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ABSTRACT

Costa’s “writing on dirty paper”’-channel model poses one of
the remaining challenges to the coding community. Theory
suggests that arbitrary interference on the channel (known
at the transmitter) can be cancelled without a power penalty
by appropriate precoding and shaping. We employ itera-
tive quantization and decoding using systematically doped
repeat-accumulate codes to materialize a significant portion
of the promised “dirty paper”-capacity. Code design is done
using the EXIT chart technique.

1. INTRODUCTION

It has recently been shown [1] that an information theoretic
framework for the study of efficient known interference can-
cellation (precoding) techniques may be found in Costa’s
“Writing on dirty paper” [2]. The (generalized) dirty paper
channel model is given by

Y=X+S+N (1)

where S is arbitrary interference known at the transmitter
(noncausally), N is a statistically independent Gaussian ran-
dom variable with variance Py, and Py is the power of the
transmitted encoder output.

If the interference S was known at the receiver, one
could subtract it off the received signal leading back to an
interference-free AWGN channel, and thus the interference
would not pose a problem. One could similarly attempt to
pre-subtract the interference at the transmitter, i.e., trans-
mit X’ = X — S. The received signal would then be Y’ =
X' +S+N=X-S+S+N=X+N, thus eliminating the in-
terference. However, the problem with this “naive” approach
stems from the power constraint: The average transmit power

would be E[X"?] = E[X?] + E[S2]. As the interference may
be arbitrarily strong, this would entail a severe power penalty
and hence a reduced transmission rate. Nonetheless, in [2]
Costa showed that for Gaussian S the capacity is equal to
0.5log(1 + Py/Py) and hence the interference S does not
incur any loss in capacity. We treat the generalized model
where S can be an arbitrary signal, deterministic or random,
for which this result holds as well [1].

Willems suggested schemes for coding for the dirty pa-
per channel (for causally known interference) in [3]. In [1]
it was shown that the full capacity may be achieved using
a scheme based on lattices and MMSE scaling. Related
schemes were developed in the context of information em-
bedding, e.g. [4]. In [5] a realization of the necessary lattice
transmission scheme based on trellis shaping [6] and “syn-
drome dilution” was proposed. In [7] this approach was
extended into a fully—fledged coding system by employing
nonsystematic repeat—accumulate (RA) codes [8, 9] concate-
nated with a trellis shaping code.

In this paper we show how to improve the result of [7] by
0.6dB, by applying systematic doping [10] of the accumula-
tor, and thus allowing to incorporate higher memory vector
quantizer (VQ) shaping. The system presented offers a gain
of around 2dB over an optimal one-dimensional interference
canceling system.

2. LATTICE PRECODING

We review the lattice precoding approach proposed in [1].
Let A denote an n-dimensional lattice and let ¥ denote its
fundamental Voronoi region. Also let U ~ Unif(¥), that is
U is a random variable (dither) uniformly distributed over
¥ . The scheme is given by,
e Transmitter: The input alphabet is restricted to #'. For
any v € 7/, the encoder sends:

X =[v—aS—U]modA. 2)
e Receiver: The receiver computes

Y' =[aY+U] modA. 3)

The resulting channel is a mod-A additive noise channel de-
scribed by the following lemma:

Lemma 1 ([1]) The channel from v to Y’ defined by (1),(2)
and (3) is equivalent in distribution to the mod-/N\ channel

Y =v+N modA 4)

with
N =(1-a)U+aN modA. 5)
Taking a uniform input distribution and setting o = PX}‘?‘(PN

yields an achievable rate of

1 1 1
;I(V;Y’) 23 log(1+SNR) — 3 log2meG(N) (6)
2
per dimension, where G(A\) = %% is the normalized

second moment of A. Thus, in principle, for a given lat-
tice /\, the gap to capacity of a precoding system may be
made smaller than 0.51og21eG(A). For optimal lattices for
quantization we have G(A\) — 5=, and the gap goes to zero.
Note that when A is one-dimensional, the lattice precoding
scheme is based simply on scalar quantization (SQ) and is
an extension of Tomlinson-Harashima precoding. Note also
that while the gap to capacity of a scalar system is 1.53dB
at high SNR, the lowest possible £}/ Np—operating point is at
2.4dB. This means that the gap to capacity approaches 4dB
at zero spectral efficiency (see SQ, Fig. 3).
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Figure 1: Dirty paper coding with nonsystematic repeat-
accumulate codes (using inner systematic doping) and a vec-
tor quantizer (VQ); iterative quantization and decoding.

3. DESIGNED SYSTEM

3.1 System Overview

The transmitter is a concatenation of a nonsystematic repeat—
accumulate (RA) code [9], performing the “coset dilution”,
and a trellis shaping code (i.e. the vector quantizer), as de-
picted in Fig. 1. The RA encoder is composed of an outer
mixture of repetition codes of different rates (variable nodes),
an edge interleaver, and an inner mixture of single parity
check codes of different rates (check nodes), followed by
a memory one differential encoder (accumulator, ACC). In-
ner systematic doping can be applied, that is, some of the
coded bits of the accumulator output can be substituted by
the corresponding systematic bits at the accumulator input.
Code design is performed by appropriately choosing rep-
etition and check node degree distributions. The encoded
bits are grouped into triplets (cy,cz,¢3)4cc and demulti-
plexed into “upsampler” bits u,, = c4cc,1 and unsigned bits
cacc2,c4acc3- The upsampler (replacing the inverse syn-
drome former in trellis shaping) has rate R,, = 1/2. The
sign-bits ¢, 1,¢up,» generated by the upsampler, and the un-
signed bits are mapped onto 4-PAM symbols using natural
labeling. After adding the scaled interference and a uni-
formly distributed dither signal, the vector quantizer deter-
mines the minimum energy sequence by appropriately flip-
ping the sign—bits (Viterbi decoding of a convolutional code
of rate 1/2 using a modulo metric). The quantization error
vector is transmitted over the communication channel.

On the channel, white Gaussian noise is added, with
double—sided noise power spectral density Py = Np/2 and
mean zero. Interference is added. For 16-QAM (4-PAM per
dim.) and Ryp= 1/2, we have ES/N() = 2(1 +O.5)RchEb/N0.
Thus, for simulation we set Py = Es/(3R42E)/ Ny), whereby
E; is the average energy per complex output symbol mea-
sured after the VQ at the transmitter, and R, is the rate of
the RA code.

At the receiver, MMSE a-scaling is applied, and the
dither signal u is removed; a one-dimensional modulo is per-
formed prior to putting the signal into a soft in/soft out vector
quantizer which performs an a posteriori probability (APP)
detection of the sign—bits and the unsigned bits, respectively,
using the BCJR algorithm on an appropriately defined trel-
lis structure. The vector quantizer at the receiver, thus, can
be viewed as an APP detector, computing extrinsic informa-
tion which is forwarded to the RA decoder. The RA decoder
is composed of an inner accumulator decoder (ACC), check
node decoder (CND), and an outer variable node decoder
(VND). Iterative quantization and decoding is performed by
exchanging log—likelihood ratio values (L—values [11]) be-
tween inner VQ&ACC&CND- and outer VND—decoder.

"virtual"
—— information bits

Uvq
vector quantizer (VQ) L of VQ

memory V,q
Rya VQ can
=1/2 | flip sign-bits

1st 4PAM
upsampler cq Cya2
systematic doping Cacc.1 Cuot s.1 symbol
only applied to Ul Ry, c i sign-bits R :?giw
(U Us)ace =12 | w2 4 9 0 3
(U, Uy, Ugace b
c
| Cacce
ACC —l_o/» ¥ 2nd 4PAM
U c symbol
X unsigned bits S$2 | 114432 s
memoyone % ¢ s =
(differential) code with AGC3 ol 3

systematic doping

Figure 2: Joint accumulator (systematic doping), upsampler,
vector quantizer and 4-PAM trellis processing.

Fig. 2 aids in understanding the structure of the joint trel-
lis processing over accumulator trellis (memory V4cc = 1),
vector quantizer trellis (memory Vi), upsampler, and mod-
ulo symbol metric based on two 4-PAM symbols per three
hypothesized accumulator bits (u1,u2,us) 4cc. Note that sys-
tematic doping can be applied to the accumulator, i.e., some
of the coded bits c4cc are substituted by the corresponding
systematic bits uycc. In this particular case, we only allow
systematic doping of coded bits c4cc2,cacc3-

By computing extrinsic information transfer curves [10]
of the VQ detector (Monte—Carlo simulation using BEC a
priori knowledge) for different a— and £}, /Ny—values, and
numerically evaluating the corresponding area [12], we ob-
tain the mutual information limits given in Fig. 3. To materi-
alize these gains, we need to design an appropriate iferative
quantization and decoding scheme

3.2 Triggering Convergence by Systematic Doping

Observe that the inner transfer curve of the joint VQ&ACC-
processing block starts virtually at the origin for VQ memo-
ries greater 2 (see Fig. 4, left), thus preventing the iterative
quantization and decoding scheme from starting to converge.

A simple yet effective means of solving this problem is
to apply systematic doping. Feeding through some uncoded
systematic (information) bits, i.e. bypassing the accumulator
of the RA code, shifts up the inner transfer curve at the be-
ginning, at the cost of losing some extrinsic output for higher
a priori input (Fig. 4, right). Note that we only dope those
bits that are mapped onto unsigned bits of the 4-PAM con-
stellations. A doping ratio of systematic bits to coded bits of
i:c=1:1 (i.e. every other unsigned bit is a systematic bit
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of memory 2 and memory 6; RA code turbo cliff position
at 1.1dB (memory 2 VQ) and 0.5dB (memory 6 VQ) at
0.5bit/s/Hz; scalar quantizer given as reference.

with respect to the accumulator) turned out to be sufficient to
trigger convergence in the case of a memory 6 VQ.

It is interesting to note that we now use two forms of
doping: 1.) A biregular CND (i.e. a fraction of the check
nodes has degree d. = 1) ensures that the inner ACC&CND-
curve starts at a value Iz sccsa.cnvp > 0, and thus allows to use
a nonsystematic RA code. However, when combining the
ACC&CND with a VQ of memory 6, the biregularity is not
sufficient to enable convergence. 2.) In addition to that, we
need to apply systematic doping to the ACC, and by this, in
fact, making the RA code partially systematic again.
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Figure 4: Left: VQ&ACC curves with VQ of different mem-
ory. Right: VQ&ACC&CND curves with VQ of memory 6
and different inner systematic doping ratios.

4. CODE DESIGN EXAMPLES
4.1 EXIT Curve of Outer VND Code Mixtures

The decoder output for a variable node of degree d,, is L; our =
> j #L j,in» where L; ;, is the jth a priori L-value going into
the variable node, and L; o, is the ith extrinsic L—value com-
ing out of the variable node. The L;;, are modeled as the
output L—value of an AWGN channel whose input was the
Jjth interleaver bit transmitted using BPSK. The EXIT func-
tion of a degree—d, variable node is then [9]

Iz ynp(Laynp,dy) ZJ( (dv—1) 'Jil(]A,VND)> (7N

with
(r 2/9)\2 /a2
J(O)=1- wm-logz[l—&-e_f}da (8)
—o0 \/ZTO'

Some of these curves are plotted in Fig. 5 for different vari-
able node degrees.
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Figure 5: VND EXIT curves for nonsystematic RA codes.

Let D, be the number of different variable node degrees,
and denote these by cfivv,,», i=1,...,D,. The average variable
node degree is d, = Ef)zvl Ay cﬂ,-, where a,,; is the fraction
of variable nodes having degree Jv, Let b,,; be the fraction

of edges incident to variable nodes having degree Jv, The
EXIT curve of a mixture of codes is an average of the com-
ponent EXIT curves [9, 13], and thus the VND curve writes
as

D, N
Ieynp (Laynp) =Y byi-Igynp (IA,VNDadv,i)o )

=

Only D, — 2 of the aﬂl;,- can be adjusted freely because we
must enforce §;b,; = 1 and Ry, = d../d,, with d.. being the
average check node degree.
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4.2 Simulation Results

For a spectral efficiency of 0.5bit/s/Hz, we designed RA
codes of rate R, = 1/6. To find appropriate VND degree
distributions, the outer VND transfer curve is matched to the
inner VQ&ACC&CND curve by means of curve fitting. We
chose vector quantizers of rate Ryp = 1/2 with memory 2
(see [7], baseline for comparison) and memory 6, with poly-
nomials (07g,05g) and (01335,0171g), respectively. A 4-
PAM constellation was applied per dimension (natural label-
ing). The inner VQ&ACC&CND—curve was computed by
Monte—Carlo simulation, assuming Gaussian a priori knowl-
edge. The check node layer is biregular, with 80% of the
check nodes being degree 1, and 20% being degree 3.

For the baseline system with VQ of memory 2, curve fit-
ting at E,/Ny = 1dB yields a VND degree distribution of
64.36% variable nodes being degree 3, 31.24% degree 10,
and 4.402% degree 76. We achieve convergence at 1.1dB,
with a = 0.4. No error floor was observed for 40 blocks
simulated, which can be attributed to the fact that there are no
degree 2 variable nodes, and the lowest variable node degree
is 3. The iterations required varied from 60 to 90 iterations.

For the VQ of memory 6, curve fitting at Ej, /Ny = 0.5dB
yields a VND degree distribution of 33.82% variable nodes
being degree 2, 50% degree 3, 11.99% degree 10, and
4.187% degree 120. We achieve convergence at 0.5dB, with
a = 0.35 (only 1.3dB away from the AWGN capacity limit,
see Fig. 3). After 10 blocks simulated, the error floor was
3.107°. The iterations required varied from 75 to 115 itera-
tions. Note that the accumulator was doped, withi:c=1:1,
i.e., every other unsigned bit was systematic with respect to
the accumulator.

Fig. 6 shows simulated decoding trajectories at 1.2dB
and 0.6dB respectively. For the memory 2 VQ, the trajectory
follows the individual transfer curves reasonably well. For
the memory 6 VQ, there is a significant mismatch between
predicted and actual behavior of the inner APP processing
block. The inner curve was computed assuming a Gaussian
a priori model; the extrinsic output turns out to be too opti-
mistic for medium /4—values. A closer look at the histograms
shows that the distributions have a significant portion of re-
liability values clustered around zero (erasures), owing to
the sign—bits which become available rather late (opposed to
the unsigned bits), at high I,—values. This effect is stronger
the bigger the memory of the VQ. Thus, the Gaussian as-
sumption is a poor model in this case, and a mixed Gaus-
sian/erasure model would be more appropriate. However, by
taking into account the overly optimistic behavior of the in-
ner transfer curve for medium /4—values in the curve fitting,
good VND—distributions can still be found.
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