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Doping-induced structural phase transition in
cobalt diselenide enables enhanced hydrogen
evolution catalysis
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Transition metal dichalcogenide materials have been explored extensively as catalysts to

negotiate the hydrogen evolution reaction, but they often run at a large excess thermo-

dynamic cost. Although activating strategies, such as defects and composition engineering,

have led to remarkable activity gains, there remains the requirement for better performance

that aims for real device applications. We report here a phosphorus-doping-induced phase

transition from cubic to orthorhombic phases in CoSe2. It has been found that the achieved

orthorhombic CoSe2 with appropriate phosphorus dopant (8 wt%) needs the lowest over-

potential of 104mV at 10 mA cm−2 in 1 M KOH, with onset potential as small as −31 mV.

This catalyst demonstrates negligible activity decay after 20 h of operation. The striking

catalysis performance can be attributed to the favorable electronic structure and local

coordination environment created by this doping-induced structural phase transition strategy.
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W
ater electrolysis (2H2O → 2H2+O2) powered by elec-
tricity from renewable sources holds great promise for
sustainable hydrogen production that drives clean-

energy devices such as fuel cells1–3. A considerable challenge
toward large-scale utilization of this technology is the develop-
ment of efficient and long-lasting catalysts able to accelerate
cathodic hydrogen evolution reaction (HER)2. Although ultra-fast
HER kinetics on platinum and its alloys are known, their adop-
tion in scalable systems is plagued by high cost and low geological
abundance. Recent advances in the search of new HER catalysts
have shown that a range of transition metal dichalcogenides
(TMD), such as MoS24–9, MoSe210, WS211, TaS212, FeS213,
CoS214, CoSe215–17, and CoTe218 are attractive alternatives. Of
these TMD catalysts, the intrinsic active site of MoS2 was well
identified19, which stimulated strategies to tailor MoS2 for pro-
moted HER electrocatalysis through modulating material para-
meters such as defects5, van der Waals interactions6,
morphology7, composition8, and crystal phases9. But although
marked progress on MoS2, how specific material parameter
affects the activity of other TMD catalysts, for example, CoSe2,
remains poorly known.

As with MoS2 and WS2, structural phase transition from the
2H (trigonal prismatic) to 1T (octahedral) phase can be induced
through chemical exfoliation of their layered compounds11,20,
which leads to enhanced HER activities owing to the strained
metallic 1T phase. Another layered TMD material, CoSe2, has
recently been investigated as promising catalyst for H2 produc-
tion from water15,16,21. It is thought that the similar surface sites
to active metal centers of hydrogenase22, and the unsaturated
coordination environment might account for the good HER
energetics6. The crystal form commonly observed for CoSe2 is the
stable cubic phase (c-CoSe2), which belongs to pyrite-type
minerals with characteristic Se22− dumbbells, whereas Co2+

occurs in octahedral coordination23. Intriguingly, experimental
efforts have demonstrated that another CoSe2 phase, namely
orthorhombic marcasite (o-CoSe2), can also be active for
HER17,24. Although the cubic-to-orthorhombic phase change in
CoSe2 can be achieved in principle through rotating half of the
Se22− groups25, methods capable of realizing this transition are
rare, which limits opportunities of switching its properties for
energy applications, such as electrocatalysis.

In this work, we show the experimental observation of a
phosphorus-doping-induced phase transition from c-CoSe2 to o-
CoSe2 with controllable P-doping levels (denoted as o-CoSe2|P).
The choice of phosphorus as dopant is based on its weaker
electronegativity in comparison to selenium that might tune the d
electron number on Co cations, which was thought to influence
the structural phases between pyrites and marcasites25,26. We find
that the resultant o-CoSe2|P (8 wt%) is one of the most efficient
low-cost materials for catalyzing the HER in alkaline electrolyte,
in which the HER kinetics are two orders of magnitude slower
than that in acid on platinum1. Experimental and theoretical
studies illustrate that the developed o-CoSe2|P catalyst offers an
optimal electronic structure and local coordination environment
after phase transition, leading to the substantial energetic benefit
for HER. Our findings raise the possibility in accessing advanced
electrocatalysts through element-doping-induced structural phase
transition.

Results
Synthesis and characterization of o-CoSe2|P. In our experiment,
we achieved marcasite-type o-CoSe2|P by annealing as-
synthesized c-CoSe2 nanobelts27 (Supplementary Fig. 1) with
NaH2PO2·H2O under an argon atmosphere, which was decom-
posed to PH3 species in situ that enable the P-doping and phase

transition (Fig. 1a and Methods). We note that similar pyrite-type
CoPS28 and Se-doped NiP229 have been reported, but no phase
change was observed. Scanning electron microscopy (SEM) and
transmission electron microscopy (TEM) images of the obtained
sample show decent belt-like morphology (Fig. 1b, c), inherited
from the c-CoSe2 precursors. Close-up inspection of this sample
reveals porous structures (Fig. 1d and Supplementary Fig. 2)
composed of long and narrow holes with sizes ranging from 1 to
15 nm (Supplementary Fig. 3). These holes were formed owing to
the different diffusion rates of P and Se during transition
process upon heating. Selected-area electron diffraction (SAED)
patterns (inset in Fig. 1c and Supplementary Fig. 4) show stret-
ched, single-crystal-like diffraction spots that are readily
distinguishable from the original pattern of c-CoSe2, resulting
from the porous orthorhombic structures. A high-angle annular
dark field scanning TEM (STEM) image demonstrates the high
crystallinity of o-CoSe2|P with resolved lattice fringe of (130)
planes, in which defects from hole edges can be observed (red
arrow, Fig. 1e and Supplementary Fig. 5). In Fig. 1f we present X-
ray diffraction (XRD) pattern that shows diffraction peaks clearly
identical to that of marcasite CoSe2 with orthorhombic phase
(JCPDS 53–0449). By comparison with as-made pure orthor-
hombic CoSe2, the shift of the (111) and (120) planes to relatively
higher diffraction angles is due to the P replacing partial Se
atoms, suggesting the formation of o-CoSe2|P (Supplementary
Fig. 6).

We further investigated the o-CoSe2|P by STEM, energy-
dispersive X-ray spectrum (EDX) elemental mapping, and
electron energy-loss spectroscopy (EELS), which together evidence
the presence of P that uniformly doped over the structure (Fig. 1g
and Supplementary Fig. 7). The phase structure and doping level
of the final product can be adjusted by careful control of the
annealing temperature, time, and deposition amount of P during
the heating process (Supplementary Figs. 8–11). As shown below,
the optimal P content in o-CoSe2|P for HER is ~8 wt%, on the
basis of our inductively coupled plasma (ICP) atomic emission
spectroscopy measurement.

Doping-induced structural phase transition. Although
orthorhombic-to-cubic phase change in CoSe2 is widely
affirmed23,25,30, yet its reverse transition has not been reported.
To observe the new transition process from pyrite-type c-CoSe2 to
marcasite-type o-CoSe2|P, we monitored the temperature-
dependent XRD patterns, in combination with other
temperature-dependent characterizations, including X-ray pho-
toelectron spectroscopy (XPS), EDX, and Raman spectroscopy
(Fig. 2a–d). Figure 2a shows that when the annealing temperature
reaches 300 °C, new XRD diffraction peaks (black arrows) that
belong to o-CoSe2 start to emerge from c-CoSe2 matrix, indicating
that the phase transition occurs. Complete phase transition of c-
CoSe2 to o-CoSe2 with high crystallinity was observed at elevated
temperature (400 °C) for a reaction of 30 min (Fig. 3a and Sup-
plementary Fig. 12). No addition of P precursor in the reaction
system, however, gives unchanged XRD pattern even at 400 °C
(Fig. 3a, Supplementary Fig. 13), implying the critical role of P in
inducing the phase transition. These results match well with P 2s
XPS and EDX data (Fig. 2b, c), taking into account that gradual
increase in P content is responsible for yielding o-CoSe2|P.
Raman spectra were also recorded at selected temperature points
(Fig. 2d), which show obvious Raman active peak at 189 cm−1 for
c-CoSe2, corresponding to the Se–Se stretching mode31. This peak
fades away with a new peak at 174 cm−1 gradually dominant as
the annealing temperature elevated from 300 to 400 °C, indicating
the structural evolution from c-CoSe2 to marcasite o-CoSe2|P32.
Raman spectrum also uncovers that if no P precursor was added
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in the annealing process, c-CoSe2 phase maintains even up to 400
°C, consistent with above observations (Fig. 2d).

Recent reports show that structural phase transition in TMD
materials is commonly triggered by thermal17 or chemical

means33. A new electrostatic control over phase structure via
electrostatic doping was lately demonstrated theoretically and
experimentally in monolayer MoTe234. So far, phase transition
from metastable o-CoSe2 to c-CoSe2 has been described through
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thermal synthesis at 450 °C17; whereas, attempts to establish
reverse conversion are rare, owing to the more thermodynami-
cally stable c-CoSe2 phase. Early studies showed that defects such
as stacking faults in cubic pyrites might provide sites to drive
energetically unfavorable marcasites25. In our study, annealing
c-CoSe2 at 400 °C results in the loss of some Se, leaving vacancy
defects (Fig. 2e and Supplementary Fig. 14). These vacancies were
quickly occupied by P generated in situ. Because of the weaker
electronegativity of P in comparison to Se, its participation
induces the formation of closer Co–P interactions and longer
Se–Se(P) pairs. Such new bond reconstructions allow for tuned
electrons in d orbitals on Co, which was regarded as driving force
to the rotation of Se–Se(P) pairs26, thus giving rise to o-CoSe2|P
(Fig. 2e). Our P 2p and valence band edge XPS spectra clearly
uncover the presence of Co–P and Se–P bonds (Fig. 4a, b, discuss
later), confirming the role of P that aids the structural phase
transition from stable c-CoSe2 to metastable o-CoSe2|P.

Electrocatalytic HER activity and stability. The TMD catalysts
reported to date all investigate, with few exceptions17,35, HER
behaviors in acidic environments. We explore here the capability
of HER electrocatalysis using o-CoSe2|P in alkali, in which the
HER kinetics are two orders of magnitude slower than that in
acid on platinum. To this end, we examined the HER activity of
o-CoSe2|P on inert glassy carbon electrode in Ar-saturated 1M
KOH (pH 14) at ambient temperature; with reference measure-
ments of other studied catalysts for comparison (see Methods).
Polarization curves in Fig. 3a shows the onset potential (defined
as the overpotential at 1 mA cm−2) for H2 evolution at −31mV
for o-CoSe2|P, whereas the onsets were shifted substantially

negative for c-CoSe2, and annealed c-CoSe2, indicating energetical
merits of o-CoSe2|P catalyst. Figure 3a also shows that although
inferior HER activity at low applied potentials, o-CoSe2|P can far
exceed Pt/C benchmark at high overpotentials (>170 mV), pre-
sumably owing to its highly porous structure that enables better
mass-transfer process. The o-CoSe2|P catalyst exhibits a low
overpotential of 104 mV at 10 mA cm−2; by comparison, over-
potentials were 330 mV for c-CoSe2 and 248 mV for annealed
c-CoSe2. Exchange current density (j0), the most inherent mea-
sure of HER activity, was 0.43 mA cm−2 for o-CoSe2|P in 1M
KOH (Supplementary Fig. 15). This high j0 agrees well with the
large H2 formation turnover frequency of 14.95 s−1 for o-CoSe2|P
at 200 mV overpotential (Supplementary Fig. 16 and Supple-
mentary Note 1). Tafel analysis (Fig. 3b) offers a slope of 179, 155,
69, and 112 mV dec−1 for c-CoSe2, annealed c-CoSe2, o-CoSe2|P,
and Pt/C catalyst, respectively. The Tafel slope of 112 mV dec−1

measured for Pt/C matches well with previous reports (113 mV
dec−1)36, and the lower value of 69 mV dec−1 gained for o-CoSe2|
P suggests its HER superiority as compared to Pt/C and other
documented HER single catalysts (Supplementary Table 1). The
Tafel slope of 69 mV dec−1 also hints at a Heyrovsky-Volmer
pathway that likely takes effect on o-CoSe2|P catalyst13. The
rotating ring disk electrode measurements show clear H2 oxida-
tion currents occurred on Pt ring at 0.5 V versus RHE, confirming
the selective H2 production on the studied catalysts (Fig. 3c). The
H2 production was further analyzed by gas chromatography,
which shows that the detected amount H2 gas is consistent with
the theoretical value, corresponding to a Faradaic efficiency of
~100% (Supplementary Fig. 17). We note that doping bare
o-CoSe2 with P (~7.75 wt%), however, is unable to achieve the
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activity of o-CoSe2|P catalyst, highlighting the advance of this
doping-inducing phase-transition method for accessing high-
performance catalysts (Supplementary Fig. 18).

We then recorded electrochemical impedance spectroscopy
(EIS) to probe charge transfer process on o-CoSe2|P catalyst in 1
M KOH. Nyquist plots in Fig. 3d present that the charge transfer
resistance (Rct) of o-CoSe2|P is 2.2Ω at 250mV overpotential,
versus 7930Ω for c-CoSe2 and 19.7Ω for annealed c-CoSe2. The
smallest Rct of mere 2.2Ω indicates much promoted kinetics of
charge transfer on o-CoSe2|P catalyst. Further, double-layer
capacitance (Cdl), which scales roughly with the effective
electrochemically active surface area, was measured for studied
catalysts (Supplementary Fig. 19). Our results (Fig. 3e) reveal a
considerably larger Cdl of o-CoSe2|P (12.8 mF cm−2) compared
with c-CoSe2 (1.1 mF cm−2) and annealed c-CoSe2 (5.4 mF cm−2),
suggesting more accessible active sites created on o-CoSe2|P
catalyst. We also systematically investigated the synthetic

parameters of o-CoSe2|P that affect the HER activity (Supple-
mentary Fig. 20). We further highlight that o-CoSe2|P catalyst
demonstrates marked HER activities in acidic and neutral
electrolytes, such as 0.5M H2SO4 (pH= 0, Supplementary Fig. 21)
and 1M phosphate-buffered saline (PBS; pH= 7.02, Supplemen-
tary Fig. 22), and even seawater (from Gulf Stream in the Gulf of
Mexico, pH= 7.94; Fig. 3f and Supplementary Fig. 23). The above
energetic and kinetic metrics, including the onset potential and
Tafel slope, make o-CoSe2|P a superior catalyst to any previously
reported noble-metal-free HER single catalysts in alkaline
environments (Fig. 3g and Supplementary Table 1). These metrics
also outperform those of most HER composite catalysts developed
recently (Supplementary Fig. 24 and Supplementary Table 2).
Besides activity, another essential factor for real use of a catalyst is
the operating stability. We performed aggressive long-term
stability tests on o-CoSe2|P catalyst by means of chronoampero-
metry (j ~ t), showing no current decay over 20 h of continuous
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operation at 250mV overpotential in 1M KOH (Fig. 3h).
Accelerated cyclic voltammetry cycling test further evidences this
catalytic robustness with almost no shift of polarization curves
after 2000 cycles (inset in Fig. 3h, left), agreeing with EIS
measurements, where Nyquist plots exhibits no increase of Rct
after cycling (inset in Fig. 3h, right). Various postmortem
characterizations reveal no evidence for the structure and phase
changes of the cycled sample (Supplementary Fig. 25). We also
stress that the HER activity remains undegraded for o-CoSe2|P
even after storing it under lab environment for 2 months (storing
in an airtight sample tube), presenting its good chemical stability
(Supplementary Fig. 26).

HER enhancement mechanism. The P-doping-assisted structural
phase transition from c-CoSe2 to o-CoSe2|P gives a material that
efficiently and robustly catalyzes the HER in alkali, exceeding all
of the other inexpensive HER single catalysts. We now turn to
discuss the structural and phase features that affect the observed
properties.

Figure 4a provides the XPS analysis of o-CoSe2|P catalyst in the
P 2p region, which shows two broad peaks that can be
deconvoluted into four bands at ~133.6/132.8 and 129.2/128.3
eV, corresponding to P–O and P–Co bonds37, respectively. The
detection of P–O signal is ascribed to partial surface oxidation of
the sample after exposure to air, where the surface oxygen could
be removed at the initial stage during the HER process38. Further
evidence comes from the valence band edge XPS measurements.
Figure 4b reveals two peaks at 9.1 eV (O 2p) and 5.0 eV (Se 3p) for
c-CoSe239, whereas broad peaks at 6.5 eV (P–Se) and 10.1 eV
(P 3s) were detected for o-CoSe2|P40. New P–Co and P–Se bonds
probed by XPS and valence band edge spectra confirm the
participation of P into the structure that aids the phase transition.
The disappeared Se 3p and O 2p signals are the result of P
participation that not only bonding with Se for tuned electronic
structures but also mitigating the surface oxidation process41,42.

Our X-ray absorption spectroscopy and EELS analyses demon-
strate electron-deficient Co/Se sites and electron-rich P sites in o-
CoSe2|P (Fig. 4c, Supplementary Figs. 27–30, and Supplementary
Table 3), suggesting that P sites might have high local reactivity for
HER than does the c-CoSe2. To confirm this, we used thiocyanate
ions (SCN−), which are well known to poison the metal-centered
catalytic sites43, to examine its influence on HER activity of
c-CoSe2 and o-CoSe2|P catalysts. Compared with c-CoSe2 whose
activity was degraded greatly in the electrolyte with 10mM SCN−

ions, the negligible HER deactivation for o-CoSe2|P evidences that
P sites are effective active sites (Fig. 4e).

Our Se K-edge k2-weighted extended X-ray absorption fine
structure (Fig. 4d) and Se 3d XPS (Supplementary Fig. 31) reveal
that Se–O bond is completely suppressed in the o-CoSe2|P
catalyst (also see Fig. 4b), which indicates that in accordance with
an earlier report41, the existence of P accounts for the observed
marked chemical and catalytic stabilities.

We further carried out density functional theory (DFT)
calculations to provide more insights into the remarkable HER
property of o-CoSe2|P catalyst (see Methods; Supplementary
Figs. 32–34). As compared with c-CoSe2, the higher charge
density of o-CoSe2|P, particularly at P-bonding regions (black
arrows), reveals an improved electron environment for catalyzing
water electroreduction (Fig. 5a). Evaluation of studied catalysts by
calculated hydrogen adsorption free energy (∆GH) gave a very
small ∆GH value of −0.08 eV for o-CoSe2|P at P sites (close to the
thermoneutral value of ∆GH= 0; Fig. 5b), whereas Co sites in
o-CoSe2|P show strong water affinity and consequent water
dissociation ability (Supplementary Fig. 35), which together imply
a synergistic interplay between Co (water adsorption/dissocia-
tion) and P (water reduction) that leads to the enhanced
energetics for HER. Additionally, the density of states (DOS)
results uncover that o-CoSe2|P bears higher states in the
characteristic low-DOS region close to the Fermi level (Fig. 5c
and Supplementary Fig. 36). Meanwhile, work functions
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measured for c-CoSe2 and o-CoSe2|P catalysts are 3.9 and 3.5 eV
(Fig. 5d), respectively. Such high DOS and low work function for
o-CoSe2|P associate with promoted electron transfer and
enhanced chemical activity. We further evaluated the studied
catalysts by temperature-programmed desorption analysis
(Fig. 5e), which gave lower H2 onset desorption temperature of
132 °C for o-CoSe2|P. We regard this to offer catalytic surfaces for
better H2 release, which benefits the Volmer-Heyrovsky mechan-
ism with H2 desorption as the rate-determining step.

Discussion
In conclusion, we report here that a phosphorus-doping process
can induce the structural phase transition from cubic to orthor-
hombic phases in layered CoSe2. The achieved o-CoSe2|P catalyst
shows high HER activity and stability in alkaline electrolyte. This
remarkable energetics for HER can be explained by the favorable
electronic structure and local reactivity that rooted from the
phosphorus dopants, which provide optimal binding of reaction
intermediates, as confirmed by experimental and computational
results. We anticipate that such doping-induced phase-transition
method can be extended to other TMD material systems, and
thereby promote the development of newly advanced catalysts
that make use of Earth-abundant elements to efficiently catalyze
desired reactions.

Methods
Material synthesis. All chemicals were used as received without further pur-
ification. The o-CoSe2|P was prepared through a two-step method. First, layered
CoSe2 nanobelts were synthesized as described in our recent work27. Then, 50 mg
fresh CoSe2 nanobelts and 500 mg of NaH2PO2·H2O were placed at two separated
positions in a ceramic boat with the NaH2PO2·H2O at the upstream side. With a
heating rate of 5 °C min−1, the samples were heated at 400 °C for 30 min in Ar
atmosphere. For the time-dependent experiments, the temperature was kept at 400

°C while reactions stopped at desired time; for the temperature-dependent
experiments, the reaction time kept at 30 min while the reaction temperature was
changed as needed. All the obtained samples were carefully washed and dried
before use.

Characterization. The achieved samples were examined by various analytical
techniques. XRD was performed on a Japan Rigaku DMax-γA X-ray diffractometer
with Cu Kα radiation (λ= 1.54178 Å). The morphology of the samples was
determined by SEM (Zersss Supra 40) and JEOL 2010F(s) TEM. The STEM and
HRTEM images, EELS, SAED, and EDX elemental mappings were taken on JEM-
ARM 200F Atomic Resolution Analytical Microscope with an acceleration voltage
of 200 kV. Raman spectra were taken on a Raman microscope (Renishaw®) excited
with a 514 nm excitation laser. ICP data were obtained by an Optima 7300 DV
instrument. The H2-TPD measurements were carried out on AutoChem II 2920.
Typically, the samples were pretreated at 250 °C in Ar for 2 h to remove the
impurities, which were cooled down to −30 °C and pulse chemisorption of
ultrapure H2 at the same time. The temperature was ramped up at 5 °C s−1 to 300 °
C. The TPD gases were carried out by Ar, detected by thermal conductivity
detector. N2 adsorption/desorption isotherms were recorded on an ASAP 2020
accelerated surface area and a porosimetry instrument (Mictromeritics), equipped
with an automated surface area, at 77 K using Barrett-Emmett-Teller calculations.
Room-temperature electron paramagnetic resonance (EPR) spectra were per-
formed on a JEOL JES-FA200 EPR spectrometer (300 K, 9064MHz, X band).
Ultraviolet-photoelectron spectroscopy was carried out at the BL11U beamline of
National Synchrotron Radiation Laboratory in Hefei, China. The X-ray absorption
spectra of Co and Se K-edges were obtained at the beamline 14W1 of Shanghai
synchrotron Radiation Laboratory (China), while the P K-edges were performed at
the beamline 4B7A station of Beijing Synchrotron Radiation Facility (China).

Electrochemical measurements. All the electrochemical measurements were
performed in a conventional three-electrode cell at ambient temperature connected
to a Multipotentiostat (IM6ex, ZahnerElectrik, Germany). Saturated calomel
electrode and graphite rod were used as the reference and counter electrodes,
respectively. The potentials reported in this work were normalized versus the RHE
through a standard RHE calibration described elsewhere8. A rotating disk electrode
(RDE) with glassy carbon (PINE, 5.00 mm diameter, disk area: 0.196 cm2) was used
as the working electrode in performing the HER activity, an RRDE with both a
glassy carbon disk (5.61 mm diameter, disk area: 0.2475 cm2) and a Pt ring (6.25

P

P

a b

o-CoSe2⎥P

c-CoSe2

–1.5
Reaction coordinate

P site (o -CoSe
2⎥P)

Co site (o -CoSe
2⎥P)

Co site (c -CoSe
2
)

Se site (c -CoSe
2
)

–1.0

–0.5

0.0
H

+
 + e– 1/2 H

2

F
re

e
 e

n
e
rg

y
 (

e
V

) 0.5

1.0

1.5

c d e

o-CoSe
2⎥P

c-CoSe
2

o-CoSe
2⎥P

c-CoSe
2

o-CoSe
2⎥P

c-CoSe
2

1.00

0.75

0.50

In
te

n
s
it
y
 (

a
.u

.)

T
C

D
 s

ig
n

a
l 
(a

.u
.)

D
O

S
 (

S
ta

te
s
 e

V
–
1
 p

e
r 

a
to

m
)

0.25

0.00
–1.0 –0.5 0

Energy (eV)

0.5 1.0 3.0

3.5 eV 3.9 eV

3.2 3.4 3.6

Work function (eV)

3.8 4.0 4.2 4.4 1 50

Temperature (°C)

100 150

155 °C

132 °C

200 250

Fig. 5 DFT calculation and enhancement mechanism. a Calculated charge density distribution for o-CoSe2|P (up) and c-CoSe2 (down) catalysts. b Free

energy diagrams for hydrogen adsorption at different sits on the (111) surface of o-CoSe2|P (8 wt%) and c-CoSe2. c Calculated total densities of states of

c-CoSe2 and o-CoSe2|P with the Fermi level aligned at 0 eV. d, e Ultraviolet-photoelectron spectra and H2 temperature-programmed desorption analyses

for c-CoSe2 and o-CoSe2|P catalysts, respectively

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-04954-7 ARTICLE

NATURE COMMUNICATIONS |  (2018) 9:2533 | DOI: 10.1038/s41467-018-04954-7 | www.nature.com/naturecommunications 7

www.nature.com/naturecommunications
www.nature.com/naturecommunications


mm inner-diameter and 7.92 mm outer diameter, ring area: 0.1866 cm2) was used
for confirming the H2 evolution. For the stability tests, a graphite rod was used as
the counter electrode to avoid the possible contribution of dissolved Pt species
during HER.

To make the working electrodes, 5 mg catalyst powder was dispersed in 1 ml of
1:3 v/v isopropanol/DIW mixture with 40 μl Nafion solution (5 wt%), which was
ultrasonicated for ~30 min to yield a homogeneous ink. Then, a certain volume of
dispersion was pipetted onto the glassy carbon substrate, resulting in catalyst
loading of ~1.02 mg cm−2. HER measurements were conducted in 0.5 M H2SO4,
1.0 M KOH, 1.0 M PBS (pH= 7.02), and nature seawater (pH= 7.84, Gulf of
Mexico, Gulf Stream of Dauphin Island, Alabama), respectively. All the fresh
electrolytes were bubbled with pure argon for 30 min before measurements. The
polarization curves were obtained by sweeping the potential from −0.55 to 0.1 V
versus RHE with a sweep rate of 10 mV s−1 and 1600 r.p.m (to remove the H2

bubbles formed in situ) at ambient temperature. The EIS measurement was
performed in the same configuration at 250 mV overpotential over a frequency
range from 100 KHz to 100 mHz at the amplitude of the sinusoidal voltage of 5 mV
and room temperature. The Pt-ring electrode of RRDE was kept at 0.5 V versus
RHE during HER to detect the produced H2 at the disc electrode. The polarization
curves were replotted as overpotential (η) versus log current (log j) to get Tafel
plots for assessing the HER kinetics of investigated catalysts. The Tafel slope (b)
can be obtained by fitting the linear portion of the Tafel plots with the following
equation,

η ¼ b logðjÞ þ a ð1Þ

The influence of SCN− on the HER activity of investigated catalysts was
evaluated by adding 10 mM SCN− in the electrolyte. The o-CoSe2|P-modified
carbon fiber paper (catalyst loading: 1 mg cm−2) was used as working electrode to
perform chronoamperometry experiments at 250 mV overpotential.

The accelerated stability measurements were performed by potential cycling
between −0.4 and −0.1 V versus RHE with a sweep rate of 100 mV s−1. After
cycling, the resultant electrode was used for polarization curves with a sweep rate of
10 mV s−1. To estimate the double-layer capacitance, cyclic voltammograms were
performed at different sweep rates in the potential region of −0.1–0 versus RHE at
ambient temperature. All the polarization curves were corrected with iR
compensation that arised from the solution resistance. We employed ICP method
to analyze the etching rate of o-CoSe2|P during HER process in 1M KOH at a
constant 250 mV overpotential. The catalyst was loaded on the 1 × 1.5 cm2

carbon paper substrate (~1.0 mg cm−2). Each ICP point was collected for
three times. The gas production of H2 evolution was monitored by gas
chromatography (GC2014, Shimadzu, Japan) equipped with a TCD detector with
argon as a carrier gas.

DFT calculations. We carried out DFT calculations using the Vienna ab initio
simulation package. The exchange-correlation energy was described using the
Perdew-Burke-Ernzerhof. A 280 eV plane-wave kinetic energy cutoff was chosen,
and a 3 × 5 × 1 Monhorst-Pack k-point sampling was adopted for the structure
relaxation. A residual force threshold of 0.02 eV Å−1 was set for geometry opti-
mizations. Details of the calculation are provided in the Supplementary Figs. 32–36,
Supplementary Table 4, and Supplementary Note 2.

Data availability. The data that support the findings of this study are available on
request from the corresponding authors (M.-R.G. or S.-H.Y.).
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