts the stability of hc/e vortices, which has not been
observed. This is a serious issue especially because the
STM experiments show that the pseudogap remains in
the vortex core. Therefore it should be type B in the
U(1) theory, which carries hc/e flux. On the other hand,
the hc/2e vortex is not “cheap” because the pairing am-
plitude vanishes and one has to pay the pairing energy
at the core. These difficulties arise because in the U(1)
theory, the fermions becomes “strong” superconductor
at low temperature in the underdoped region. However
this contradicts with the fact that at half-filling the d-
wave RVB state is equivalent to the π-flux state, which is
not “superconducting”. In short, the U(1) theory misses
the important low lying fluctuation related to the SU(2)
particle-hole symmetry at half-filling. By incorporating
this symmetry to the gauge field even at finite doping,
we will be lead to the SU(2) gauge theory of high Tc
superconductors, which we will next discuss.

X. SU(2) SLAVE-BOSON REPRESENTATION FOR SPIN

LIQUIDS

In this section we are going to develop SU(2) slave-
boson theory for spin liquids and underdoped high Tc
superconductors. The SU(2) slave-boson theory is equiv-
alent to the U(1) slave-boson theory discussed in the last
section. However, the SU(2) formalism makes more sym-
metries of the slave-boson theory explicit. This makes it
easier to see the low energy collective modes in the SU(2)
formalism, which in turn allows us to resolve some diffi-
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culties of the U(1) slave-boson theory.2 To develop the
SU(2) slave-boson theory, let us first describe another
way to understand the U(1) gauge fluctuations in the
slave-boson theory. In this section we will concentrate
on undoped case where the model is just a pure spin
system. Even though the theory involves only fermionic
representation of the spin in the underdoped case, we
continue to refer to the theory as slave-boson theory in
anticipation of the doped case. We generalize the SU(2)
salve-boson theory to doped model in the next section.

A. Where does the gauge structure come from?

According to the U(1) slave-boson mean-field theory,
the fluctuations around the mean-field ground state are
described by gauge fields and fermion fields. Remember
that the original model is just a interacting spin model
which is a purely bosonic model. How can a purely
bosonic model contain excitations described by gauge
fields and fermion fields? Should we believe the result?

Let us examine how the results are obtained. We first
split the bosonic spin operator into a product of two

fermionic operators Si = 1
2f

†
i σfi. We then introduce

a gauge field to glue the fermions back into a bosonic
spin. From this point of view it appears that the gauge
bosons and the fermions are fake and their appearance
is just a mathematical artifact. The appearance of the
fermion field and gauge field in a purely bosonic model
seems only indicates that the slave-boson theory is incor-
rect.

However, we should not discard the slave-boson mean-
field theory too quickly. It is actually capable of pro-
ducing pictures that agree with the common sense: the
excitations in a bosonic spin system are bosonic excita-
tions corresponding to spin flips, provided that the gauge
field is in a confining phase. In the confining phase of the
U(1) gauge theory, the fermions interact with each other
through a linear potential and can never appear as quasi-
particles at low energies. The gauge bosons have a large
energy gap in the confining phase and are absent from
the low energy spectrum. The only low energy excita-
tions are bound state of two fermions which carry spin-1
and are bosons. So the mean-field theory plus the gauge
fluctuations, may not be very useful, but is not wrong.

On the other hand, the slave-boson mean-field theory
(plus gauge fluctuations) is also capable of producing pic-
tures that defy the common senses, if the gauge field is in
a deconfined phase. In this case the fermions and gauge
bosons may appear as well defined quasiparticles. The
question is do we believe the picture of deconfined phase?
Do we believe the possibility of emergent gauge bosons

2 We would like to point out that those difficulties are not because
the U(1) slave-boson theory is incorrect. The difficulties are
results of incorrect treatment of the U(1) slave-boson theory, for
example, overlooking some low energy soft modes.

and fermions from a purely bosonic model? Clearly, the
slave-boson construction outlined above is far too for-
mal to convince most people to believe such drastic re-
sults. However, recently, it was realized that some mod-
els (Kitaev, 2003; Levin and Wen, 2003; Wen, 2003b)
can be solved by the slave-boson theory exactly (Wen,
2003c). Those models are in deconfined phases and con-
firm the striking results of emergence of gauge bosons
and fermions from the slave-boson theory.

To have an intuitive picture of the correlated ground
state which leads to emergent gauge bosons and fermions,
let us try to understand how a mean-field ansatz χij is
connected to a physical spin wave function. We know

that the ground state, |Ψ(χij)
mean〉, of the mean-field Hamil-

tonian

Hmean = J̃
∑

(χijf
†
i fj + h.c.) +

∑

a0(f
†
i fi − 1),

(104)

is not a valid wavefunction for the spin system, since it
may not have one fermion per site. To connect to physical
spin wavefunction, we need to include fluctuations of a0

to enforce the one-fermion-per-site constraint. With this
understanding, we may obtain a valid wave-function of
the spin system Ψspin({αi}) by projecting the mean-field
state to the subspace of one-fermion-per-site:

Ψ
(χij)
spin ({αi}) = 〈0f |

∏

i

fαii|Ψ(χij)
mean〉. (105)

where |0f 〉 is the state with no f -fermions: fαi|0f 〉 = 0.
Eq. (105) connects the mean-field ansatz to physical spin
wavefunction. It allows us to understand the physical
meaning of the mean-field ansatz and mean-field fluctu-
ations.

For example, the projection eq. (105) give the gauge
transformation eq. (39) a physical meaning. Usually,
for different choices of χij , the ground states of Hmean

eq. (104) correspond to different mean-field wavefunc-

tions |Ψ(χij)
mean〉. After projection they lead to different

physical spin wavefunctions Ψ
(χ̃ij)
spin ({αi}). Thus we can

regard χij as labels that label different physical spin
states. However, two mean-field ansatz χij and χ̃ij re-
lated by a gauge transformation

χ̃ij = eiθiχije
−iθj (106)

give rise to the same physical spin state after the projec-
tion

Ψ
(χ̃ij)
spin ({αi}) = ei

∑

i
θiΨ

(χij)
spin ({αi}) (107)

Thus χij is not a one-to-one label, but a many-to-one la-
bel. This property is important for us to understand the
unusual dynamical properties of χij fluctuations. Using
many labels to label the same physical state also make
our theory a gauge theory.

Let us consider how the many-to-one property or the
gauge structure of χij affect its dynamical properties. If
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χij was an one-to-one label of physical states, then χij

would be like the condensed boson amplitude 〈φ(x, t)〉 in
boson superfluid or the condensed spin moment 〈Si(t)〉
in SDW state. The fluctuations of χij would correspond
to a bosonic mode similar to sound mode or spin-wave
mode.3 However, χij does not behave like local order
parameters, such as 〈φ(x, t)〉 and 〈Si(t)〉, which label
physical states without redundancy. χij is a many-to-one
label as discussed above. The many-to-one label creates a
interesting situation when we consider the fluctuations of
χij – some fluctuations of χij do not change the physical
state and are unphysical. Those fluctuations are called
the pure gauge fluctuations. The effective theory for χij

must be gauge invariant: for example, the energy for the
ansatz χij satisfies

E(χij) = E(eiθiχije
−iθj ).

If we consider the phase fluctuations of χij = χ̄ije
iaij ,

then the energy for the fluctuations aij satisfies

E(aij) = E(aij + θi − θj).

This gauge invariant property of the energy (or more pre-
cisely, the action) drastically change the dynamical prop-
erties of the fluctuations. It is this property that makes
fluctuations of aij behave like gauge bosons, which are
very different from sound mode and spin-wave mode.4

If we believe that gauge bosons and fermions do appear
as low energy excitations in the deconfined phase, then a
natural question will be what do those excitations looks
like? The slave-boson construction eq. (105) allows us
to construct an explicit physical spin wavefunction that
corresponds to a gauge fluctuation aij

Ψ
(aij)
spin = 〈0f |

∏

i

fαii|Ψ(χ̄ije
iaij )

mean 〉.

We would like to mention that the gauge fluctuations
affect the average

P123 = 〈χ12χ23χ31〉 = 〈χ̄12χ̄23χ̄31〉ei(a12+a23+a31)

Thus the U(1) gauge fluctuations aij , or more precisely
the flux of U(1) gauge fluctuations a12 +a23 +a31, corre-
spond to the fluctuations of the spin chirality S1 · (S2 ×
S3) = P123−P132

4i as pointed out in the last section.
Similarly, the slave-boson construction also allows us

to construct a physical spin wavefunction that corre-
sponds to a pair of the fermion excitations. We start
with the mean-field ground state with a pair of particle-
hole excitations. After the projection eq. (105), we ob-
tain the physical spin wavefunctions that contain a pair

3 More precisely, the sound mode and spin-wave mode are so called
scaler bosons. The fluctuations of local order parameters always
give rise to scaler bosons.

4 In the continuum limit, the gauge bosons are vector bosons –
bosons described by vector fields.

of fermions:

Ψferm
spin (i1, λ1; i2, λ2) = 〈0|(

∏

i

fαii)f
†
λ1i1

fλ2i2 |Ψ
(χ̄ij)
mean〉.

We see that the gauge fluctuation aij and fermion ex-
citation do have a physical “shape” given by the spin

wavefunction Ψ
(aij)
spin and Ψferm

spin , although the shape is too
complicated to picture.

Certainly, the two types of excitations, the gauge fluc-
tuations and the fermion excitations, interact with each
other. The form of the interaction is determined by the
fact that the fermions carry unit charge of the U(1) gauge
field. The low energy effective theory is given by eq. (38)
with ∆ij = 0 and bi = 0.

B. What determines the gauge group?

We have mentioned that the collective fluctuations
around the a slave-boson mean-field ground state are de-
scribed by U(1) gauge field. Here we would like to ask
why the gauge group is U(1)? The reason for the gauge
group to be U(1) is that the fermion Hamiltonian and
the mean-field Hamiltonian are invariant under the local
U(1) transformation

fi → eiθifi, χij → eiθiχije
−iθj

The reason that the fermion Hamiltonian is invariant un-
der the local U(1) transformation is that the fermion
Hamiltonian is a function of spin operator Si and the

spin operator Si = 1
2f

†
i σfi is invariant under the local

U(1) transformation. So the gauge group is simply the
group formed all the transformations between f↑i and f↓i

that leave the physical spin operator invariant.

C. From U(1) to SU(2)

This deeper understanding of gauge transformation al-
lows us to realize that U(1) is only part of the gauge
group. The full gauge group is actually SU(2). To see
the gauge group to be SU(2) let us introduce

ψ1i = f↑i, ψ2i = f †
↓i

We find

S+
i =f †

i σ
+fi =

1

2
(ψ†

1iψ
†
2i − ψ†

2iψ
†
1i)

Szi =
1

2
f †

i σ
zfi =

1

2
(ψ†

1iψ1i + ψ†
2iψ2i − 1)

Now it is clear that Si and any Hamiltonian expressed
in terms of Si are invariant under local SU(2) gauge
transformation:

(

ψ1i

ψ2i

)

→Wi

(

ψ1i

ψ2i

)

, Wi ∈ SU(2)
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The local SU(2) invariance of the spin Hamiltonian im-
plies that the mean-field Hamiltonian not only should
have the U(1) gauge invariance, it should also have the
SU(2) gauge invariance.

To write down the mean-field theory with explicit
SU(2) gauge invariance, we start with the mean-field
ansatz that includes pairing correlation:

χijδαβ = 2〈f †
iαfjβ〉, χij = χ∗

ji.

∆ijǫαβ = 2〈fiα fjβ〉, ∆ij = ∆ji, (108)

After replacing fermion bi-linears with χij and ∆ij in
eq. (35), we obtain the following mean-field Hamiltonian
with pairing

Hmean =
∑

〈ij〉
−3

8
Jij

[

(χjif
†
iαfjα − ∆ij f

†
iαf

†
jβǫαβ) + h.c

−|χij |2 − |∆ij |2
]

However, the above mean-field Hamiltonian is incom-
plete. We know that the physical Hilbert space is formed
by states with one f -fermion per site. Such states cor-
respond to states with even ψ-fermion per site. The
states with even ψ-fermion per site are SU(2) singlet

one every site. The operators ψ†
iτψi that generate lo-

cal SU(2) transformations vanishes within the physical
Hilbert space, where τ = (τ1, τ2, τ3) are the Pauli matri-
ces. In the mean-field theory, we replace the constraint

ψ†
iτψi = 0 by its average

〈ψ†
iτψi〉 = 0.

The averaged constraint can be enforced by including

Lagrangian multiplier
∑

i a
l
0(i)ψ

†
iτ
lψi in the mean-field

Hamiltonian. This way we obtain the mean-field Hamil-
tonian of SU(2) slave-boson theory (Affleck et al., 1988;
Dagotto et al., 1988):

Hmean (109)

=
∑

〈ij〉
−3

8
Jij

[

(χjif
†
iαfjα − ∆ij f

†
iαf

†
jβǫαβ) + h.c

− |χij |2 − |∆ij |2
]

+
∑

i

[

a3
0(f

†
iαfiα − 1) + [(a1

0 + ia2
0)fiαfiβǫαβ + h.c.]

]

So the mean-field ansatz that describes a SU(2) slave-
boson mean-field state is really given by χij , ∆ij , and
a0. We note that χij , ∆ij , and a0 are invariant under
spin rotation. Thus the mean-field ground state ofHmean

is a spin singlet. Such a state describes a spin liquid state.

The SU(2) mean-field Hamiltonian eq. (109) is invari-
ant under local SU(2) gauge transformation. To see such
an invariance explicitly, we need to rewrite eq. (109) in

terms of ψ:

Hmean =
∑

〈ij〉

3

8
Jij

[

1

2
Tr(U †

ij Uij) + (ψ†
iUijψj + h.c.)

]

+
∑

i

al0ψ
†
iτ
lψi (110)

where

Uij =

(−χ∗
ij ∆ij

∆∗
ij χij

)

= U †
ji (111)

Note that det(U) < 0, so that Ujk is not a member of
SU(2), but iUjk is a member up to a normalization con-
stant. From eq. (110) we now can see clearly that the
mean-field Hamiltonian is invariant under a local SU(2)
transformation Wi:

ψi →Wiψi

Uij →Wi Uij W
†
j (112)

We note that in contrast to Φi↑ and Φi↓ introduced
in eq. (44), the doublet ψi does not carry a spin in-
dex. Thus the redundancy in the Φiσ representation is
avoided, which accounts for a factor of 2 difference in
front of the bilinear ψi term in eq. (110) vs eq. (45).
However, the spin-rotation symmetry is not explicit in
our formalism and it is hard to tell if eq. (110) describes
a spin-rotation invariant state or not. In fact, for a gen-

eral Uij satisfying Uij = U †
ji, eq. (110) may not describe

a spin-rotation invariant state. But, if Uij has a form

Uij =χµijτ
µ, µ = 0, 1, 2, 3,

χ0
ij =imaginary, χlij = real, l = 1, 2, 3, (113)

then eq. (110) will describe a spin-rotation invariant
state. This is because the above Uij has the form of
eq. (111). In this case eq. (110) can be rewritten as
eq. (109) where the spin-rotation invariance is explicit.
In eq. (113), τ0 is the identity matrix.

Now the mean-field ansatz can be more compactly rep-
resented by (Uij ,a0(i)). Again the mean-field ansatz
(Uij ,a0(i)) can be viewed as a many-to-one label of
physical spin states. The physical spin state labeled by
(Uij ,a(i)) is given by

|Ψ(Uij ,a0(i))
spin 〉 = P|Ψ(Uij ,a0(i))

mean 〉

where |Ψ(Uij ,a0(i))
mean 〉 is the ground state of the mean-

field Hamiltonian eq. (110) and P is the projection that
project into the subspace with even numbers of ψ-fermion
per site. From the relation between the f -fermion and
the ψ-fermion, we note that the state with zero ψ-fermion
correspond to the spin-down state and the state with
two ψ-fermions correspond to the spin-up state. Since
the states with even numbers of ψ-fermion per site are
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SU(2) singlet on every site, we find that two mean-

field ansatz (Uij ,a0(i)) and (Ũij , ã(i)) related by a local
SU(2) gauge transformation

Ũij = Wi Uij W
†
j , ã0(i) · τ = Wi a0(i) · τ W †

i .

label the same physical spin state

P|Ψ(Uij ,a0(i))
mean 〉 = P|Ψ(Ũij ,ã0(i))

mean 〉

This relation represents the physical meaning of the
SU(2) gauge structure.

Just like the U(1) slave-boson theory, the fluctuations
of the mean-field ansatz correspond to collective exci-
tations. In particular, the “phase” fluctuations of Uij

represent the potential gapless excitations. However,
unlike the U(1) slave-boson theory, the “phase” of Uij

is described by a two by two hermitian matrix alijτ
l,

l = 1, 2, 3, on each link. If (Ūij , ā(i)) is the ansatz that
describe the mean-field ground state, then the potential
gapless fluctuations are described by

Uij = Ūije
ial

ijτ
l

, a0(i) = ā0(i) + δa0(i).

Since (Uij ,a0(i)) is a many-to-one labeling, the fluctu-
ations (aij , δa0(i)) correspond to SU(2) gauge fluctua-
tions rather than usual bosonic collective modes such as
phonon modes and spin waves.

D. A few mean-field ansatz for symmetric spin liquids

After a general discussion of the SU(2) slave-boson
theory, let us discuss a few mean-field ansatz that have
spin rotation, translation Tx,y, and parity Px,y,xy sym-
metries. We will call such a spin state symmetric spin
liquid. Here Tx and Ty are translation in x- and y-
directions, and Px, Py and Pxy are parity transformations
(x, y) → (−x, y), (x, y) → (x,−y), and (x, y) → (y, x) re-
spectively. We note that Px,y,xy parity symmetries imply
the 90◦ rotation symmetry.

We will concentrate on three simple mean-field ansatz
that describe symmetric spin liquids:

π-flux liquid (πfL) state5 (Affleck and Marston, 1988)

Ui,i+x = −i(−)iyχ,

Ui,i+y = −iχ, (114)

staggered flux liquid (sfL) 6 state (Affleck and Marston,

5 This state was called π-flux (πF) state in literature.
6 In Wen and Lee, 1996 and Lee et al., 1998, this phase was called

simply the staggered flux (sF) state. In this paper we reserve sF
to denote the U(1) mean field state which explicitly breaks trans-
lational symmetry and which exhibits staggered orbital currents,
as originally described by Hsu et al., 1991. This latter state is
also called d-density wave (ddw), following Chakravarty et al.,
2002b.

1988)

Ui,i+x = −τ3χ− i(−)i∆,

Ui,i+y = −τ3χ+ i(−)i∆, (115)

Z2-gapped state (Wen, 1991)

Ui,i+x =Ui,i+y = −χτ3

Ui,i+x+y =ητ1 + λτ2

Ui,i−x+y =ητ1 − λτ2

a2,3
0 =0, a1

0 6= 0 (116)

where (−)i ≡ (−)ix+iy . Note that the Z2 mean-field state
has pairing along the diagonal bond.

At first sight, those mean-field ansatz appear not to
have all the symmetries. For example, the Z2-gapped
ansatz are not invariant under the Px and Py parity trans-
formations and the πfL and sfL ansatz are not invari-
ant under translation in the y-direction. However, those
ansatz do describe spin states that have all the symme-
tries. This is because the mean-field ansatz are many-to-
one labels of the physical spin state, the non-invariance of
the ansatz does not imply the non-invariance of the cor-
responding physical spin state after the projection. We
only require the mean-field ansatz to be invariant up to
a SU(2) gauge transformation in order for the projected
physical spin state to have a symmetry. For example, a
Pxy parity transformation changes the sfL ansatz to

Ui,i+x = −τ3χ+ i(−)i∆,

Ui,i+y = −τ3χ− i(−)i∆,

The reflected ansatz can be transformed into the original
ansatz via a SU(2) gauge transformation Wi = (−)iiτ1.
Therefore, after the projection, the sfL ansatz describes
a Pxy parity symmetric spin state. Using the similar
consideration, one can show that the above three ansatz
are invariant under translation Tx,y and parity Px,y,xy
symmetry transformations followed by corresponding
SU(2) gauge transformations GTx,Ty

and GPx,Py,Pxy
, re-

spectively. Thus the three ansatz all describe symmetric
spin liquids. In the following, we list the corresponding
gauge transformations GTx,Ty

and GPx,Py,Pxy
for the

above three ansatz:

πfL state

GTx
(i) =(−)ixGTy

(i) = τ0, GPxy
(i) =(−)ixiyτ0,

(−)ixGPx
(i) =(−)iyGPy

(i) = τ0, G0(i) =eiθ
lτ l

(117)

sfL state

GTx
(i) =GTy

(i) = i(−)iτ1, GPxy
(i) =i(−)iτ1,

GPx
(i) =GPy

(i) = τ0, G0(i) =eiθτ
3

(118)
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Z2-gapped state

GTx
(i) =GTy

(i) = iτ0, GPxy
(i) =τ0,

GPx
(i) =GPy

(i) = (−)iτ1, G0(i) = − τ0 (119)

In the above we also list the pure gauge transformation
G0(i) that leave the ansatz invariant.

E. Physical properties of the symmetric spin liquids at

mean-field level

To understand the physical properties of the above
three symmetric spin liquids, let us first ignore the mean-
field fluctuations of Uij and consider the excitations at
mean-field level.

At mean-field level, the excitations are spin-1/2
fermions ψ (or f). Their spectrum is determined by the
mean-field Hamiltonian eq. (110) (or eq. (109)). In the
πfL state, the fermions has a dispersion

Ek = ±3

4
J |χ|

√

sin2 kx + sin2 ky

In the sfL state, the dispersion is given by

Ek = ±3

4
J
√

χ2(cos kx + cos ky)2 + ∆2(cos kx − cos ky)2

In the Z2-gapped state, we have

Ek = ±
√

ǫ2k + ∆2
1k + ∆2

2k

ǫk = − 3

4
Jχ(cos kx + cos ky)

∆1k =
3

4
ηJ ′ cos(kx + ky) + a1

0

∆2k =
3

4
λJ ′ cos(−kx + ky)

where J is the nearest-neighbor spin coupling and J ′ is
the next-nearest-neighbor spin coupling. We find that
the πfL state and the sfL state, at the mean-field level,
have gapless spin-1/2 fermion excitations, while the Z2-
gapped state has gapped spin-1/2 fermion excitations.

Should we trust the mean-field results from the slave-
boson theory? The answer is that it depends on the im-
portance of the gauge fluctuations. Unlike usual mean-
field theory, the fluctuations in the slave-boson theory
include gauge fluctuations which can generate confin-
ing interactions between the fermions. In this case the
gauge interactions represent relevant perturbations and
the mean-field state is said to be unstable. The mean-
field results from an unstable mean-field ansatz cannot
be trusted and cannot be applied to real physical spin
state. In particular, the spin-1/2 fermionic excitations in
the mean-field theory in this case will not appear in the
physical spectrum of real spin state.

If the dynamics of the gauge fluctuations is such that
the gauge interaction is short ranged, then the gauge

interactions represent irrelevant perturbations and can
be ignored. In this case the mean-field state is said to
be stable and the mean-field results can be applied to
the real physical spin liquids. In particular, the corre-
sponding physical spin state contain fractionalized spin-
1/2 fermionic excitations.

F. Classical dynamics of the SU(2) gauge fluctuations

We have seen that the key to understand the physi-
cal properties of a spin liquid described by a mean-field
ansatz (Uij , a

l
0) is to understand the dynamics of the

SU(2) gauge fluctuations. To gain some intuitive under-
standing, let us treat the mean-field ansatz (Uij ,a0(i))
as classical fields and study classical dynamics of their
fluctuations. The dynamics of the fluctuations is deter-
mined by the effective Lagrangian Leff(Uij(t),a0(i)(t)).
To obtained the effective Lagrangian, we start with the
Lagrangian representation of the mean-field Hamiltonian

L(ψi, Uij ,a0) =
∑

i

iψ†
i∂tψi −Hmean

where Hmean is given in eq. (110). The effective La-
grangian Leff is then obtained by integrating out ψ:

ei
∫

dtLeff(Uij ,a0) =

∫

DψDψ†ei
∫

dtL(ψ,Uij ,a0)

We note that L describes a system of fermions ψi and
SU(2) gauge fluctuations Uij . Thus the effective La-
grangian is invariant under the SU(2) gauge transforma-
tion

Leff(Ũij , ã0) = Leff(Uij ,a0),

Ũij = Wi(Uij)Wj , ãl0(i)τ
l = Wia

l
0(i)τ

lWi,

Wi ∈ SU(2) (120)

The classical equation of motion obtained from
Leff(Uij ,a0) determines the classical dynamics of the
fluctuations.

To see if the collective fluctuations are gapless, we
would like to examine if the frequencies of the col-
lective fluctuations are bound from below. We know
that the time independent saddle point of Leff(Uij ,a0),
(Ūij , ā0), corresponds to mean-field ground state ansatz,
and −Leff(Ūij , ā0) is the mean-field ground state energy.

If we expand −Leff(Ūije
ial

ijτ
l

, ā0) to the second order in
the fluctuation aij , then the presence or the absence of
the mass term a2

ij will determine if the collective SU(2)
gauge fluctuations have an energy gap or not.

To understand how the mean-field ansatz Ūij affect
the dynamics of the gauge fluctuations, it is convenient
to introduce the loop variable of the mean-field solution

P (Ci) = (iŪij)(iŪjk)...(iŪki) (121)

Following the comment after eq. (111) P (Ci) belongs to
SU(2) and we can write P (Ci) as P (Ci) = eiΦ(Ci), where
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Φ is the SU(2) flux through the loop Ci: i → j → k →
..→ l → i with base point i. The SU(2) flux correspond
to gauge field strength in the continuum limit. Compare
with the U(1) flux, the SU(2) flux has two new features.
First the flux Φ is a two-by-two traceless Hermitian ma-
trix. If we expand Φ as Φ = Φlτ l, l = 1, 2, 3 we can say
that the flux is represented by a vector Φl in the τ l space.
Second, the flux is not gauge invariant. Under the gauge
transformations, Φ(Ci) transforms as

Φ(Ci) →WiΦ(Ci)Wi (122)

Such a transformation rotates the direction of the vector
Φl. Since the direction of the SU(2) flux for loops with
different base point can be rotated independently by the
local SU(2) gauge transformations, it is meaningless to
directly compare the directions of SU(2) flux for different
base points. However, it is quite meaningful to compare
the directions of SU(2) flux for loops with the same base
point. We can divide different SU(2) flux configurations
into three classes based on the SU(2) flux through loops
with the same base point: (a) trivial SU(2) flux where all
P (C) ∝ τ0, (b) collinear SU(2) flux where all the SU(2)
fluxes point in the same direction, and (c) non-collinear
SU(2) flux where SU(2) flux for loops with the same base
point are in different directions. We will show below that
different SU(2) flux can lead to different dynamics for the
gauge field (Wen, 1991).

1. Trivial SU(2) flux

First let us consider an ansatz Ūij with trivial SU(2)
flux Φ(C) = 0 for all the loops (such as the πfL ansatz
in eq. (114)). We will call the state described by such
an ansatz the SU(2) state. We can perform a SU(2)
gauge transformations to transform the ansatz into a
form where all Ūij ∝ τ0. In this case, the gauge in-
variance of the effective Lagrangian implies that

Leff(Ūije
ial

ijτ
l

) = Leff(Ūije
iθl

iτ
l

eia
l
ijτ

l

e−iθ
l
jτ

l

). (123)

Under gauge transformation eiθ
1

i τ
1

, a1
ij transform as

a1
ij = a1

ij + θ1i − θ1j . The mass term (a1
ij)

2 is not in-
variant under such a transformation and is thus not al-
lowed. Similarly, we can show that none of the mass
terms (a1

ij)
2, (a2

ij)
2, and (a3

ij)
2 are allowed in the ex-

pansion of Leff. Thus the SU(2) gauge fluctuations are
gapless and appear at low energies.

We note that all the pure gauge transformations G0(i)
that leave the ansatz invariant form a group. We will call
such a group invariant gauge group (IGG). For the ansatz
Ūij ∝ τ0, the IGG is an SU(2) group formed by uniform

SU(2) gauge transformation G0(i) = eiθ
lτ l

. We recall
from the last paragraph that the (classical) gapless gauge
fluctuations is also SU(2). Such a relation between the
IGG and the gauge group of the gapless classical gauge
fluctuations is general and applies to all the ansatz (Wen,
2002b).

To understand the dynamics of the gapless gauge fluc-
tuations beyond the classical level, we need to treat two
cases separately. In the first case, the fermions have a
finite energy gap. Those fermions will generate the fol-
lowing low energy effective Lagrangian for the gauge fluc-
tuations

L =
g

8π
Trfµνf

µν

where fµν is a 2 by 2 matrix representing the field
strength of the SU(2) gauge field aij in the continuum
limit. At classical level, such an effective Lagrangian
leads to ∼ g log(r) interaction between SU(2) charges in
two spatial dimensions. So the gauge interaction at clas-
sical level is not confining (i.e. not described by a linear
potential). However, if we go beyond the classical level
(i.e. beyond the quadratic approximation) and include
the interactions between gauge fluctuations, the picture
is changed completely. In 1+2D, the interactions be-
tween gauge fluctuations change the g log(r) interaction
to a linear confining interaction, regardless the value of
the coupling constant g. So the SU(2) mean-field states
with gapped fermions are not stable. The mean-field re-
sults from such ansatz cannot be trusted.

In the second case, the fermions are gapless and have a
linear dispersion. In the continuum limit, those fermions
correspond to massless Dirac fermions. Those fermions
will generate a non-local low energy effective Lagrangian
for the gauge fluctuations, which roughly has a form,
L = g

8πTrfµν
1√
−∂2

fµν . Due to the screening of massless

fermions the interaction potential between SU(2) charges
becomes ∼ g/r at classical level. Such an interaction
represents a marginal perturbation. It is a quite compli-
cated matter to determine if the SU(2) states with gap-
less Dirac fermions are stable or not beyond the quadratic
approximation.

2. Collinear SU(2) flux

Second, let us assume the SU(2) flux is collinear. This
means the SU(2) flux for different loops with the same
base point all point in the same direction. However, the
SU(2) flux for loops with different base points may still
point in different directions (even for the collinear SU(2)
flux). Using the local SU(2) gauge transformation we can
always rotate the SU(2) flux for different base points into
the same direction, and we can pick this direction to be
τ3 direction. In this case all the SU(2) flux have a form
P (C) ∝ χ0(C) + iχ3(C)τ3. We can choose a gauge such

that the mean-field ansatz have a form Ūij = ieiφijτ
3

.
The gauge invariance of the energy implies that

Leff(Ūije
ial

ijτ
l

) = Leff(Ūije
iθiτ

3

eia
l
ijτ

l

e−iθjτ
3

). (124)

When a1,2
ij = 0, The above reduces to

Leff(Ūije
ia3

ijτ
3

) = Leff(Ūije
i(a3

ij+θi−θj)τ3

). (125)
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We find that the mass term (a3
ij)

2 is incompatible with

eq. (125). Therefore at least the gauge field a3
ij is gap-

less. How about a1
ij and a2

ij gauge fields? Let PA(i) be

the SU(2) flux through a loop with base point i. If we
assume all the gauge invariant terms that can appear in
the effective Lagrangian do appear, then Leff(Uij) will
contain the following term

Leff = aTr[PA(i)iUi,i+xPA(i + x)iUi+x,i] + ... (126)

If we write iUi,i+x as χeiφijτ
3

eia
l
xτ

l

, using the fact

Ui,i+x = U †
i+x,i (see eq. (111)), and expand to (alx)

2

order, eq. (126) becomes

Leff = −1

2
aχ2Tr([PA, a

l
xτ
l]2) + ... (127)

We see from eq. (127) that the mass term for a1
ij and a2

ij

are generated if PA ∝ τ3.
To summarize, we find that if the SU(2) flux is

collinear, then the ansatz is invariant only under a U(1)
rotation eiθn·τ where n is the direction of the SU(2) flux.
Thus the IGG=U(1). The collinear SU(2) flux also break
the SU(2) gauge structure down to a U(1) gauge struc-
ture, i.e. the low lying gauge fluctuations are described
by a U(1) gauge field. Again we see that the IGG of the
ansatz is the gauge group of the (classical) gapless gauge
fluctuations. We will call the states with collinear SU(2)
flux the U(1) states. The sfL ansatz in eq. (115) is an
example of collinear SU(2) flux.

For the U(1) states with gapped fermions, the fermions
will generate the following effective Lagrangian for the
gauge fluctuations

L =
g

8π
(e2 − b2)

where e is the “electric” field and b is the “magnetic”
field of the U(1) gauge field. Again at classical level,
the effective Lagrangian leads to ∼ g log(r) interaction
between U(1) charges and the gauge interaction at clas-
sical level is not confining. If we go beyond the classical
level and include the interactions between gauge fluctua-
tions induced by the space-time monopoles, the g log(r)
interaction will be changed to a linear confining inter-
action, regardless the value of the coupling constant g
(Polyakov, 1977). So the U(1) mean-field states with
gapped fermions are not stable.

If the fermions in the U(1) state are gapless and are
described by massless Dirac fermions (such as those in the
sfL state), those fermions will generate a non-local low
energy effective Lagrangian, which, at quadratic level,
has a form

L =
g

8π
fµν

1√
−∂2

fµν (128)

Again the screening of massless fermions change the
g log(r) interaction to g/r interactions between U(1)
charge, at lease at classical level. Such an interaction

represents a marginal perturbation. Beyond the classical
level, we will show in subsections XI.D and XI.F that,
when there are many Dirac fermions, the U(1) gauge in-
teractions with Dirac fermions are exact marginal pertur-
bations. So the U(1) states with enough gapless Dirac
fermions are not unstable. The mean-field theory can
give us a good starting point to study the properties
of the corresponding physical spin state (see subsection
XI.D).

3. Non-collinear SU(2) flux

Third, we consider the situation where the SU(2) flux
is non-collinear. In the above, we have shown that
an SU(2) flux PA can induce a mass term of form
Tr([PA, a

l
xτ
l]2). For a non-collinear SU(2) flux config-

uration, we can have in eq. (126) another SU(2) flux,
PB, pointing in a different direction from PA. The
mass term will contain in addition to eq. (127) a term
Tr([PB , a

l
xτ
l]2). In this case, the mass terms for all the

SU(2) gauge fields (a1
ij)

2, (a2
ij)

2, and (a3
ij)

2 will be gen-

erated. All SU(2) gauge bosons will gain an energy gap.

We note that ansatz Uij is always invariant under the
global Z2 gauge transformation −τ0. So the IGG always
contains a Z2 subgroup and the Z2 gauge structure is
unbroken at low energies. The global Z2 gauge transfor-
mation is the only invariance for the non-collinear ansatz.
Thus IGG=Z2 and the low energy effective theory is a
Z2 gauge theory. We can show that the low energy prop-
erties of non-collinear states, such as the existence of Z2

vortex and ground state degeneracy, are indeed identical
to those of a Z2 gauge theory. So we will call the state
with non-collinear SU(2) flux a Z2 state.

In a Z2 state, all the gauge fluctuations are gapped.
Those fluctuations can only mediate short range interac-
tions between fermions. The low energy fermions interact
weakly and behave like free fermions. Therefore, includ-
ing mean-field fluctuations does not qualitatively change
the properties of the mean-field state. The gauge interac-
tions are irrelevant and the Z2 mean-field state is stable
at low energies.

A stable mean-field spin liquid state implies the exis-
tence of a real physical spin liquid. The physical prop-
erties of the stable mean-field state apply to the physi-
cal spin liquid. If we believe these two statements, then
we can study the properties of a physical spin liquid by
studying its corresponding stable mean-field state. Since
the fermions are not confined in mean-field Z2 states, the
physical spin liquid derived from a mean-field Z2 state
contain neutral spin-1/2 fermions as its excitation.

The Z2-gapped ansatz in eq. (116) is an example where
the SU(2) flux is non-collinear. To see this, let us
consider the SU(2) flux through two triangular loops
(i, i + y, i − x) and (i, i + x, i + y) with the same base
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point i:

Ui,i+y Ui+y,i−x Ui−x,i = −χ2(ητ1 + λτ2),

Ui,i+x Ui+x,i+y Ui+y,i = −χ2(ητ1 − λτ2).

We see that when η and λ are non-zero, the SU(2) flux is
not collinear. Therefore, after projection, the Z2-gapped
ansatz give rise to a real physical spin liquid which con-
tains fractionalized spin-1/2 neutral fermionic excitations
(Wen, 1991). The spin liquid also contains a Z2 vortex
excitation. The bound state of a spin-1/2 fermionic ex-
citation and a Z2 vortex give us a spin-1/2 bosonic exci-
tation (Read and Chakraborty, 1989; Wen, 1991).

G. The relation between different versions of slave-boson

theory

We have discussed two version of the slave-boson the-
ories, the U(1) slave-boson theory and the SU(2) slave-
boson theory. In Senthil and Fisher, 2000, a third slave-
boson theory – Z2 slave-boson theory – was also pro-
posed. Here we would like to point out that all the three
version of the slave-boson theory are equivalent descrip-
tion of the same spin-1/2 Heisenberg model on square
lattice, if we treat the SU(2), U(1) or Z2 gauge fluctua-
tions exactly.

To understand the relation between the three version
of the slave-boson theory, we would like to point out that
the SU(2), U(1) or Z2 gauge structures are introduced to
project the fermion Hilbert space (which has four states
per site) to the smaller spin-1/2 Hilbert space (which has
two states per site). In the SU(2) slave-boson theory,
we regard the two fermions ψ1i and ψ2i as an SU(2)
doublet. Among the four fermion-states on each site, |0〉,
ψ†

1i|0〉, ψ
†
2i|0〉, and ψ†

1iψ
†
2i|0〉, only the SU(2) invariant

state correspond to the physical spin state. There are
only two SU(2) invariant states on each site: |0〉 and

ψ†
1iψ

†
2i|0〉 which correspond to the spin-up and the spin-

down states. So the spin-1/2 Hilbert space is obtained
from the fermion Hilbert space by projecting onto the
local SU(2) singlet subspace.

In the U(1) slave-boson theory, we regard ψ1i as a
charge +1 fermion and ψ2i as a charge −1 fermion.
The spin-1/2 Hilbert space is obtained from the fermion
Hilbert space by projecting onto the local charge neutral
subspace. Among the four fermion-states on each site,

only two states |0〉 and ψ†
1iψ

†
2i|0〉 are charge neutral.

In the Z2 slave-boson theory, we regard ψai as a
fermion that carries a unit Z2-charge. The spin-1/2
Hilbert space is obtained from the fermion Hilbert space
by projecting onto the local Z2-charge neutral subspace.

Again the two states |0〉 and ψ†
1iψ

†
2i|0〉 are the only Z2-

charge neutral states.
In the last subsection we discussed Z2, U(1), and

SU(2) spin liquid states. These must not be confused
with Z2, U(1), and SU(2) slave-boson theories. We
would like to stress that Z2, U(1), and SU(2) in the

Z2, U(1), and SU(2) spin liquid states are gauge groups
that appear in the low energy effective theories of those
spin liquids. We will call those gauge group low en-
ergy gauge group. They should not be confused with
the Z2, U(1), and SU(2) gauge groups in the Z2, U(1),
and SU(2) slave-boson theories. We will call the latter
high energy gauge groups. The high energy gauge groups
have nothing to do with the low energy gauge groups. A
high energy Z2 gauge theory (or a Z2 slave-boson ap-
proach) can have a low energy effective theory that con-
tains SU(2), U(1) or Z2 gauge fluctuations. Even the
Heisenberg model, which has no gauge structure at lat-
tice scale, can have a low energy effective theory that
contains SU(2), U(1) or Z2 gauge fluctuations. The spin
liquids studied in this paper all contain some kind of low
energy gauge fluctuations. Despite their different low
energy gauge groups, all those spin liquids can be con-
structed from any one of SU(2), U(1), or Z2 slave-boson
approaches. After all, all those slave-boson approaches
describe the same Heisenberg model and are equivalent.

The high energy gauge group is related to the way in
which we write down the Hamiltonian. We can write
Hamiltonian of the Heisenberg model in many differ-
ent ways which can contain arbitrary high energy gauge
group of our choice. We just need to split the spin into
two, four, six, or some other even numbers of fermions.
While the low energy gauge group is a property of ground
state of the spin model. It has nothing to do with how are
we going to write down the Hamiltonian. Thus we should
not regard Z2 spin liquids as the spin liquids constructed
using Z2 slave-boson approach. A Z2 spin liquid can be
constructed and was first constructed within the U(1) or
SU(2) slave-boson/slave-fermion approaches. However,
when we study a particular spin liquid state, a certain
version of the slave-boson theory may be more conve-
nient than other versions. Although a spin liquid can
be described by all the versions of the slave-boson the-
ory, sometimes a particular version may have the weakest
fluctuations.

H. The emergence of gauge bosons and fermions in

condensed matter systems

In the early days, it was believed that a pure boson
system can never generate gauge bosons and fermions.
Rather, the gauge bosons and the fermions were regarded
as fundamental. The spin liquids discussed in this pa-
per suggest that gauge bosons (or gauge structures) and
fermions are not fundamental and can emerge from local
bosonic model. Here we will discuss how those ideas were
developed historically.

Let us first consider gauge bosons. In the standard
picture of gauge theory, the gauge potential aµ is viewed
as a geometrical object – a connection of a fibre bundle.
However, there is another point of view about the gauge
theory. Many thinkers in theoretical physics were not
happy with the redundancy of the gauge potential aµ. It
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was realized in the early 1970’s that one can use gauge
invariant loop operators to characterize different phases
of a gauge theory (Wegner, 1971; Wilson, 1974; Kogut
and Susskind, 1975). It was later found that one can
formulate the entire gauge theory using closed strings
(Banks et al., 1977; Gliozzi et al., 1979; Mandelstam,
1979; Polyakov, 1979; Foerster, 1979; Savit, 1980). Those
studies reveal the intimate relation between gauge the-
ories and closed-string theories — a point of view very
different from the geometrical notion of vector potential.

In a related development, it was found that gauge
fields can emerge from a local bosonic model, if the
bosonic model is in certain quantum phases. This phe-
nomenon is also called dynamical generation of gauge
fields. The emergence of gauge fields from local bosonic
models has a long and complicated history. Emergent
U(1) gauge field has been introduced in quantum disor-
dered phase of 1+1D CPN model (D’Adda et al., 1978;
Witten, 1979). In condensed matter physics, the U(1)
gauge field have been found in the slave-boson approach
to spin liquid states (Baskaran and Anderson, 1988; Af-
fleck and Marston, 1988). The slave-boson approach not
only has a U(1) gauge field, it also has gapless fermion
fields.

It is well known that the compact U(1) gauge the-
ory is confining in 1 + 1 and 1 + 2D (Polyakov, 1975).
The concern about confinement led to an opinion that
the U(1) gauge field and the gapless fermion fields are
just a unphysical artifact of the “unreliable” slave-boson
approach. Thus the key to find emergent gauge bosons
and emergent fermions is not to write down a Lagrangian
that contain gauge fields and Fermi fields, but to show
that gauge bosons and fermions actually appear in the
physical low energy spectrum. However, only when the
dynamics of gauge field is such that the gauge field is
in the deconfined phase can the gauge boson appear as
a low energy quasiparticle. Thus after the initial find-
ing of D’Adda et al., 1978; Witten, 1979; Baskaran and
Anderson, 1988; Affleck and Marston, 1988, many re-
searches have been trying to find the deconfined phase of
the gauge field.

One way to obtain deconfined phase is to give gauge
boson a mass. In 1988, it was shown that if we break the
time reversal symmetry in a 2D spin-1/2 model, then the
U(1) gauge field from the slave-boson approach can be
in a deconfined phase due to the appearance of Chern-
Simons term (Wen et al., 1989; Khveshchenko and Wieg-
mann, 1989). The deconfined phase correspond to a spin
liquid state of the spin-1/2 model (Kalmeyer and Laugh-
lin, 1987) which is called chiral spin liquid. The chi-
ral spin state contains neutral spin-1/2 excitations that
carry fractional statistics. A second deconfined phase
was found by breaking the U(1) or SU(2) gauge struc-
ture down to a Z2 gauge structure. Such a phase contains
a deconfined Z2 gauge theory (Read and Sachdev, 1991;
Wen, 1991) and is called Z2 spin liquid (or short ranged

RVB state).7 The Z2 spin state also contains neutral
spin-1/2 excitations. But now the spin-1/2 excitations
are fermions and bosons.

The above Z2 spin liquids have a finite energy gap
for their neutral spin-1/2 excitations. In Balents et al.,
1998, a spin liquid with gapless spin-1/2 excitations was
constructed by studying quantum disordered d-wave su-
perconductor. Such a spin liquid was identified as a Z2

spin liquid using a Z2 slave-boson theory (Senthil and
Fisher, 2000). The mean-field ansatz is given by

Ui,i+x = χτ3 + ητ1, Ui,i+y = χτ3 − ητ1, (129)

a3
0 6=0, a1,2

0 = 0, Ui,i+x+y = Ui,i+x−y = γτ3.

The diagonal hopping breaks particle-hole symmetry and
breaks the U(1) symmetry of the a3

0 = 0 d-wave pairing
ansatz down to Z2. We will call such an ansatz Z2-gapless
ansatz. The ansatz describes a symmetric spin liquid,
since it is invariant under the combined transformations
(GTx

Tx, GTy
Ty, GPx

Px, GPy
Py, GPxy

Pxy, G0) with

GTx
=τ0, GTy

=τ0, G0 = − τ0,

GPx
=τ0, GPy

=τ0, GPxy
=iτ3. (130)

The fermion excitations are gapless only at four k points
with a linear dispersion.

The Z2-gapped state and the Z2-gapless state are just
two Z2 states among over 100 Z2 states that can be
constructed within the SU(2) slave-boson theory (Wen,
2002b). The chiral spin liquid and the Z2 spin liquids
provide examples of emergent gauge structure and emer-
gent fermions (or anyons). However, those results were
obtained using slave-boson theory, which is not very con-
vincing to many people.

In 1997, an exact soluble spin-1/2 model (Kitaev, 2003)

Hexact = 16g
∑

i

Syi S
x
i+x̂S

y
i+x̂+ŷS

x
i+ŷ

was found. The SU(2) slave-boson theory turns out to
be exact for such a model (Wen, 2003c). That is by
choosing a proper SU(2) mean-field ansatz, the corre-
sponding mean-field state give rise to an exact eigenstate
of Hexact after the projection. In fact all the eigenstates
of Hexact can be obtained this way by choosing different
mean-field ansatz. The exact solution allows us to show
the excitations of Hexact to be fermions and Z2 vortices.
This confirms the results obtained from the slave-boson
theory.

More exactly soluble or quasi-exactly soluble mod-
els were find for dimmer model (Moessner and Sondhi,
2001), spin-1/2 model on Kagome lattice (Balents et al.,
2002), boson model on square lattice (Senthil and

7 The Z2 state obtained in Read and Sachdev, 1991 breaks the 90◦

rotation symmetry while the Z2 state in Wen, 1991 has all the
lattice symmetries.
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Motrunich, 2002), and Josephson junction array (Ioffe
et al., 2002). A model of electrons coupled to pairing fluc-
tuations, with a local constraint which results in a Mott
insulator that obeys the spin SU(2), symmetry was also
constructed (Motrunich and Senthil, 2002). Those mod-
els realize the Z2 states. A boson model that realize Z3

gauge structure (Motrunich, 2003) and U(1) gauge struc-
ture (Senthil and Motrunich, 2002; Wen, 2003a) were also
found. 15 years after the slave-boson approach to the spin
liquids, now it is easy to construct (quasi-)exactly soluble
spin/boson models that have emergent gauge bosons and
fermions.

We would like to point out that the spin liquids are
not the first example of emergent fermions from local
bosonic models. The first example of emergent fermions,
or more generally, emergent anyons is given by the FQH
states. Although Arovas et al., 1984 only discussed
how anyons can emerge from a fermion system in mag-
netic field, the same argument can be easily general-
ized to show how fermions and anyons can emerge from
a boson system in magnetic field. Also in 1987, in a
study of resonating-valence-bond (RVB) states, emergent
fermions (the spinons) were proposed in a nearest neigh-
bor dimer model on square lattice (Kivelson et al., 1987;
Rokhsar and Kivelson, 1988; Read and Chakraborty,
1989). But, according to the deconfinement picture, the
results in Kivelson et al., 1987 and Rokhsar and Kivel-
son, 1988 are valid only when the ground state of the
dimer model is in the Z2 deconfined phase. It appears
that the dimer liquid on square lattice with only near-
est neighbor dimers is not a deconfined state (Rokhsar
and Kivelson, 1988; Read and Chakraborty, 1989), and
thus it is not clear if the nearest neighbor dimer model
on square lattice (Rokhsar and Kivelson, 1988) has the
deconfined quasiparticles or not (Read and Chakraborty,
1989). However, on triangular lattice, the dimer liquid
is indeed a Z2 deconfined state (Moessner and Sondhi,
2001). Therefore, the results in Kivelson et al., 1987 and
Rokhsar and Kivelson, 1988 are valid for the triangular-
lattice dimer model and deconfined quasiparticles do
emerge in a dimer liquid on triangular lattice.

All the above models with emergent fermions are 2D
models, where the emergent fermions can be understood
from binding flux to a charged particle (Arovas et al.,
1984). Recently, it was pointed out in Levin and Wen,
2003 that the key to emergent fermions is a string struc-
ture. Fermions can generally appear as ends of open
strings in any dimensions, if the ground state has a con-
densation of closed strings. The string picture allows a
construction of a 3D local bosonic model that has emer-
gent fermions (Levin and Wen, 2003). According to this
picture, all the models with emergent fermions contain
closed-string condensation in their ground states. Since
the fluctuations of condensed closed strings are gauge
fluctuations (Banks et al., 1977; Savit, 1980; Wen, 2003a),
this explains why the model with emergent fermions also
have emergent gauge structures. Since the gauge charges
are ends of open strings, this also explains why the emer-

gent fermions always carry gauge charges.
The second way to obtain deconfined phase is to simply

go to higher dimensions. In 3+1 dimension, the gapless
U(1) fluctuations do not generate confining interactions.
In 4+1 dimensions and above, even non-Abelian gauge
theory can be in a deconfined phase. So it is not sur-
prising that one can construct bosonic models on cubic
lattice that have emergent gapless photons (U(1) gauge
bosons) (Wen, 2002a; Motrunich and Senthil, 2002; Wen,
2003a).

The third way to obtain deconfined phase is to in-
clude gapless excitations which carry gauge charge. The
charged gapless excitations can screen the gauge interac-
tion to make it less confining. We would like to remark
that the deconfinement in this case has a different behav-
ior than the previous two cases. In the previous two cases,
the charged particles in the deconfined phases become
non-interacting quasiparticles at low energies. In the
present case, the deconfinement only means that those
gapless charged particles remain to be gapless. Those
particles may not become non-interacting quasiparticles
at low energies. The spin liquids obtained from the sfL
ansatz and the uRVB ansatz (given by eq. (115) with
∆ = 0) belong to this case. Those spin liquid are gap-
less. But the gapless excitations are not described by free
fermionic quasiparticles or free bosonic quasiparticles at
low energies. The uRVB state (upon doping) leads to
strange metal states (Lee and Nagaosa, 1992) with large
Fermi surface. We will discuss the spin liquid obtained
from the sfL ansatz in subsections XI.D and XI.F.

Finally, we remark that what is common among these
three ways to get deconfinement is that instantons are ir-
relevant and a certain gauge flux is a conserved quantity.
We shall exploit this property in section XII.E.

I. The projective symmetry group and quantum order

The Z2-gapped ansatz eq. (116) and the Z2-gapless
ansatz eq. (129), after the projection, give rise to two
spin liquid states. The two states have exactly the same
symmetry. The question here is that whether there is
a way to classify these as distinct phases. According to
Landau’s symmetry breaking theory, two states with the
same symmetry belong to the same phase. However, after
the discovery of fractional quantum Hall states, we now
know that Landau’s symmetry breaking theory does not
describe all the phases. Different quantum Hall states
have the same symmetry, but yet they can belong to dif-
ferent phases since they contain different topological or-
ders (Wen, 1995). So it is possible that the two Z2 spin
liquids contain different orders that cannot be character-
ized by symmetry breaking and local order parameters.
The issue here is to find a new set of universal quantum
numbers that characterize the new orders.

To find a new set of universal quantum numbers,
we note that although the projected wavefunctions of
the two Z2 spin liquids have the same symmetry, their
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ansatz are invariant under the same set of symme-
try transformations but followed by different gauge
transformations (see eq. (119) and eq. (130)). So
the invariant group of the mean-field ansatz for the
two spin liquids are different. The invariant group
is called the Projective Symmetry Group (PSG). The
PSG is generated by the combined transformations
(GTx

Tx, GTy
Ty, GPx

Px, GPy
Py , GPxy

Pxy) and G0. We
note that the PSG is the symmetry group of the mean-
field Hamiltonian. Since the mean-field fluctuations in
the Z2 states are weak and perturbative in nature, those
fluctuations cannot change the symmetry group of the
mean-field theory. Therefore, the PSG of an ansatz is a
universal property, at least against perturbative fluctu-
ations. The PSG can be used to characterize the new
order in the two Z2 spin liquids (Wen, 2002b). Such or-
der is called the quantum order. The two Z2 spin liquids
belong to two different phases since they have different
PSG’s and hence different quantum orders.

We know that the symmetry characterization of phases
(or orders) have some important applications. It allows
us to classify all the 230 crystal orders in three dimen-
sions. The symmetry also produces and protects gap-
less collective excitations – the Nambu-Goldstone bosons.
The PSG characterization of quantum orders has similar
applications. Using PSG, we can classify over 100 differ-
ent 2D Z2 spin liquids that all have the same symmetry
(Wen, 2002b). Just like the symmetry group, PSG can
also produce and protect gapless excitations. However,
unlike the symmetry group, PSG can produce and pro-
tects gapless gauge bosons and fermions (Wen, 2002a,b;
Wen and Zee, 2002).

XI. SU(2) SLAVE-BOSON THEORY OF DOPED MOTT

INSULATORS

In order to apply the SU(2) slave-boson theory to high
Tc superconductors we need to first generalize the SU(2)
slave-boson to the case with finite doping. Then we will
discuss how to use the SU(2) slave-boson theory to ex-
plain some of those properties in detail.

A. SU(2) slave-boson theory at finite doping

The SU(2) slave-boson theory can be generalized to
describe doped spin liquids (Wen and Lee, 1996; Lee
et al., 1998). The generalized SU(2) slave-boson theory

involves two SU(2) doublets ψi and hi =
(

b1i

b2i

)

. Here

b1i and b2i are two spin-0 boson fields. The additional
boson fields allow us to form SU(2) singlet to represent
the electron operator ci:

c↑i =
1√
2
h†iψi =

1√
2

(

b†1if↑i + b†2if
†
↓i

)

c↓i =
1√
2
h†iψ̄i =

1√
2

(

b†1if↓i − b†2if
†
↑i

)

(131)

where ψ̄ = iτ2ψ∗ which is also an SU(2) doublet. The
t-J Hamiltonian

HtJ =
∑

〈ij〉

[

J

(

Si · Sj − 1

4
ninj

)

− t(c†αicαj + h.c.)

]

can now be written in terms of our fermion-boson fields.
The Hilbert space of the fermion-boson system is larger
than that of the t-J model. However, the local SU(2)

singlets satisfying
(

ψ†
iτψi + h†iτhi

)

|phys〉 = 0 form a

subspace that is identical to the Hilbert space of the t-
J model. On a given site, there are only three states

that satisfy the above constraint. They are f †
1 |0〉, f †

2 |0〉,
and 1√

2

(

b†1 + b†2f
†
2f

†
1

)

|0〉 corresponding to a spin up and

down electron, and a vacancy respectively. Furthermore,
the fermion-boson Hamiltonian HtJ , as a SU(2) singlet
operator, acts within the subspace, and has same matrix
elements as the t-J Hamiltonian.

We note that just as in eq. (36), our treatment of the
1
4ninj term introduces a nearest neighbor boson attrac-

tion term which we shall ignore from now on.8 Now the
partition function Z is given by

Z =

∫

DψDψ†DhDa1
0Da

2
0Da

3
0DU exp

(

−
∫ β

0

dτL2

)

with the Lagrangian taking the form

L2 = J̃
∑

〈ij〉
Tr
[

U †
ijUij

]

+ J̃
∑

<ij>

(

ψ†
iUijψj + c.c.

)

+
∑

i

ψ†
i

(

∂τ − iaℓ0iτ
ℓ
)

ψi

+
∑

i

h†i
(

∂τ − iaℓ0iτ
ℓ + µ

)

hi

− 1

2

∑

〈ij〉
tij

(

ψ†
ihih

†
jψj + c.c.

)

.

(132)

Following the standard approach with the choice J̃ =
3
8J , we obtain the following mean-field Hamiltonian
for the fermion-boson system, which is an extension of

8 Lee and Salk, 2001 have introduced a slightly different formu-
lation where the combination

(

Si · Sj − 1
4
ninj

)

is written as

− 1
2

∣

∣

∣

(

f
†
i↑
f
†
j↓

− f
†
i↓
f
†
j↑

)∣

∣

∣

2

(1−h
†
i
hi)(1−h

†
j
hj ). The last two fac-

tors are the boson projections which are needed to take care of
the case when both sites i and j are occupied by holes. While
the formulations are equivalent, the mean field phase diagram
is a bit different in that a nearest-neighbor attraction term may
lead to boson pairing. The competition between boson condensa-
tion and boson pairing needs further studies but we will proceed
without the boson interaction term.
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eq. (110) to the doped case:

Hmean =
∑

〈ij〉

3

8
J

[

1

2
Tr(U †

ij Uij) + (ψ†
iUijψj + h.c.)

]

− 1

2

∑

〈ij〉
t(h†iUijhj + h.c.)

− µ
∑

i

h†ihi +
∑

i

al0(ψ
†
iτ
lψi + h†iτ

lhi) (133)

The value of the chemical potential µ is chosen such that
the total boson density (which is also the density of the
holes in the t-J model) is

〈h†ihi〉 = 〈b†1ib1i + b†2ib2i〉 = x.

The values of al0(i) are chosen such that

〈ψ†
iτ
lψi + h†iτ

lhi〉 = 0.

For l = 3 we have

〈f †
αifαi + b†1ib1i − b†2ib2i〉 = 1 (134)

We see that unlike the U(1) slave-boson theory, the den-

sity of the fermion 〈f †
αifαi〉 is not necessarily equal 1−x.

This is because a vacancy in the t-J model may be rep-
resented by an empty site with a b1 boson, or a doubly
occupied site with a b2 boson.

B. The mean-field phase diagram

To obtain the mean-field phase diagram, we have
searched the minima of the mean-field free energy for
the mean-field ansatz with translation, lattice and spin
rotation symmetries. We find a phase diagram with six
different phases (see Fig. 22) (Wen and Lee, 1996).

(1) The d-wave superconducting (SC) phase is de-
scribed by the following mean-field ansatz

Ui,i+x̂ = − χτ3 + ∆τ1,

Ui,i+ŷ = − χτ3 − ∆τ1,

a3
0 6=0, a1,2

0 = 0,

〈b1〉 6=0, 〈b2〉 = 0. (135)

Notice that the boson condenses in the SC phase de-
spite the fact that in our mean-field theory the interac-
tions between the bosons are ignored. In the SC phase,
the fermion and boson dispersion are given by ±Ef and

LS

T/J

0.2

0.2x t / J

SC

FL

uRVB

πfL sfL

FIG. 22 SU(2) mean-field phase diagram for t/J = 1. The
phase diagram for t/J = 2 is quantitatively very similar to
the t/J = 1 phase diagram, when plotted in terms of the
scaled variable xt/J , except the πfL phase disappears at a
lower scaled doping concentration. We also plotted the Fermi
surface, the Fermi arcs, or the Fermi points in some phases.
(Wen and Lee, 1996)

±Eb − µ, where

Ef =
√

(ǫf + a3
0)

2 + η2
f ,

ǫf = − 3J

4
(cos kx + cos ky)χ,

ηf = − 3J

4
(cos kx − cos ky)∆,

Eb =
√

(ǫb + a3
0)

2 + η2
b ,

ǫb = − 2t(coskx + cos ky)χ,

ηb = − 2t(coskx − cos ky)∆. (136)

(2) The Fermi liquid (FL) phase is similar to the SC
phase except that there is no fermion pairing (∆ = 0).

(3) Staggered flux liquid (sfL) phase:

Ui,i+x̂ = −τ3χ− i(−)i∆,

Ui,i+ŷ = −τ3χ+ i(−)i∆,

al0 =0, 〈b1,2〉 = 0. (137)

The U matrix is the same as that of the stag-
gered flux phase in the U(1) slave-boson theory, which
breaks transition symmetry. Here the breaking of
translational invariance is a gauge artifact. In fact,
a site dependent SU(2) gauge transformation Wi =

e−iπτ
1/4e−iπ(ix+iy)(τ1/2+1) maps the sfL ansatz to the d-

wave pairing ansatz:

Ui,i+x̂ = − χτ3 + ∆τ1,

Ui,i+ŷ = − χτ3 − ∆τ1,

al0 =0, 〈b1,2〉 = 0. (138)

which is explicitly translation invariant. However, the
staggered flux representation of eq. (137) is more conve-
nient because the gauge symmetry is immediately appar-
ent. Since this U matrix commutes with τ3, it is clearly
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invariant under τ3 rotation, but not τ1 and τ2, and the
gauge symmetry has been broken from SU(2) down to
U(1), following the discussion in section X.F. For this
reason we shall refer to this state as the staggered flux
liquid (sfL).

In the sfL phase, the fermion and boson dispersion
are still given by ±Ef and ±Eb − µ with Ef and Eb
in eq. (136), but now a3

0 = 0. Since a3
0 = 0 we have

〈f †
αifαi〉 = 1 and 〈b†1b1〉 = 〈b†2b2〉 = x

2 .
(4) The π-flux liquid (πfL) phase is the same as the

sfL phase except here χ = ∆.
(5) The uniform RVB (uRVB) phase is described by

eq. (137) with ∆ = 0.
(6) A localized spin (LS) phase has Uij = 0 and al0i =

0, where the fermions cannot hop.

C. Simple properties of the mean-field phases

Note that the topology of the phase diagram is simi-
lar to that of U(1) mean field theory shown in Fig. 21.
The uRVB, sfL, πfL and LS phases contain no boson con-
densation and correspond to unusual metallic states. As
temperature is lowered, the uRVB phase changes into the
sfL or πfL phases. A gap is opened at the Fermi surface
near (π, 0) which reduces the low energy spin excitations.
Thus the sfL and πfL phases correspond to the pseudo-
gap phase.

The FL phase contains boson condensation. In this
case the electron Green’s function 〈c†c〉 = 〈(ψ†h)(h†ψ)〉
is proportional to the fermion Green’s function 〈ψ†ψ〉.
Thus the electron spectral function contain δ-function
peak in the FL phase. Therefore, the low energy ex-
citations in the FL phase are described by electron-like
quasiparticles and the FL phase corresponds to a Fermi
liquid phase of electrons.

The SC phase contains both the boson and the
fermion-pair condensations and corresponds to a d-wave
superconducting state of the electrons. Just like the U(1)
slave-boson theory, the superfluid density is given by

ρs =
ρb

sρ
f
s

ρb
s+ρf

s

where ρbs and ρfs are the superfluid density

of the bosons and the condensed fermion-pairs, respec-
tively. We see that in the low doping limit, ρs ∼ x and
one need the condensation of both the bosons and the
fermion-pairs to get a superconducting state.

We would like to point out that the different mean-
field phases contain different gapless gauge fluctuations
at classical level. i.e. the gauge groups for gapless gauge
fluctuations are different in different mean-field phases.
The uRVB and the πfL phases have trivial SU(2) flux
and the gapless gauge fluctuations are SU(2) gauge fluc-
tuations. In the sfL phase, the collinear SU(2) flux
break the SU(2) gauge structure to a U(1) gauge struc-
ture. In this case the gapless gauge fluctuations are U(1)
gauge fluctuations. In the SC and FL phases, 〈ba〉 6= 0.
Since ba transform as a SU(2) doublet, there is no pure
SU(2) gauge transformation that leave mean-field ansatz
(Uij , a

l
0, ba) invariant. Thus the invariant gauge group

(IGG) is trivial. As a result, the SU(2) gauge structure
is completely broken and there is no low energy gauge
fluctuations.

D. Effect of gauge fluctuations: enhanced (π, π) spin

fluctuations in pseudo-gap phase

The pseudo-gap phase has a very puzzling property
which seems hard to explain. As the doping is lowered,
it was found experimentally that both the pseudo-gap
and the antiferromagnetic (AF) spin correlation in the
normal state increase. Naively, one expects the pseudo-
gap and the AF correlations to work against each other.
That is the larger the pseudo-gap, the lower the single
particle density of states, the fewer the low energy spin
excitations, and the weaker the AF correlations.

It turns out that the gapless U(1) gauge fluctuations
present in the sfL phase play a key role in resolving the
above puzzle (Kim and Lee, 1999; Rantner and Wen,
2002). Due to the U(1) gauge fluctuations, the AF spin
fluctuations in the sfL phase are as strong as those of a
nested Fermi surface, despite the presence of the pseudo-
gap.

To see how the U(1) gauge fluctuation in the sfL phase
enhance the AF spin fluctuations, we map the lattice
effective theory for the sfL state onto a continuum theory.
In the low doping limit, the bosons do not affect the
spin fluctuations much. So we will ignore the bosons and
effectively consider the undoped case. In the sfL phase,
the low energy fermions only appear near k = (±π

2 ,±π
2 )

Since the fermion dispersion is linear near k = (±π
2 ,±π

2 ),
those fermions are described by massless Dirac fermions
in the continuum limit:

S =

∫

d3x
∑

µ

N
∑

α=1

Ψ̄αvα,µ∂µγµΨα (139)

where vα,0 = 1 and N = 2, but in the following we
will treat N as an arbitrary integer, which gives us a
large N limit of the sfL state. In general vα,1 6= vα,2.
However, for simplicity we will assume vα,i = 1 here. The
Fermi field Ψα is a 4 × 1 spinor which describes lattice
fermions fi with momenta near (±π/2,±π/2). The 4×4
γµ matrices form a representation of the {γµ, γν} = 2δµν
(µ, ν = 0, 1, 2) and are taken to be

γ0 =

(

σ3 0
0 −σ3

)

, γ1 =

(

σ2 0
0 −σ2

)

, (140)

γ2 =

(

σ1 0
0 −σ1

)

(141)

with σµ the Pauli matrices. Finally note that Ψ̄σ ≡
Ψ†
σγ0.
The fermion field Ψ couples to the U(1) gauge field in

the sfL phase. To determine the form of the coupling,
we note that the U(1) gauge transformation takes the
following form

fi → eiθifi
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FIG. 23 Non-zero leading 1/N corrections to the staggered
spin correlation function. The x denotes the vertex which is
the 4 × 4 unit matrix in the case of interest.

if we choose the ansatz eq. (137) to describe the sfL phase.
By requiring the U(1) gauge invariance of the continuum
model, we find the continuum Euclidean action to be

S =

∫

d3x
∑

µ

N
∑

σ=1

Ψ̄σvσ,µ(∂µ − iaµ)γµΨσ (142)

The dynamics for the U(1) gauge field arises solely due
to the screening by bosons and fermions, both of which
carry gauge charge. In the low doping limit, however,
we will only include the screening by the fermion fields.
After integrating out Ψ in eq. (142), we obtain the fol-
lowing effective action for the U(1) gauge field (Kim and
Lee, 1999)

Z =

∫

Daµ exp
(

− 1

2

∫

d3q

(2π)3
aµ(q)Πµνaν(−q)

)

Πµν =
N

8

√

q2
(

δµν −
qµqν
q2

)

(143)

By simple power counting we can see that the above po-
larizability makes the gauge coupling aµj

µ a marginal
perturbation at the free fermion fixed point. Since the
conserved current jµ cannot have any anomalous dimen-
sion, this interaction is an exact marginal perturbation
protected by current conservation.

For N = 2, the spin operator with momenta near q =
(0, 0), (π, π), and (π, 0) has different form when expressed
in terms of Ψα. Near q = (0, 0)

Su(x) =
1

2
Ψ̄αγ

0σαβΨβ

Near q = (π, π)

Ss(x) =
1

2
Ψ̄ασαβΨβ

Near q = (π, 0)

S(π,0)(x) =
1

2
Ψ̄α

(

0 σ1

σ1 0

)

σαβΨβ

At the mean-field level, all the above three spin opera-
tors have algebraic correlations 1/r4 with decay exponent
4. The effect of gauge fluctuations can be included at 1

N
order by calculating the diagrams in Fig. 23. We find
that (Rantner and Wen, 2002; Franz et al., 2003) these
three spin correlaters still have algebraic decays, indicat-
ing that the gauge interaction is indeed marginal. The
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FIG. 24 Imaginary part of the spin susceptibility at (π, π).
Note the divergence at small ω. (from Rantner and Wen, 2002

decay exponents of the spin correlation near q = (0, 0)
and q = (π, 0) are not changed and remain to be 4. This
result is expected for the spin correlation near q = (0, 0)
since Su(x) is proportional to the conserved density op-
erator that couple to the U(1) gauge field. Therefore
Su(x) cannot have anomalous dimension. S(π,0)(x) does
not have any anomalous dimension either (at 1/N order).
In fact, this result holds to all orders in 1/N for the case
of isotropic velocities, due to an SU(4) symmetry (Her-
mele and Senthil, 2004). Thus the spin fluctuations near
(π, 0) is also not enhanced by the gauge interaction. This
may explain why it is so hard to observe any spin fluctu-
ations near (π, 0) in experiments.
Ss(x) is found to have a non-zero anomalous dimen-

sion. The spin correlation near q = (π, π) is found to be
1/r4−2α with

α =
32

3π2N
(144)

In the ω-k space, the imaginary part of the spin suscep-
tibility near (π, π) is given by

Imχ(ω,q) ≡ Im〈S+(ω,q + Q)S−(−ω,−q + Q)〉

=
Cs
2

sin(2απ)Γ(2α − 2)Θ(ω2 − q2)
(

ω2 − q2
)1/2−α

(145)

where Cs is a constant depending on the physics at the
lattice scale.

From eq. (145) it is clear that the gauge fluctuations
have reduced the mean-field exponent. If we boldly
set N = 2 which is the physically relevant case we
find α = 0.54 > 1/2 which signals the divergence of
χ(ω = 0, q = 0). Thus, after including the gauge fluc-
tuations, the (π, π) spin fluctuations are enhanced in the
sfL phase despite the pseudo-gap. In Fig. 24, we plot the
imaginary part of the spin susceptibility at (π, π). The ω
dependence of the spin susceptibility at (π, π) is similar
to the one from a nested Fermi surface.



52

FIG. 25 The thick line represents the boson world line, the
thin line represents the fermion world line, and the dash line
represent the gauge interaction. The dash-dot line is the
straight return path. The U(1) gauge interaction is caused

by the extra phase term ei
∮

dx·a due to the U(1) flux through
the loop formed by the boson and the fermion world lines.
Such flux can be approximated by the flux through the loop
formed by the fermion world line and the straight return path.

The enhancement of the staggered spin correlation fol-
lows the trend found in Gutzwiller projection of the stag-
gered flux (or equivalently the d-wave pairing) state.
Ivanov, 2000 and Paramekanti et al., 2004b reports a
power law decay of the equal time staggered spin corre-
lation function as r−ν where ν = 1.5 for the undoped
case and ν = 2.5 for 5% doping, which are considerably
slower than the r−4 behavior before projection.

We remark that with doping, Lorentz invariance is bro-
ken by the presence of bosons. In this case the Fermi ve-
locity receives an logarithmic correction which enhances
the specific heat γ coefficient and the uniform suscepti-
bility (Kim et al., 1997).

E. Electron spectral function

One of the striking properties of the high Tc supercon-
ductor is the appearance of the pseudo-gap in electron
spectral function for underdoped samples, even in the
non-superconducting state. To understand this property
within the SU(2) slave-boson theory, we like to calcu-
late the physical electron Green function. Since the non-
superconducting state for small x is described by the sfL
phase in the SU(2) slave-boson theory, so we need to
calculate the electron Green function in the sfL phase.

1. Single hole spectrum

The electron Green’s function is given by

Ge(x) = 〈h†(x)ψ(x)h(0)ψ†(0)〉

If we ignore the gauge interactions between the bosons
and the fermions, the electron Green’s function can be
written as

Ge0 = 〈h†h〉0〈ψψ†〉0

where the subscript 0 indicates that we ignore the gauge
fluctuations when calculating 〈...〉0.

The effect of the U(1) gauge fluctuations is an extra

phase term ei
∮

dx·a determined by the U(1) flux through
the loop formed by the boson and the fermion world lines

FIG. 26 The single hole spectral function at
(

π
2
, π

2

)

. Increas-
ing α corresponds to increasing attraction between fermion
and boson due to gauge field fluctuations. (from Rantner and
Wen, 2001b)

(see Fig. 25). Since the fermion has a linear dispersion
relation, the area between the boson and the fermion
world lines is of order |x|2, where |x| is the separation
between the two points of the Green’s function. Such an
area is about the same as the area between the fermion
world line and the straight return path (see Fig. 25).
So we may approximate the effect of U(1) gauge fluctu-
ations as the effect caused by the U(1) flux through the
fermion world line and the straight return path (Rantner
and Wen, 2001b). This corresponds to approximate the
electron Green’s function as

Ge(x) = 〈h†(x)h(0)〉0〈ψ(x)ψ†(0)ei
∫

x

0
dx·a〉

where
∫ x

0 dx is the integration along the straight return
path and 〈...〉 includes integrating out the gauge fluctua-
tions.

First, let us consider the fermion Green’s function.
At the leading order of a large-N approximation, it was
found that (Rantner and Wen, 2001a,b) 9

〈ψ(x)ψ†(0)ei
∫

x

0
dx·a〉 ∝ (x2)−(2−α)/2. (146)

where α is given in eq. (144). We note that the above
becomes the Green’s function for free massless Dirac

9 Note that the usual fermion Green’s function 〈ψ(x)ψ†(0)〉 is not
gauge invariant. As a result, the Green’s function is not well
defined and depends on the choices of gauge-fixing conditions
(Franz and Tesanovic, 2001; Franz et al., 2002; Khveshchenko,
2002; Ye, 2002). If one incorrectly identifies 〈ψ(x)ψ†(0)〉 as the
the electron Green’s function, then the electron Green’s function
will have different decay exponents for different gauge-fixing con-

ditions. In contrast, the combination 〈ψ(x)ψ†(0)ei
∫

x
0

dx·a〉 is
gauge invariant and well defined. The resulting electron Green’s
function does not depend on gauge-fixing conditions.
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fermion when α = 0. The finite α is the effect of gauge
fluctuations.

For a single hole, the boson Green’s function is simply
that of a classical particle. The electron Green’s func-
tion Ge(r, τ) is readily calculated using eq. (146) and
its Fourier transform yields the electron spectral func-
tion. The result at the nodal position

(

π
2 ,

π
2

)

is shown in
Fig. (26). The α = 0 curve is the result without gauge
fluctuation. It is the convolution of the fermion and Bose
spectra and is extremely broad. The gauge field leads to
an effective attraction between the fermion and boson in
order to minimize the gauge flux enclosed by the fermion
on boson vortex lines as shown in Fig. (25). The result is
a piling up of a spectral weight at low energy with increas-
ing α. Still, the one-hole spectrum remains incoherent,
as is appropriate for a deconfined U(1) spin liquid state.
This calculation can be extended to finite hole density,
which requires making certain assumptions about the bo-
son Green’s function (Rantner and Wen, 2001b; Franz
and Tesanovic, 2001). Under certain conditions they ob-
tain power-like type spectral functions similar to those of
the Luttinger liquid.

2. Finite hole density: pseudo-gap and Fermi arcs

Here we will consider the mean-field electron Green’s
function G0 at finite doping. Using the expression of cα
in eq. (131), the mean-field electron Green’s function is
given by the product of the fermion and boson Green
functions. So the electron spectral function is a con-
volution of the boson spectral function and the fermion
spectral function.

Let us consider a region of the pseudogap above Tc
but at a temperature which is not too high. The boson
can be considered nearly condensed. The boson spectral
function contain a sharp peak at ω = 0 and k = 0 and
k = (π, π). The weight of the peak is of order x and the
width is of order T . At high energies, the boson Green
function is given by the single-boson Green function Gsb
as if no other bosons are present. So the boson spectral
function also contain a broad background which extends
the whole band width of the boson band. The resulting
mean-field electron Green function has a form (Wen and
Lee, 1996; Lee et al., 1998)

G0 =
x

2

(

u2
k

ω − Ef
+

v2
k

ω + Ef

)

+Gin (147)

where u and v are the coherent factors:

uk =

√

Ef + ǫf
2Ef

sgn(ηf ),

vk =

√

Ef − ǫf
2Ef

.

The second term Gin gives rise to a broad background
in the electron. It comes from the convolution of the

c c

FIG. 27 A diagram for renormalized electron Green function.
The solid (dash) line is the fermion (boson) propagator.

background part of the boson spectral function and the
fermion spectral function. The first term is the coherent
part since its imaginary part is a peak of width T , which
is approximated by a δ-function here. The quasiparticle
dispersion is given by ±Ef . The peak in the electron
spectral function crosses zero energy at four points at
k = (±π

2 ,±π
2 ). Thus the mean-field sfL phase has four

Fermi points. Also, in the sfL phase, ImGin is non-zero
only for ω < 0 and contributes 1/2 to a total spectral
weight which is (1 + x)/2.

From the dispersion relation of the peak ω = Ef (k)
and the fact that ImGin ≈ 0 when ω < −Ef (k),
we find that the electron spectral function contain the
gap of order ∆ at (0, π) and (π, 0) even in the non-
superconducting state. So the mean-field electron spec-
tral function of the SU(2) slave-boson theory can explain
the pseudo-gap in the underdoped samples. However,
if we examine the mean-field electron spectral function
more closely, we see that the Fermi surface of the quasi-
particles is just four isolated points (±π/2,±π/2). This
property does not agree with experiments.

In reality there is a strong attraction between the bo-
son and the fermions due to the fluctuation around the
mean-field state. The dominant effect comes from the
gauge fluctuations which attempt to bind the bosons and
the fermions into electrons. This corresponds to an effec-
tive attraction between the bosons and the fermions. In
the case of a single hole, the interaction with gauge fields
can be treated as discussed in the last section. Here we
proceed more phenomenologically. One way to include
this effect is to use the diagram in Fig. 27 to approxi-
mate the electron Green function, which corresponds to
an effective short range interaction of form

−V
2

(ψ†h)(h†ψ) = −V c†c (148)

with V < 0. We get

G =
1

(G0)
−1

+ V
(149)

The first contribution to V come from the fluctuations of
aℓ0 which induces the following interaction between the
fermions and the bosons:

ψ†τψ · h†τh (150)

The second one (whose importance was pointed out by
Laughlin, 1995) is the fluctuations of |χij | which induces

−t(ψ†h)j(h
†ψ)i = −2tc†jci (151)
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FIG. 28 The electron spectral function for, from top down,
(a) k = (−π/4, π/4) → (π/4, 3π/4), (b) k = (−π/8, π/8) →

(3π/8, 5π/8), (c) k = (0, 0) → (π/2, π/2), and (d) k =
(0, π) → (0, 0). We have chosen J = 1. The paths of the
four momentum scans are shown in Fig. 29.
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d
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FIG. 29 The solid line a, b, c, and d are paths of the four
momentum scans in Fig. 28. The solid curves are schematic
representation of the Fermi segments where the quasiparticle
peak crosses the zero energy.

This is nothing but the original hopping term. We expect
the coefficient t to be reduced due to screening, but in
the following we adopt the form

V (k) = U + 2t(cos kx + cos ky) (152)

for V in eq. (149). In Fig. 28 and 30 we plot the electron
spectral function calculated from eq. (149) (Wen and
Lee, 1996; Lee et al., 1998).

We have chosen t = 2J , χ = 1, ∆/χ = 0.4, x = 0.1,
and T = 0.1J . The value of U is determined from requir-
ing the renormalized electron Green function to satisfies
the sum rule

∫ ∞

0

dω

2π

∫

d2k

(2π)2
ImG = x (153)

We find that the gap near (0,±π) and (±π, 0) survives
the binding potential V (k). However spectral functions
near (±π

2 ,±π
2 ) are modified. The Fermi point at (π2 ,

π
2 )

for the mean field electron Green function G0 is stretched
into a Fermi segment as shown in Fig. 29. As we ap-
proach the uRBV phase, ∆ decreases and the Fermi arcs
are elongated. Eventually the arcs join together to form
a large closed Fermi surface.

-2J

0

2J

(π/2,π/2) (0,π)(0,0) (π/2,π/2) (π,π)(0,π)

FIG. 30 The points describe the dispersion of the quasi-
particle peaks for the s-flux liquid phase in Fig. 30. The
vertical bars are proportional to the peak values of ImGU

which are proportional to the quasi-particle weight.

While the phenomenological binding picture success-
fully produces Fermi arcs, the results are not as satis-
factory for the anti-nodal points. While an energy gap
is produced near (0, π), the theory gives a rather sharp
structure at the gap and we see from Fig. 30 that the
gap above and below the Fermi energy is not symmetric.

This exposed a serious weakness of the slave-boson
gauge theory approach. With finite hole density, the
bosons tend to condense at the mean field level. In real-
ity the holes are strongly coupled to gauge fluctuations
which tend to suppress the Bose condensation. While
the fermions are also coupled to gauge fields, the Fermi
statistics allow us to approach the problem perturba-
tively by introducing artificial expansion parameters such
as 1

N . In contrast, the problem of bosons coupled to
gauge fields is much less understood. Furthermore the
gauge fields mediate strong attraction between fermions
and bosons and, in the case of SU(2) theory, between
b1 and b2 bosons which carry opposite gauge charges.
In the phenomenological approach outlined above, the
bosons are treated as almost condensed (i.e. a narrow
peak in the spectral function is assumed) and bind with
a fermion. The assumption of “almost Bose condensa-
tion” leads to sharp hole spectra at both the nodal and
anti-nodal points and the latter disagrees with experi-
ment. Furthermore it can be shown that the assumption
of Bose condensation leads to a decoupling of the electron
to the electromagnetic field, and as a result, the current

carried by the quasiparticles j = edEk(A)
dA is strongly re-

duced from evF which disagrees with experiments (see
IX.B).

Wen and Lee, 1998 took a first step towards addressing
this problem by assuming that the binding between the
bosons and the fermions and/or between the b1 and b2
bosons prevents single-boson condensation. The super-
conducting state characterized by 〈cc〉 6= 0 contains only
boson pair condensation, i.e. 〈b1b2〉 6= 0 while 〈b〉 = 0.
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They show that with this assumption the quasiparticle
current can be a finite fraction of evF , i.e. the α param-
eter in eq. (6) does not have to go as x. The competi-
tion between fermion-boson binding, boson-boson bind-
ing and Bose condensation is a complicated problem
which is still poorly understood at present.

STM experiment reveals a rather broad structure for
both particle and hole excitations (Hanaguri et al., 2004)
and ARPES measurements, which can measure only the
occupied states, show a reduction of the density of states
over a broad energy range (Ronning et al., 2003). These
lineshapes are more reminiscent of those shown in Fig.
26 for intermediate α. It appears that the assumption of
almost Bose condensation and simple binding via a short
range potential do not capture the subtlety of gauge fluc-
tuation effects near (0, π) where fermions and bosons ap-
pear to be closer to being deconfined. This dichotomy
between nodal and anti-nodal electronic structure is an
important issue which remains open for further theoret-
ical work.

F. Stability of algebraic spin liquids

The sfL mean-field ansatz leads to an gapless spin liq-
uid. We will call this the U(1) spin liquid, and it is an
example of a class which we call algebraic spin liquid
(ASL) since all the spin correlations have algebraic de-
cay. We would like to stress that the ASL is a phase of
matter, not a critical point at a phase transition between
two phases.

ASL has a striking property: its low energy excitations
interact with each other even down to zero energy. This
can be seen from the correlation functions at low energies
which always contain branch cut without any poles. The
lack of poles implies that we cannot use free bosonic or
free fermionic quasiparticles to describe the low energy
excitations. For all other commonly know gapless states,
such as solids, superfluids, Fermi liquids, etc, the gapless
excitations are always described by free bosons or free
fermions. The only exception is the 1D Luttinger liquid.
Thus the ASL can be view as an example of Luttinger
liquids beyond one dimension.

We know that interactions tend to open up energy
gaps. From this point of view, one might have thought
that the only self consistent gapless excitations are the
ones described by free quasiparticles. Knowing the gap-
less excitations in the ASL interact down to zero energy,
we may wonder does ASL really exist? Have we over-
looked some effects which open up energy gap and make
ASL unstable?

Indeed, in the above calculation, we have overlooked
two effects. Both of them can potentially destabilize the
ASL. First, the self-energy in Fig. 23A,B, contains a cut-
off dependent term which gives the fermion Ψ a cut-off
dependent mass m(Λ)Ψ̄Ψ. In the above calculation, we
have dropped such a term. If such a cut-off-dependent
term was kept, the fermions would gain a mass which

would destabilize the ASL.
Second, we have overlooked the effects of instantons de-

scribed by the space-time monopoles of the U(1) gauge
field. After integrating out the massless fermions, the ef-
fective action of the U(1) gauge field has a form eq. (128).
Unlike the Maxwell term discussed in section IX.D, which
produced a 1/r potential, in this case the interaction of
the space-time monopoles is described by a log(r) po-
tential. That is the action of the pair of space-time
monopoles separated by a distance r is given by C log(r).
Just like the Coulomb gas in 2D, if the coefficient C is
larger than 6, then the instanton effect is an irrelevant
perturbation and the inclusion of the instantons will not
destabilize the ASL (Ioffe and Larkin, 1989). If the co-
efficient C is less then 6, then the instanton effect is a
relevant perturbation and the inclusion of the instantons
will destabilize the ASL.

Recently, it was argued in Herbut and Seradjah, 2003
and Herbut et al., 2003 that the instanton effect always
represent a relevant perturbation due to a screening effect
of 3D Coulomb gas, regardless the value of C. This led to
a conclusion in Herbut and Seradjah, 2003 that the ASL
described by the sfL state does not exist. The easiest way
to understand the screening effect of the 3D Coulomb gas
is to note that the partition function of the Coulomb gas
can be written as a path integral

∫

∏

d3xie
−C∑ qiqj log |xi−xj |

=

∫

Dφe−
∫

d3x 2π
C
∂φ

√
−∂2∂φ−g cos(φ) (154)

If we integrate out short distance fluctuations of φ, a
counter term K(∂φ)2 can be generated. The counter
term changes the long distance interaction of the space-
time monopoles from log(r) to 1/r. The space-time
monopoles with 1/r interaction always represent a rele-
vant perturbation, which will destabilize the ASL. Phys-
ically, the change of the interaction from log(r) to 1/r is
due to the screening effect of monopole-anti-monopole
pairs. Thus the counter term K(∂φ)2 represents the
screening effect.

The issue of the stability of the ASL has been exam-
ined by Wen, 2002b, Rantner and Wen, 2002 and more
carefully by Hermele et al., 2004 using an argument based
on PSG. They came to the conclusion that the U(1) spin
liquid is stable for large enoughN , if the SU(2) spin sym-
metry is generalized to SU(N). They showed that there
is no relevant operator which can destabilize the decon-
fined fixed point which consists of 2N two-component
Dirac fermions coupled to noncompact U(1) gauge fields,
for N sufficiently large. Hermele et al., 2004 also pointed
out the fallacy of the monopole screening argument. We
summarize some of the salient points below.

The operators which perturb the noncompact fixed
point can be classified into two types, those which pre-
serve the flux and those which change the flux by 2π.
The latter are instanton creation operators which restore
the compactness of the gauge field. Among the first type
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there are four fermion terms which are readily seen to be
irrelevant, but as mentioned earlier, the dangerous term
is the quadratic fermion mass term. The important point
is that the mass terms are forbidden by the special sym-
metry described by PSG. The discrete symmetry (such
as translation and rotation) of the sfL state defined on
the lattice imposes certain symmetry on the continuum
Dirac field which forbids the mass term. Another way
of seeing this is that after integrating out the short dis-
tance fluctuations, if a mass term is generated it can be
described in the lattice model as a deformation of the
mean-field ansatz δUij . Since the short distance fluctu-
ations are perturbative in nature, the deformation δUij

cannot change the symmetry of the ansatz Ūij that de-
scribe the ground state, i.e. if Ūij is invariant under a
PSG, δUij must be invariant under the same PSG. One
can show that for all the possible deformations that are
invariant under the sfL PSG described by eq. (117), none
of them can generate the mass term for the fermions.
Thus the masslessness of the fermions are protected by
the sfL PSG.

As for the second type of operators which change the
flux, Hermele et al., 2004 appeal to a result in conformal
field theory which relates the scaling dimension of such
operators to the eigenvalues of states on a sphere with
a magnetic flux through the surface (Borokhov et al.,
2002). This is easily bound by the ground state energy
of 2N component Dirac fermions on the sphere which
clearly scale as N . Thus the creation of instantons is
also irrelevant for sufficiently large N .

As far as the monopole screening argument goes, the
fallacy is that in that argument the fermions are first in-
tegrated out completely in order to derive an effective
action for the field φ shown in eq. 154. Then renormal-
ization group arguments generate a K(∂φ)2 term. How-
ever implicit in this procedure is the assumption that
the fermions are rapidly varying variables compared with
the monopoles. The fact that the fermions are gapless
makes this procedure unreliable. (One could say that
the screening argument implicitly assumes mass genera-
tion for the fermions.) A better approach is to renormal-
ize the monopoles and the fermions on the same footing,
i.e. let the infrared cutoff length scale for the fermion
(Lf ) and the monopoles (Lm) to approach infinity with
a fixed ratio, e.g. Lf/Lm = 1. In this case integrat-
ing out the fermions down to scale Lf will produce an
effective action for the U(1) gauge field of the form

g(Lf)

16π
fµvf

µv

where the running coupling constant g(Lf) ∼ Lf . This
in turn generates an interaction between two monopoles
separated by a distance r which is of order g(Lf )/r. To
calculate such an interaction, we should integrate out all
the fermions with wavelength less than r. We find the

interaction to be g(r)
r ∼ r0, indicating a logarithmic in-

teraction between monopoles. Thus the logarithmic in-

teraction is constantly being rejuvenated and cannot be
screened. This can be cast into a normalization group
language and we can see that the flow equation for the
coupling constant g is modified from the form used by
(Herbut and Seradjah, 2003). The extra term leads to
the conclusion that the instanton fugacity scales to zero
and the instanton becomes irrelevant for N larger than
a certain critical value.

To summarize, the ASL derived from the sfL ansatz
contain a quantum order characterized by the sfL PSG
eq. (117). The sfL PSG forbids the mass term of the
fermions. To capture such an effect, we must drop the
mass term in the self-energy in our calculation in the
continuum model (Rantner and Wen, 2002). Ignoring
the mass term is a way to include the effects of PSG
into the continuum model. Similarly, we must ignore the
screening effect described by the K(∂φ)2 term when we
consider instantons. We are then assured that instanton
effects are irrelevant in the large N limits. So the ASL
exists and is stable at least in the large N limit. The
interacting gapless excitations in the ASL are protected
by the sfL PSG. It is well known that the symmetry can
protect gapless Nambu-Goldstone modes. The above ex-
ample shows that the PSG and the associated quantum
order can also protect gapless excitations (Rantner and
Wen, 2002; Wen, 2002b; Wen and Zee, 2002).

XII. APPLICATION OF GAUGE THEORY TO THE HIGH

Tc SUPERCONDUCTIVITY PROBLEM

Now we summarize how the gauge theory concepts we
have described may be applied to the high Tc problem.
The central observation is that high Tc superconductiv-
ity emerges upon doping a Mott insulator. The antifer-
romagnetic order of the Mott insulator disappears rather
rapidly and is replaced by the superconducting ground
state. The “normal” state above the superconducting
transition temperature exhibits many unusual properties
which we refer to as pseudogap behavior. How does one
describe the simultaneous suppression of Néel order and
the emergence of the pseudogap and the superconduc-
tor from the Mott insulator? The approach we take is
to first understand the nature of a possible nonmagnetic
Mott state at zero doping, the spin liquid state, which
naturally becomes a singlet superconductor when doped.
This is the central idea behind the RVB proposal (An-
derson, 1987) and is summarized in Fig. 31. The idea is
that doping effectively frustrates the Néel order so that
the system is pushed across the transition where the Néel
order is lost. In the real system the loss of Néel order may
proceed through complicated states, such as incommen-
surate charge and spin order, stripes or inhomogeneous
charge segregation (Carlson et al., 2003). However, in
this direct approach the connection with superconductiv-
ity is not al all clear. Instead it is conceptually useful to
arrive at the superconducting state via a different path,
starting from a spin liquid state. Recently, Senthil and
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FIG. 31 a) Schematic zero temperature phase diagram show-
ing the route between the antiferromagnetic Mott insulator
and the d-wave superconductor. The vertical axis is labeled
by a parameter g which may be taken as a measure of the
frustration in the interaction between the spins in the Mott
insulator. AF represents the antiferromagnetically ordered
state. SL is a spin liquid insulator that could potentially be
reached by increasing the frustration. The path taken by the
cuprate materials as a function of doping x is shown in a thick
dashed-dot line. The question marks represent regions where
the physics is not clear at present. Doping the spin liquid
naturally leads to the dSC state. The idea behind the spin
liquid approach is to regard the superconducting system at
non-zero x as resulting from doping the spin liquid as shown
in the solid line, though this is not the path actually taken
by the material. b) Same as in Fig. 31(a) but as a function
of chemical potential rather than hole doping.

Lee, 2004 have elaborated upon this point of view which
we summarize below.

A. Spin liquid, quantum critical point and the pseudogap

It is instructive to consider the phase diagram as a
function of the chemical potential rather than the hole
doping as shown in Fig. 31(b).

Consider any spin liquid Mott state that when doped
leads to a d-wave superconductor. As a function of chem-
ical potential, there will then be a zero temperature phase
transition where the holes first enter the system. For con-
creteness we will simply refer to this as the Mott tran-
sition. The associated quantum critical fixed point will
control the physics in a finite non-zero range of param-
eters. The various crossovers expected near such transi-
tions are well-known and are shown in Fig. 32.

Sufficiently close to this zero temperature critical point

T

µMott spin
liquid

dSc

‘‘QC’’ FS

FIG. 32 Schematic phase diagram for a doping induced Mott
transition between a spin liquid insulator and a d-wave super-
conductor. The bold dot-dashed line is the path taken by a
system at hole density x that has a superconducting ground
state. The region marked FS represents the fluctuation regime
of the superconducting transition. The region marked QC is
the quantum critical region associated with the Mott critical
point. This region may be identified with the high tempera-
ture pseudogap phase in the experiments.

many aspects of the physics will be universal. The regime
in which such universal behavior is observed will be lim-
ited by ‘cut-offs’ determined by microscopic parameters.
In particular we may expect that the cutoff scale is pro-
vided by an energy of a fraction of J (the exchange energy
for the spins in the Mott insulator). We note that this
corresponds to a reasonably high temperature scale.

Now consider an underdoped cuprate material at fixed
doping x. Upon increasing the temperature this will fol-
low a path in Fig.32 that is shown schematically. The
properties of the system along this path may be usefully
discussed in terms of the various crossover regimes. In
particular it is clear that the ‘normal’ state above the
superconducting transition is to be understood directly
as the finite temperature ‘quantum critical’ region asso-
ciated with the Mott transition. Empirically this region
corresponds to the pseudogap regime. Thus our assertion
is that the pseudogap regime is controlled by the unstable
zero temperature fixed point associated with the (Mott)
transition to a Mott insulator.

What are the candidates for the spin liquid phase?
There have been several proposals in the literature. One
proposal is the dimer phase (Sachdev, 2003). Strictly
speaking, this is a valence bond solid and not a spin liq-
uid: it is a singlet state which breaks translational sym-
metry. It has been shown by Read and Sachdev, 1990
that within the large N Schwinger boson approach the
dimer phase emerges upon disordering the Néel state.
Sachdev and collaborators have shown that doping the
dimer state produces a d-wave superconductor (Vojta
and Sachdev, 1999). However, such a superconductor
also inherits the dimer order and has a full gap to spin
excitations, at least for low doping. As we have seen in
this review, there are strong empirical evidence for gap-
less nodal quasiparticles in the superconducting state.
In our view, it is more natural to start with translation



58

invariant spin liquid states which produce d-wave super-
conductors with nodal quasiparticles when doped.

We see from Section X that the spin liquid states are
rather exotic beasts in that their excitations are con-
veniently described in terms of fractionalized spin 1/2
“spinon” degrees of freedom. We discussed in Section
X.G that spin liquids are characterized by their low
energy gauge group. Among spin liquids with nodal
fermionic spinons, two versions, the Z2 and the U(1)
spin liquids have bee proposed. The Z2 gauge theory
was advocated by (Senthil and Fisher, 2000). It can be
considered as growing out of the fermion pairing phase
of the U(1) mean field phase diagram shown in Fig. 21.
The pairing of fermions ∆ij = 〈fi↑fi↓−fi↓fi↑〉 breaks the
U(1) gauge symmetry down to Z2, i.e. only f → −f re-
mains unbroken. One feature of this theory is that in the
superconducting state hc/e vortices tend to have lower
energy than hc/2e vortices, particularly at low doping.
We saw in section IX.C that hc/2e vortices involve sup-
pression of the pairing amplitude |∆ij | at the center and
cost a large energy of order J . On the other hand, one
can form an hc/e vortice by winding the boson phase
by 2π, leaving the fermion pairing intact inside the core.
Another way of describing this from the point of view of
Z2 gauge theory is that the hc/2e vortex necessarily in-
volves the presence of a Z2 gauge flux (called a vison by
Senthil and Fisher) in its core. The finite energy cost of
the Z2 flux dominates in the low doping limit and raises
the energy of the hc/2e vortices. Experimental proposals
were made (Senthil and Fisher, 2001b) to provide for a
critical test of such a theory by detecting the vison ex-
citation or by indirectly looking for signatures of stable
hc/e vortices. To date, all such experiments have yielded
negative results and provided fairly tight bounds on the
vison energy (Bonn et al., 2001).

We are then left with the U(1) spin liquid as the fi-
nal candidate. The mean field basis of this state is the
staggered flux liquid state of the SU(2) mean field phase
diagram (Fig. 22). The low energy theory of this state
consists of fermions with massless Dirac spectra (nodal
quasiparticles) interacting with a U(1) gauge field. Note
that this U(1) gauge field refers to the low energy gauge
group and is not to be confused with the U(1) gauge the-
ory in section IX, which refers to the high energy gauge
group, in the nomenclature of section X.G. This theory
was treated in some detail in Section XI. This state has
enhanced (π, π) spin fluctuations but no long range Néel
order, and the ground states becomes a d-wave super-
conductor when doped with holes. As we shall see, a low
energy hc/2e vortex can be constructed, thus overcoming
a key difficulty of the Z2 gauge theory. Furthermore, an
objection in the literature about the stability of the U(1)
spin liquid has been overcome, at least for sufficiently
large N (see section IX.F) It has also been argued by
Senthil and Lee, 2004 that even if the physical spin 1/2
case does not possess a stable U(1) liquid phase, it can
exist as a critical state separating the Néel phase from
a Z2 spin liquid and may still have the desired property

of dominating the physics of the pseudogap and the su-
perconducting states. An example of deconfinement ap-
pearing at the critical point between two ordered phases
is recently pointed out by (Senthil et al., 2004).

In the next section we shall further explore the prop-
erties of the U(1) spin liquid upon doping. We approach
the problem from the low temperature limit and work
our way up in temperature. This regime is conveniently
described by a nonlinear σ-model effective theory.

B. σ-model effective theory and new collective modes in

the superconducting state

Here we attempt to reduce the large number of degrees
of freedom in the partition function in eq. (132) to the
few which dominate the low energy physics. We shall ig-
nore the amplitude fluctuations in the fermionic degree of
freedom which are gapped on the scale of J . The bosons
tend to Bose condense. We shall ignore the amplitude
fluctuation and assume that its phase is slowly varying
on the fermionic scale, which is given by ξ = ǫF /∆ in
space. In this case we can have an effective field the-
ory (σ-model) description where the local boson phases
are the slow variables and the fermionic degrees of free-
dom are assumed to follow them. We begin by picking a

mean field representation U
(0)
ij . The choice of the stag-

gered flux state USFij given by eq. (136) is most conve-

nient because USFij commutes with τ3, making explicit

the residual U(1) gauge symmetry which corresponds to

a τ3 rotation. Thus we choose U
(0)
ij = USFij eia

3

ijτ
3

and re-
place the integral over Uij by an integral over the gauge

field a3
ij . It should be noted that any U

(0)
ij which are re-

lated by SU(2) gauge transformation will give the same
result. At the mean field level, the bosons form a band
with minima at Q0. Writing h = h̃eiQ0·r, we expect h̃
to be slowly varying in space and time. We transform to
the radial gauge, i.e. we write

h̃i = gi

(

bi
0

)

, (155)

where bi can be taken as real and positive and gi is an
SU(2) matrix parametrized by

gi =

(

zi1 −z∗i2
zi2 z∗i1

)

(156)

where

zi1 = eiαie−i
φi
2 cos

θi

2
(157)

and

zi2 = eiαiei
φi
2 sin

θi

2
. (158)

We ignore the boson amplitude fluctuation and replace
bi by a constant b0.
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An important feature of eq. (132) is that L2 is invari-
ant under the SU(2) gauge transformation

h̃i = g†ihi (159)

ψ̃i = g†iψi (160)

Ũij = g†iU
(0)
ij gj (161)

and

ãℓ0iτ
ℓ = g†aℓ0iτ

ℓg − g
(

∂τg
†) . (162)

Starting from eq. (132) and making the above gauge
transformation, the partition function is integrated over
gi instead of hi and the Lagrangian takes the form

L′
2 =

J̃

2

∑

<ij>

Tr
(

Ũ †
ijŨij

)

+ J̃
∑

<ij>

ψ†
i Ũijψj + c.c.

+
∑

i

ψ†
i

(

∂τ − iaℓ0iτ
ℓ
)

ψi +
∑

i

(

−ia3
0i + µB

)

b20

−
∑

ij,σ

t̃ijb
2
0f

†
jσfiσ (163)

We have removed the tilde from ψ̃iσ, f̃iσ, ã
ℓ
0 because

these are integration variables and t̃ij = tij/2. Note

that gi appears only in Ũij . For every configuration
{gi(τ), a

3
ij(τ)} we can, in principle, integrate out the

fermions and aℓ0 to obtain an energy functional. This will
constitute the σ-model description. In practice, we can
make the slowly varying gi approximation and solve the
local mean field equation for aℓ0i. This is the approach
taken by Lee et al., 1998. Note that since {gi} appears

only in the fermionic Lagrangian via Ũij in eq. (163), the
resulting energy functional is entirely fermionic in origin,
and no longer has any bosonic contribution.

The σ-model depends on {gi(τ), a
3
ij(τ)}, i.e. it is char-

acterized by αi, θi, φi and the gauge field a3
ij . αi is the

familiar overall phase of the electron operator which be-
comes half of the pairing phase in the superconducting
state. To help visualize the remaining dependence of free-
dom, it is useful to introduce the local quantization axis

Ii = z†iτzi = (sin θi cosφi, sin θi sinφi, cos θi) (164)

Note that Ii is independent of the overall phase αi, which
is the phase of the physical electron operator. Then
different orientations of I represent different mean field
states in the U(1) mean field theory. This is shown in
Fig. 33. For example, I pointing to the north pole cor-
responds to gi = I and the staggered flux state. This
state has a3

0 6= 0, a1
0 = a2

0 = 0 and has small Fermi
pockets. It also has orbital staggered currents around
the plaquettes. I pointing to the south pole corresponds
to the degenerate staggered flux state whose staggered
pattern is shifted by one unit cell. On the other hand,
when I is in the equator, it corresponds to a d-wave su-
perconductor. Note that the angle φ is a gauge degree of

staggered flux

staggered flux

superconductor

δθ

δφ

FIG. 33 The quantization axis I in the SU(2) gauge the-
ory. The north and south poles correspond to the staggered
flux phases with shifted orbital current patterns. All points
on the equators are equivalent and correspond to the d-wave
superconductor. In the superconducting state one particular
direction is chosen on the equator. There are two important
collective modes. The θ modes correspond to fluctuations in
the polar angle δθ and the φ gauge mode to a spatially varying
fluctuation in δφ.

freedom and states with different φ anywhere along the
equator are gauge equivalent. A general orientation of I

corresponds to some combination of d-SC and s-flux.

At zero doping, all orientations of I are energetically
the same. This symmetry is broken by doping, and the I

vector has a small preference to lie on the equator. At low
temperature, there is a phase transition to a state where
I lies on the equator, i.e. the d-SC ground state. It is
possible to carry out a small expansion about this state
and work out explicitly the collective modes (Lee and
Nagaosa, 2003). In an ordinary superconductor, there
is a single complex order parameter ∆ and we expect
an amplitude mode and a phase mode. For a charged su-
perconductor the phase mode is pushed up to the plasma
frequency and one is left with the amplitude mode only.
In the gauge theory we have in addition to ∆ij the order
parameter χij . Thus it is natural to expect additional
collective modes. From Fig. 33 we see that two modes
are of special interest corresponding to small θ and φ
fluctuations. Physically the θ mode corresponds to lo-
cal fluctuations of the s-flux states which generate local
orbital current fluctuations. These currents generate a
small magnetic field (estimated to be ∼ 10 gauss) which
couples to neutrons. Lee and Nagaosa, 2003 predict a
peak in the neutron scattering cross-section at (π, π), at
energy just below 2∆0, where ∆0 is the maximum d-wave
gap. This is in addition to the resonance mode discussed
in section III.B which is purely spin fluctuation in ori-
gin. The orbital origin of this mode can be distinguished
from the spin fluctuation by its distinct form factor (Hsu
et al., 1991; Chakravarty et al., 2002a)

The φ mode is more subtle because φ is the phase of a
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Higgs field, i.e. it is part of the gauge degree of freedom.
It turns out to correspond to a relative oscillation of the
amplitudes of χij and ∆ij and is again most prominent
at (π, π). Since |χij | couples to the bond density fluctu-
ation, inelastic Raman scattering is the tool of choice to
study this mode, once the technology reaches the requi-
site 10 meV energy resolution. Lee and Nagaosa, 2003
point out that due to the special nature of the buckled
layers in LSCO, this mode couples to photons and may
show up as a transfer of spectral weight from a buckling
phonon to a higher frequency peak. Such a peak was
reported experimentally (Kuzmenko et al., 2003), but it
is apparently not unique to LSCO as the theory would
predict, and hence its interpretation remains unclear at
this point.

From Fig. 33 it is clear that the σ-model representation
of the SU(2) gauge theory is a useful way of parameter-
izing the myriad U(1) mean field states which become
almost degenerate for small doping. The low tempera-
ture d − SC phase is the ordered phase of the σ-model,
while in the high temperature limit we expect the I vec-
tor to be disordered in space and time, to the point where
the σ-mode approach fails and one crosses over to the
SU(2) mean field description. The disordered phase of
the σ-model then corresponds to the pseudogap phase.
How does this phase transition take place? It turns out
that the destruction of superconducting order proceeds
via the usual route of BKT proliferation of vortices. To
see how this comes about in the σ-model description, we
have to first understand the structure of vortices.

C. Vortex structure

The σ-model picture leads to a natural model for a low
energy hc/2e vortex Lee and Wen, 2001. It takes advan-
tage of the existence of two kinds of bosons b1 and b2 with
opposite gauge charges but the same coupling to electro-
magnetic fields. Far away from the vortex core, |b1| = |b2|
and b1 has constant phase while b2 winds its phase by 2π
around the vortex. As the core is approached |b2) must
vanish in order to avoid a divergent kinetic energy, as
shown in Fig. 34(top). The quantization axis I provides
a nice way to visualize this structure [Fig. 34(bottom)].
It smoothly rotates to the north pole at the vortex core,
indicating that at this level of approximation, the core
consists of the staggered flux state. The azimuthal angle
winds by 2π as we go around the vortex. It is impor-
tant to remember that I parameterizes only the internal
gauge degrees of freedom θ and φ and the winding of φ
by 2π is different from the usual winding of the overall
phase α by π in an hc/2e vortex. To better understand
the phase winding we write down the following contin-
uum model for the phase θ1, θ2 of b1 and b2, valid far
away from the core.

D =

∫

d2x
K

2

[

(∇θ1 − a − A) + (∇θ2 + a − A)
2
]

+ · · · (165)

FIG. 34 Structure of the superconducting vortex. Top: b1 is
constant while b2 vanishes at the center and its phase winds
by 2π. Bottom: The isospin quantization axis points to the
north pole at the center and rotates towards the equatorial
plane as one moves out radially. The pattern is rotationally
symmetric around the ẑ axis.

where a stands for the continuum version of a3
ij in the

last section, and A is the electromagnetic field (e/c has
been set to be unity). We now see that the hc/2e vor-
tex must contain a half integer vortex of the a gauge
flux with an opposite sign. Then θ1 sees zero flux while
θ2 sees 2π flux, consistent with the windings chosen in
Fig.34. This vortex structure has low energy for small x
because the fermion degrees of freedom remain gapped
in the core and one does not pay the fermionic energy
of order J as in the U(1) gauge theory. Physically, the
above description takes advantage of the states with al-
most degenerate energies (in this case the staggered flux
state) which is guaranteed by the SU(2) symmetry near
half filling. There is direct evidence from STM tunneling
that the energy gap is preserved in the core (Maggio-
Aprile et al., 1995; Pan et al., 2000). This is in contrast
to theoretical expectations for conventional d-wave vor-
tex cores, where a large resonance is expected to fill in
the gap in the tunneling spectra (Wang and MacDonald,
1995).

We can clearly reverse the roles of b1 and b2 to pro-
duce another vortex configuration which is degenerate in
energy. In this case I in Fig. 34 points to the south pole.
These configurations are sometimes referred to merons
(half of a hedgehog) and the two halves can tunnel to each
other via the appearance of instantons in space-time. The
time scale of the tunneling event is difficult to estimate,
but should be considerably less than J . Depending on the
time scale, the orbital current of the staggered flux state
in the core generates a physical staggered magnetic field
which may be experimentally observable by NMR (al-
most static), µSR (intermediate time scale) and neutron
(short time scale). The experiment must be performed in
a large magnetic field so that a significant fraction of the
area consists of vortices and the signal of the staggered
field should be proportional to H . A µSR experiment on
underdoped YBCO has detected such a field dependent
signal with a local field of ±18 gauss (Miller et al., 2002).
However µSR is not able to determine whether the field
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has an orbital or spin origin and this experiment is only
suggestive, but by no means definitive, proof of orbital
currents in the vortex core. In principle, neutron scat-
tering is a more definitive probe, because one can use
the form factor to distinguish between orbital and spin
effects. However, due to the small expected intensity,
neutron scattering has so far not yielded any definite re-
sults.

As discussed in section XI.E, we expect enhanced (π, π)
fluctuations to be associated with the staggered flux liq-
uid phase. Indeed, the s-flux liquid state is our route to
Néel order and if gauge fluctuations are large, we may
expect to have quasi-static Néel order inside the vor-
tex core. Experimentally, there are reports of enhanced
spin fluctuations in the vortex core by NMR experiments
(Curro et al., 2000; Mitrovic et al., 2001; Mitrovic et al.,
2003; Kakuyanagi et al., 2002). There are also reports of
static incommensurate spin order forming a halo around
the vortex in the LSCO family (Kitano et al., 2000; Lake
et al., 2001; Lake et al., 2002; Khaykovich et al., 2002.
One possibility is that these halos are the condensation
of pre-existing soft incommensurate modes known to ex-
ist in LSCO, driven by quasi-static Néel order inside the
core. We emphasize the s-flux liquid state is our way of
producing antiferromagnetic order starting from micro-
scopies and hence is fully consistent with the appearance
of static or dynamical antiferromagnetism in the vortex
core. Our hope is that gauge fluctuations (including in-
stanton effects) are sufficiently reduced in doped systems
to permit a glimpse of the staggered orbital current. The
detection of such currently fluctuations will be a strong
confirmation of our approach.

Finally, we note that orbital current does not show up
directly in STM experiments, which are sensitive to the
local density of states. However, Kishine et al., 2002 have
considered the possibility of interference between Wan-
nier orbitals on neighboring lattice sites, which could lead
to modulations of STM signals between lattice positions.
STM experiments have detected 4×4 modulated patterns
in the vortex core region and also in certain underdoped
regions. Such patterns appear to require density modu-
lations which are in addition to our vortex model.

D. Phase diagram

We can now construct a phase diagram of the under-
doped cuprates starting from the d-wave superconductor
ground state at low temperatures. The vortex structure
allows us to unify the σ-model picture with the conven-
tional picture of the destruction of superconducting or-
der in two dimensions, ie., the BKT transition via the
unbinding of vortices. The σ-model contains in addition
to the pairing phase 2α, the phases θ and φ. However, we
saw in section XII.C that a particular configuration of θ
and φ is favored in side the vortex core. The SU(2) gauge
theory provides a mechanism for cheap vortices which are
necessary for a BKT description, as discussed in section

(b) Nernst

(c) Pseudogap

(a) Superconductor

FIG. 35 Schematic picture of the quantization axis I in dif-
ferent parts of the phase diagram shown in Fig. 18. (a) In the
superconducting phase I is ordered in the x-y plane. (b) In
the Nernst phase, I points to the north or south pole inside
the vortex core. (c) The pseudogap corresponds to a com-
pletely disordered arrangement of I . (I is a three dimensional
vector and only a two dimensional projection is shown.)

V.B. If the core energy is too large, the system will be-
have like a superconductor on any reasonable length scale
above TBKT, which is not in accord with experiment. On
the other hand, if the core energy is small compared with
Tc, vortices will proliferate rapidly. They overlap and
lose their identity. As discussed section V.B, there is
strong experimental evidence that vortices survive over
a considerable temperature range above Tc. Taken as a
whole, these experiments require the vortex core energy
to be cheap, but not too cheap, i.e. of the order of Tc.
Honerkamp and Lee, 2004 have attempted a microscopic
modeling of the proliferation of vortices. They assume
an s-flux core and estimate the energy from projected
wavefunction calculations. They indeed found that there
is a large range of temperature above the BKT transi-
tion where vortices grow in number but still maintain
their identity. This forms a region in the phase diagram
which may be called the Nernst region shown in Fig. 18.
The corresponding picture of the I vector fluctuation is
shown in Fig. 35. Above the Nernst region the I vector
is strongly fluctuating and is almost isotopic. This is the
strongly disordered phase of the σ-model. The vortices
have lost their identity and indeed the σ-model descrip-
tion which assumes well defined phases of b1 and b2 begin
to break down. Nevertheless, the energy gap associated
with the fermions remains. This is the pseudogap part of
the phase diagram in Fig. 18. In the SU(2) gauge theory
this is understood as the U(1) spin liquid. There is no
order parameter in the usual sense associated with this
phase, as all fluctuations including staggered orbital cur-
rents and d-wave pairing become short range. Is there
a way to characterize this state of affairs other than the
term spin liquid? This question is addressed in the next
section.

E. Signature of the spin liquid

Senthil and Lee, 2004 pointed out that if the pseudogap
region is controlled by the U(1) spin liquid fixed point, it
is possible to characterize this region in a certain precise
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way. The spin liquid is a de-confined state, meaning that
instantons are irrelevant. Then the U(1) gauge flux is a
conserved quantity. Unfortunately, it is not clear how to
couple to this gauge flux using conventional probes. We
note that the flux associated with the a3 gauge field is
different from the U(1) gauge flux considered in section
IX, which had the meaning of spin chirality. In the case
where the bosons are locally condensed and their local
phase well defined, it is possible to identify the gauge
flux in terms of the local phase variables. The gauge
magnetic field B is given by

B = (∇ × a3)z

=
1

2
n̂ · ∂xn̂× ∂yn̂ (166)

where

n̂ = (sin θ cosα, sin θ sinα, cos θ) .

with θ and α defined in eq. (157). Note that the az-
imuthal angle associated with n̂ is now the pairing phase
α, in contrast with the vector I we considered earlier.
The gauge flux is thus related to the local pairing and
s-flux order as

B =
1

2
(∇n̂z × ∇α)z (167)

and it is easily checked that the vortex structure de-
scribed in section XII.C contains a half integer gauge
flux.

In the superconducting state the gauge flux is localized
in the vortex core and fluctuations between ± half integer
vortices are possible via instantons, because the instan-
ton action is finite. The superconductor is in a confined
phase as far as the U(1) gauge field is concerned. As the
temperature is raised towards the pseudogap phase this
gauge field leaks out of the vortex cores and begins to
fluctuate more and more homogeneously.

The asymptotic conservation of the gauge flux at the
Mott transition fixed point potentially provides some
possibilities for its detection. At non-zero temperatures
in the non-superconducting regions, the flux conservation
is only approximate (as the instanton fugacity is small
but non-zero). Nevertheless at low enough temperature
the conserved flux will propagate diffusively over a long
range of length and time scales. Thus there should be an
extra diffusive mode that is present at low temperatures
in the non-superconducting state. It is however not clear
how to design a probe that will couple to this diffusive
mode at present.

Alternately the vortex structure described above pro-
vides a useful way to create and then detect the gauge
flux in the non-superconducting normal state. We will
first describe this by ignoring the instantons completely
in the normal state. The effects of instantons will then
be discussed.

Consider first a large disc of cuprate material which
is such that the doping level changes as a function of

FIG. 36 Structure of the sample needed for the proposed
experiment. The outer annulus (in dark blue) has the highest
Tc. The inner annulus (in light blue) has a smaller Tc. The
rest of the sample (in brown) has even smaller Tc.

the radial distance from the center as shown in Fig. 36.
The outermost annulus has the largest doping x1. The
inner annulus has a lower doping level x2. The rest of
the sample is at a doping level x3 < x2 < x1. The
corresponding transition temperatures Tc1,2,3 will be such
that Tc3 < Tc2 < Tc1. We also imagine that the thickness
∆Ro,∆Ri of the outer and inner annuli are both much
smaller than the penetration depth for the physical vector
potential A. The penetration depth of the internal gauge
field a is expected to be small and we expect it will be
smaller than ∆Ro,∆Ri. We also imagine that the radius
of this inner annulus Ri is a substantial fraction of the
radius Ro of the outer annulus.

Now consider the following set of operations on such a
sample.

(i) First cool in a magnetic field to a temperature Tin
such that Tc2 < Tin < Tc1. The outer ring will then
go superconducting while the rest of the sample stays
normal. In the presence of the field the outer ring will
condense into a state in which there is a net vorticity on
going around the ring. We will be interested in the case
where this net vorticity is an odd multiple of the basic
hc/2e vortex. If as assumed the physical penetration
depth is much bigger than the thickness ∆Ro then the
physical magnetic flux enclosed by the ring will not be
quantized.

(ii) Now consider turning off the external magnetic
field. The vortex present in the outer superconducting
ring will stay (manifested as a small circulating persis-
tent current) and will give rise to a small magnetic field.
As explained above if the vorticity is odd, then it must
be associated with a flux of the internal gauge field that
is ±π. This internal gauge flux must essentially all be in
the inner ‘normal’ region of the sample with very small
penetration into the outer superconducting ring. It will
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spread out essentially evenly over the full inner region.

We have thus managed to create a configuration with a
non-zero internal gauge flux in the non-superconducting
state.

(iii) How do we detect the presence of this internal
gauge flux? For that imagine now cooling the sample fur-
ther to a temperature Tfin such that Tc3 < Tfin < Tc2.
Then the inner ring will also go superconducting. This
is to be understood as the condensation of the two boson
species b1,2. But this condensation occurs in the presence
of some internal gauge flux. When the bosons b1,2 con-
dense in the inner ring, they will do so in a manner that
quantizes the internal gauge flux enclosed by this inner
ring into an integer multiple of π. If as assumed the inner
radius is a substantial fraction of the outer radius then
the net internal gauge flux will prefer the quantized val-
ues ±π rather than be zero (see below). However config-
urations of the inner ring that enclose quantized internal
gauge flux of ±π also necessarily contain a physical vor-
tex that is an odd multiple of hc/2e. With the thickness
of the inner ring being smaller than the physical pen-
etration depth, most of the physical magnetic flux will
escape. There will still be a small residual physical flux
due to the current in the inner ring associated with the
induced vortex. This residual physical magnetic flux can
then be detected.

Note that the sign of the induced physical flux is inde-
pendent of the sign of the initial magnetic field. Further-
more the effect obtains only if the initial vorticity in the
outer ring is odd. If on the other hand the initial vor-
ticity is even the associated internal gauge flux is zero,
and there will be no induced physical flux when the inner
ring goes superconducting.

The preceding discussion ignores any effects of instan-
tons. In contrast to a bulk vortex in the superconducting
state the vortices in the set-up above have macroscopic
cores. The internal gauge flux is therefore distributed
over a region of macroscopic size. Consequently if in-
stantons are irrelevant at long scales in the normal state,
their rate may be expected to be small. At any non-zero
temperature (as in the proposed experiment) there will
be a non-zero instanton rate which will be small for small
temperature.

When such instantons are allowed then the internal
gauge flux created in the sample after step (ii) will fluc-
tuate between the values +π and −π. However so long
as the time required to form the physical vortex in step
(iii), which we expect to be short electronic time scale,
is much shorter than the inverse of the instanton rate
we expect that the effect will be seen. Since the cooling
is assumed slow enough that the system always stays in
equilibrium, the outcome of the experiment is determined
by thermodynamic considerations. Senthil and Lee, 2004
estimated the energies of the various stages of the oper-
ation and concluded that for sample diameters under a
micron and sufficiently low temperatures (= 10 K), such
an experiment may be feasible.

XIII. SUMMARY AND OUTLOOK

In this review we have summarized a large body of
work which views high temperature superconductivity as
the problem of doping of a Mott insulator. We have ar-
gued that the t-J model, supplemented by t′ terms, con-
tains the essence of the physics. We offer as evidence nu-
merical work based on the projected trial wavefunctions,
which correctly predicts the d-wave pairing ground state
and a host of properties such as the superfluid density
and the quasiparticle spectral weight and dispersion. An-
alytic theory hinges on the treatment of the constraint of
no double occupation. The redundancy in the represen-
tations used to enforce the constraint naturally leads to
various gauge theories. We argue that with doping, the
gauge theory may be in a deconfined phase, in which case
the slave-boson and fermion degrees of freedom, which
were introduced as mathematical devices, take on a phys-
ical meaning in that they are sensible starting points to
describe physical phenomena. However, even in the de-
confined phase, the coupling to gauge fluctuations is still
of order unity and approximation schemes (such as large
N expansion) are needed to calculate physical proper-
ties such as spin correlation and electron spectral func-
tion. These results qualitatively capture the physics of
the pseudogap phase, but certainly not at a quantitative
level. Nevertheless, our picture of the vortex structure
and how they proliferate gives us a reasonable account of
the phase diagram and the onset of Tc.

One direction of future research is to refine the treat-
ment of the low energy effective model, i.e. fermions and
bosons coupled to gauge fields, and attempt more de-
tailed comparison with experiments such as photoemis-
sion lineshapes, etc. On the other hand, it is worthwhile
to step back and take a broader perspective. What is
really new and striking about the high temperature su-
perconductors is the strange “normal” metallic state for
underdoped samples. The carrier density is small and
the Fermi surface is broken up by the appearance of a
pseudogap near (0, π) and (π, 0), leaving a “Fermi arc”
near the nodal points. All this happens without doubling
of the unit cell via breaking translation or spin rotation
symmetry. How this state comes into being in a lightly
doped Mott insulator is the crux of the problem. We can
distinguish between two classes of answers. The first, per-
haps the more conventional one, postulates the existence
of a symmetry-breaking state which gaps the Fermi sur-
face, and further assumes that thermal fluctuation pre-
vents this state from ordering. A natural candidate for
the state is the superconducting state itself. However,
it now appears that phase fluctuations of a supercon-
ductor can explain the pseudogap phenomenon only over
a relatively narrow temperature range, which we called
the Nernst regime. Alternatively, a variety of competing
states which have nothing to do with superconductivity
have been proposed, often on a phenomenological level,
to produce the pseudogap. We shall refer to this class of
theory as “thermal” explanation of the pseudogap.
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A second class of answer, which we may dub the “quan-
tum” explanation, proposes that the pseudogap is con-
nected with a fundamentally new quantum state. Thus,
despite its appearance at high temperatures, it is argued
that it is a high frequency phenomenon which is best un-
derstood quantum mechanically. The gauge theory re-
viewed here belongs to this class, and views the pseu-
dogap state as derived from a new state of matter, the
quantum spin liquid state. The spin liquid state is con-
nected to the Néel state at half filling by confinement.
At the same time, with doping a d-wave superconduct-
ing ground state is naturally produced. We argue that
rather than following the route taken by the cuprate in
the laboratory of evolving directly from the antiferromag-
net to the superconductor, it is better conceptually to
start from the spin liquid state and consider how AF and
superconductivity develop from it. In this view the pseu-
dogap is the closest we can get to obtaining a glimpse of
the spin liquid which up to now is unstable in the square
lattice t-J model.

Is there a “smoking gun” signature to prove or dis-
prove the validity of this line of theory? Our approach
is to make specific predictions as much as possible in the
hope of stimulating experimental work. This is the rea-
son we make special emphasis on the staggered flux liquid
with its orbital current fluctuations, because it is a unique
signature which may be experimentally detectable. Our
predictions range from new collective modes in the super-
conducting state, to quasi-static order in the vortex core.
Unfortunately the physical manifestation of the orbital
current is a very weak magnetic field, which is difficult
to detect, and to date we have not found experimental
verification. Besides orbital current, we also propose an
experiment involving flux generation in a special geome-
try. This experiment addresses the fundamental issue of
the quantum spin liquid as the origin of the pseudogap
phase.

The pseudogap metallic state is so strange that at the
beginning, it is not clear if a microscopic description is
even possible. So the microscopic description provided
by the SU(2) slave-boson theory, although still relatively
qualitative, represents important progress and leads to
some deep insights. A key finding is that the parent spin
liquid is a new state of matter that cannot be described
by Landau’s symmetry breaking theory. The description
of the parent spin liquid, such as the SU(2) slave-boson
theory, must involve gauge theory. Even if one starts
with an ordered phase and later uses quantum fluctua-
tions to restore the symmetry, the resulting description of
the symmetry restored state, if found, appears to always
contain gauge fields (Wu et al., 1998). Thus the appear-
ance of the gauge field in the quantum description of the
pseudogap metal is not a mathematical artifact of the
slave-boson theory. It is a consequence of a new type of
correlations in those states. The new type of correlations
represents a new type of order (Wen, 2002b), which make
those states different from the familiar states described
by Landau’s symmetry breaking theory.

From this perspective, the study of high temperature
superconductivity may have a much broader and deeper
impact than merely understanding high temperature su-
perconductivity. Such a study is actually a study of new
states of matter. It represents our entry into a new excit-
ing world that lies beyond Landau’s world of symmetry
breaking. Hopefully the new states of matter may be dis-
covered in some materials other than high temperature
superconductors. The slave-boson theory and the result-
ing gauge theory developed for high temperature super-
conductivity may be useful for these new states of matter
once they are discovered in experiments. [Examples of
these new states of matter have already been discovered
in many theoretical toy models (Kitaev, 2003; Moessner
and Sondhi, 2001; Balents et al., 2002; Wen, 2003c).] At
the moment, gauge theory is the only known language to
describe this new state of affairs. We believe the intro-
duction of this subject to condensed matter physics has
enriched the field and will lead to may interesting further
developments.
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