DOPPLER RESILIENT GOLAY COMPLEMENTARY PAIRS FOR RADAR

Ali Pezeshki', Robert Calderbank’, Stephen D. Howard?, and William Moran®

'Princeton University, Princeton, NJ 08544, USA
2DSTO, Edinburgh 05010, Australia
3University of Melbourne, Melbourne 03010, Australia

ABSTRACT

We present a systematic way of constructing a Doppler
resilient sequence of Golay complementary waveforms for
radar, for which the composite ambiguity function maintains
ideal shape at small Doppler shifts. The idea is to determine a
sequence of Golay pairs that annihilates the low-order terms
of the Taylor expansion of the composite ambiguity function.
The Prouhet-Thue-Morse sequence plays a key role in the
construction of Doppler resilient sequences of Golay pairs.
We extend this construction to multiple dimensions. In par-
ticular, we consider radar polarimetry, where the dimensions
are realized by two orthogonal polarizations. We determine a
sequence of two-by-two Alamouti matrices, where the entries
involve Golay pairs and for which the matrix-valued compos-
ite ambiguity function vanishes at small Doppler shifts.

1. INTRODUCTION

Golay complementary sequences [1] have the property that
the sum of their autocorrelation functions vanishes at all non-
zero integer delays. This means that the sum of the ambigu-
ity functions (composite ambiguity function) of Golay com-
plementary sequences is sidelobe free along the zero-Doppler
axis, making them ideal for radar range imaging. However, in
practice a major barrier exists in adoption of complementary
sequences for radar; the perfect auto-correlation property of
these sequences is sensitive to Doppler shift. Off the zero-
Doppler axis, the composite ambiguity function of comple-
mentary sequences can have large sidelobes in delay, which
prohibit unambiguous range imaging. Most generalizations
of complementary sequences, including multiple complemen-
tary sequences and polyphase sequences suffer from the same
problem to some degree. Examples of polyphase sequences
that exhibit some tolerance to Doppler are Frank sequences
[2], P1, P2, P3, and P4 sequences [3], and P(n,k) se-
quences [4]. Subcomplementary codes [5],[6] are another
class of near complementary codes, which exhibit some tol-
erance against Doppler.
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In this paper, we present a novel method of constructing
a Doppler resilient sequence of Golay pairs, whose compos-
ite ambiguity function maintains impulse-like shape at small
Doppler shifts. We determine a sequence of Golay pairs that
forces the low-order terms of the Taylor expansion (around
zero Doppler) of the composite ambiguity function to zero.
We then extend this construction to multiple dimensions and
integrate it with instantaneous radar polarimetry [7],[8], where
the dimensions are realized by employing two orthogonal po-
larizations. Here, we construct a sequence of two-by-two
Alamouti matrices [9], where the entries involve Golay pairs
and for which the matrix-valued composite ambiguity func-
tion vanishes at small Doppler shifts. As we show, the Prouhet-
Thue-Morse (PTM) sequence [10] plays a key role in the con-
struction of Doppler resilient sequences of Golay pairs.

Finally, we note that this paper is intended to provide a
summary of the results reported in [11]. We have omitted the
proofs and derivations have been shortened or left out entirely.

2. GOLAY COMPLEMENTARY PAIRS FOR RADAR

Definition 1: Two length L unimodular sequences of complex
numbers z(¢) and y(¢) are Golay complementary if the sum
of their autocorrelation functions satisfies

Cy(k) + Cy(k) = 2Ldy0, fork=—(L—-1),---,(L—-1),

ey
where C,, (k) is the autocorrelation of z(¢) at lag k and dy ¢ is
the Kronecker delta function.

Henceforth we drop the discrete time index ¢ from z(¢)
and y(¢) and simply use  and y. We use the notation (z,y)
whenever x and y are Golay complementary and call (z,y)
a Golay pair. From (1) it follows that if (x,y) is a Golay
pair then (+x, £%), (£, +y), and (£, +y) are also Golay
pairs, where Z = Z:(¢) = x*(—/) is the time reversed complex
conjugate of x.

Definition 2: The composite ambiguity function [6] of a

set of waveforms {zo(¢), z1(t),...,xn_1(t)} is defined as
N-1
A(Ta V) = Z Ar,,, (Ta V)a 2



where A, (7,v) is the (auto) ambiguity function of z,, () in
delay variable 7 and Doppler variable v.

Remark 1: The composite ambiguity function A(7, v/) cor-
responds to the main lobe of the ambiguity function of the
pulse train [xo(t) x1(t) xn—1(t)], where consecutive
pulses are separated by a pulse repetition interval (PRI).

Consider a single transmitter/single receiver radar system.

Suppose Golay pairs (zo,21), (22, 23), ..., (TN-2,TN-1)
are transmitted over NV PRIs. Then, the (discretized) compos-
ite ambiguity function A(k, 0) of (zg, 1), ..., (TN—_2,TN_1),

sampled at waveform chip rate, can be expressed as

N-1
Alk,0) =Y e™C, (), 3)
n=0

where 6 is the relative Doppler shift during a PRI. In writ-
ing (3), we have assumed that the Doppler shift at the chip
rate is negligible compared to the Doppler shift at the pulse
repetition rate.

When 6 = 0, A(k,0) is equal to A(k,0) = NLp.
This means that the composite ambiguity function of Golay
pairs is sidelobe free along the zero-Doppler axis at all inte-
ger delays (integer multiples of the chip rate). However, off
the zero-Doppler axis (6 # 0) this is not the case. In fact,
even small Doppler shifts can result in large sidelobes. One
way to solve this problem is to use a bank of Doppler filters
to estimate the unknown Doppler shift § and then compen-
sate for it. However, since even a slight mismatch in Doppler
can result in large sidelobes, we have to cover the possible
Doppler range at a fine resolution, which requires the use of
many Doppler filters. This motivates the question of whether
it is possible to design Doppler resilient Golay pairs (zo, x1) ,

., (®N—_2,xN_1) so that A(k,0) =~ NLJj, for a reason-
able range of Doppler shifts 6.

3. DOPPLER RESILIENT GOLAY PAIRS

In this section, we consider the design of a Doppler resilient
sequence of Golay pairs for single channel radar. We con-
struct a sequence of Golay pairs (zg, 1), .., (TN_2,TN_1)
so that in the Taylor expansion of A(k, §) around § = 0 all
terms up to a certain order, say M, vanish at all nonzero de-
lays. As we will show, the PTM sequence plays a key role in
constructing the Doppler resilient sequence of Golay pairs.

Definition 3:[10] The Prouhet-Thue-Morse (PTM) sequ-
ence S = (si)r>o over {0,1} is defined by the following
recursions:

1. So = 0
2. S22k = Sk
3. Sop41 =8 =1 — s

forall £ > 0, where s = 1 — s denotes the binary complement
of s € {0,1}.

For example, the PTM sequence of length 16 is
S=(51)2 = 0110100110010110. (4

Let (z,y) be a Golay pair. Define the pulse trains xq and
x1 as Xg = [z y] and x; = [—y Z], where pulses are sepa-
rated by a PRI. Construct the length-(N/2) PTM sequence of

Golay pairs X/} using the following recursions:

1. Start with X(If)TM = Xg.

2. Forn =2,...,N/2, construct X(}:L)TM as
X(i/)TM = [X(I:)lijl\/g Xsnfl}? (5)

where (sk)fj:/ 3—1 is the length-(N/2) PTM sequence,

and [w z] is a concatenation of w and z.

For example, the length-4 PTM sequence of Golay pairs

X(IZ)T M which is transmitted over N = 8 PRIs, is given by

X(Z?AI = [XO X1 X1 XQ]

o (6)
=ty -yzT-yzaxy.

The composite ambiguity function of X (?VT/% is given by
.APTM(k, 9)
_ . (7
=| X &) Calk)+ | X &) Cy(k),
neSy neSy

where Sy is the set of all indices that correspond to zeros in
the length-(IN/2) PTM sequence, and S; is the set of all in-
dices that correspond to ones in length-(/N/2) PTM sequence.
In writing (7), we have used the fact that the autocorrelation
functions of +x, £ are equal.

Theorem 1: In the Taylor expansion of A(k,6) in (3)
around 6 = 0 all terms up to order M vanish at all nonzero in-
teger delays k # 0, if the waveform sequence [z ... Ty_1]

is a length-(N/2) PTM sequence of Golay pairs, with N =
2M+1.

4. EXTENSION TO MULTIPLE DIMENSIONS:
INSTANTANEOUS RADAR POLARIMETRY

We now extend our Doppler resilient construction to multi-
ple dimensions to construct a sequence of two-by-two Alam-
outi matrices of Golay pairs, whose matrix-valued composite
ambiguity function vanishes at all nonzero integer delays for
small Doppler shifts.

Alamouti matrices of Golay pairs were constructed in [7]
and [8] for instantaneous radar polarimetry to enable target
detection in range based on full polarimetric properties of the
target on a pulse by pulse basis. Alamouti signal processing
is used to coordinate the transmission of (/N/2) Golay pairs



(xo,21), ..., (®N_2,2y_1) Over vertical and horizontal po-
larizations during N PRIs. The waveform matrix is of the
form

Koy = X525 XN, @®)
where
Xé2xn2,2n+1) _ ( Tan 532n+1> , n=0,...,N/2 -1,
Tan+1 Tan
©

is a two-by-two Alamouti waveform matrix. Different rows
in X5 v correspond to vertical and horizontal polarizations,
and different columns correspond to different time slots (PRIs).

Definition 4: Let X be an m X n matrix, whose (4, j)-th
entry is a waveform z; ;. We define the matrix-valued com-
posite ambiguity function A(1,v) € C™*™ of X as

«41,1(7', V) Al,n(Ta V)
Az,l(ﬂ V) s AQ,n(Ta V)

Alr,v) = . i . , (10)
An,l'(Ta V) An,n'(Ta V)

where A; j(7,v) = > Az, a,, (7, V) is the sum of the
cross ambiguity functions A, ,., ; (7, ) between z; o and x4 ;,
{=1,...,n.

Note that similar to Section 3, we can discretize the entries
of A(, v) in delay variable 7 at the chip rate to obtain a dis-
cretized matrix-valued composite ambiguity function A(k, )
in integer delay £ and PRI Doppler shift 6.

The discretized matrix-valued composite ambiguity func-
tion for X5, v is given by

_ , k;,@) A1,2(k70)
Azxz(kve)_<A2,1(k,9) Az,z(kﬂ))’ (b

where
N-1
Ara(k,0) = Ago(k,0) = Y e/™C, (k),  (12)
n=0
N/2—1
Ara(k,0) = Y (70—t L (K), (13)
n=0
and
N/2—1
As 1 (k,0) = Z (ej2n9 _ ej(2n+1)9)C;ZMMH(_k)7
n=0

(14)
where C,, ., (k) is the cross-correlation between x2,, and
Zon+1 atlag k. Note that the diagonal elements of As o (k, )
are equal to the (single channel) discretized composite ambi-
guity function A(k, #) in (3).

Along the zero-Doppler axis (0 = 0) Aax2(k, 0) reduces
to

NLSwo O > ’ as)

due to the interplay between Alamouti signal processing and
complementary property of the Golay pairs. This interplay
allows for target detection in range based on full polarimet-
ric properties of the target and results in improved detection
performance, without increasing the receiver signal process-
ing complexity beyond that of single-channel matched filter-
ing. However, off the zero-Doppler axis the perfect matrix
ambiguity property in (15) does not hold and the entries of
Ajo(k, 0) may have large sidelobes in range at nonzero in-
teger delays.

In what follows, we describe how a sequence of two-by-
two Alamouti matrices of Golay pairs can be designed so that
in the Taylor expansion of the entries of Az, (k, 6) around
6 = 0 all terms up to a certain order, say M, vanish at all
nonzero delays.

Let = and y be a Golay pair. Define the two-by-two Alam-
outi matrices Xy and X as

X0:<$ _}/> and Xlz(_}/ _”").
y I -y

Construct the length-(N/2) PTM sequence of 2 by 2 Alam-
outi matrices of Golay pairs X fD 1\7;/1;[) using the following re-
cursions:

(16)

1. Start with X (17" = X,
2. Forn =2,...,N/2, construct X&T;M as

PTM X

(n) —

sno1h

where (sk)kN:/g_l is the length-(N/2) PTM sequence.

For example, the length-4 PTM sequence of two-by-two
Alamouti matrices of Golay pairs, which is transmitted over
vertical and horizontal polarization during N = 8 PRIs, is
given by

XM =[Xo X1 X5 X (18)

Theorem 2: In the Taylor expansion of the entries of
Asyo(k,0)in (11) all terms up to order M vanish at all non-
zero integer delays k # 0 (for the off diagonal elements they
also vanish at k = 0), if X2y is a length-(N/2) PTM se-
quence of two-by-two Alamouti matrices of Golay pairs, with
N =2M+1,

5. NUMERICAL EXAMPLES

In this section, we present numerical examples to verify the
results of Sections 3 and 4 and compare our Doppler resilient
design to a conventional scheme, where the same Golay pair
is repeated. We consider the two-by-two Alamouti case de-
scribed in Section 4. Considering this case also covers the
single channel case, as the diagonal elements of Ay o (k, 6)
are equal to the single channel composite ambiguity function

A(k, 0) in (3).



Following Theorem 2, we coordinate the transmission of a
length-8 PTM sequence of two-by-two Alamouti matrices of
Golay pairs X ng to annihilate the first, second, and third
order terms (M = 3) of the Taylor expansion of A; 1 (k,0) =
As 2(k, 6) at all nonzero integer delays k # 0, and to annihi-
late the first, second, and third order terms of the Taylor ex-
pansion of A; 5(k, 0) (or alternatively A, 1(k, 0)) at all inte-
ger delays. The Golay pair (, y) used in constructing X ( )TM

is the following length-8 (L = 8) Golay pair:

x={1,1,-
Yy = {_17 a 7
We compare the Doppler resilient transmission scheme
ng with a conventional transmission scheme, where the
Alamouti waveform matrix built from a single Golay pair

,17171, 1}

~1,1,1,1,—1}. (19

(zo = @, 1 = y) is repeated and the waveform matrix X"
is of the form
X =Xy Xo Xo Xo Xo Xo Xo Xo|,  (20)

with discretized matrix-valued composite ambiguity function
AC’onv(k,g) ~/4C'o7w(k7 0)
A (|, 0) = ( 1’1 e @1)

Azc,‘l”“’(k, 0) .Alcy‘l’””(k, 0)

Figures 1(a),(b) show the plots of the magnitudes of the
diagonal entries A7 (k,6) and A{S"(k,0) versus delay
index k and Doppler shift §. Comparison of APTM (K, 0) and
AF9m (k, 6) at Doppler shifts = 0.05 rad and 6§ = 0.075
rad is provided in Figs. 2(a),(b), where the solid lines cor-
respond to AT (k, ) and the dashed lines correspond to
AL (K, 0). The peaks of the range sidelobes of A{'T (k. 6)
are at least 28 dB (for # = 0.05 rad) and 29 dB (for 0 = 0.075
rad) smaller than those of A{'{* (k, 6).

Figures 3(a),(b) show the plots of the magnitudes of the
off-diagonal entries A{ 2™ (k, 6) and A9 (k,0) versus de-
lay index k and Doppler shift 6. Comparison of AT (k, 6)
and ACO””(k, 6) at Doppler shifts 6 = 0.05 rad and 6 =
0.075 rad is provided in Figs. 4(a),(b), where the solid lines
correspond to A{'3 (k, #) and the dashed lines correspond to
AL (k. 0). The peaks of the range sidelobes of A3 (k. )
are at least 12 dB (for § = 0.05 rad) and 5 dB (for 0 = 0.075
rad) smaller than those of A{'S™ (k, ).

Remark 2: For a radar with carrier frequency fo = 2.5
GHz and PRI= 100 psec, the Doppler shift range of 0 to
0.05 rad (0.075 rad) corresponds to a maximum target speed
of V' =~ 35 kmph (50 kmph). To cover a larger speed range
we can use our design with a bank of Doppler filters to pro-
vide Doppler resilience within an interval around the Doppler
frequency associated with each filter.

6. CONCLUSIONS

We presented a systematic way of constructing a Doppler
resilient sequence of Golay complementary pairs for single

channel radar. We then extended this construction to instanta-
neous radar polarimetry, where Doppler resilient sequences of
two-by-two Alamouti matrices of Golay pairs were designed.
The idea is to determine a sequence of Golay pairs that forces
the low-order terms of the Taylor expansion of a compos-
ite ambiguity function to zero. The Prouhet-Thue-Morse se-
quence is the key to selecting the Doppler resilient sequences
of Golay pairs.
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