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Dormancy is a bet-hedging strategy used by a variety of organisms
to overcome unfavorable environmental conditions. By entering a
reversible state of low metabolic activity, dormant individuals
become members of a seed bank, which can determine community
dynamics in future generations. Although microbiologists have
documented dormancy in both clinical and natural settings, the
importance of seed banks for the diversity and functioning of
microbial communities remains untested. Here, we develop a
theoretical model demonstrating that microbial communities are
structured by environmental cues that trigger dormancy. A molec-
ular survey of lake ecosystems revealed that dormancy plays a
more important role in shaping bacterial communities than eukary-
otic microbial communities. The proportion of dormant bacteria
was relatively low in productive ecosystems but accounted for up
to 40% of taxon richness in nutrient-poor systems. Our simulations
and empirical data suggest that regional environmental cues and
dormancy synchronize the composition of active communities
across the landscape while decoupling active microbes from the
total community at local scales. Furthermore,we observed that rare
bacterial taxa were disproportionately active relative to common
bacterial taxa, suggesting that microbial rank-abundance curves
are more dynamic than previously considered. We propose that
repeated transitions to and from the seed bank may help maintain
the high levels of microbial biodiversity that are observed in nearly
all ecosystems.
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The biodiversity of microbial communities has important
implications for the stability and functioning of managed and

natural ecosystems (1–3). Therefore, it is important for ecolo-
gists to develop a theoretical basis for the factors that generate
and maintain microbial diversity (4). Growing evidence suggests
that biogeographic processes, such as local adaptation and patch-
scale species sorting, can drive spatial patterns of microbial
diversity (5). However, microbial communities are also struc-
tured by species’ responses to environmental variables that
fluctuate through time (6, 7). Dormancy is one trait that allows
species to contend with temporal variability of environmental
conditions. This bet-hedging strategy allows dormant individuals
to become members of a seed bank, which can contribute to the
diversity and dynamics of communities in future generations.
Seed banks have been shown to structure plant and animal
communities, and help explain patterns of succession and
responses to perturbations (8, 9). Very little is known, however,
about whether and to what degree dormancy influences the
biodiversity of microbial communities.
Dormancy is a common life history strategy among microbes.

Many microorganisms are capable of resisting stressors such as
temperature, desiccation, and antibiotics by entering resting
states or by forming spores (10–12). Because of its implications
for disease, the molecular and cellular underpinning of dor-
mancy is fairly well known for a few clinically important strains of
bacteria (13). Microbial dormancy is also thought to be impor-
tant in natural systems. A sometimes-large but variable fraction

(20–80%) of the bacteria recovered from environmental samples
appear to be metabolically inactive (14). Although some of these
cells are dead or moribund, other populations can be resusci-
tated with resource supplements (15). Despite evidence that
dormancy is widespread, we have little theoretical expectation
as to how it influences the structure of natural, complex micro-
bial communities.
Dormancy is regulated by the interpretation of environmental

cues by microbial populations. Variation in these cues may be
attributed to natural or anthropogenic processes, and may be
experienced at local, regional, or even global scales. Regional
drivers such as air temperature or photoperiod are common
dormancy cues for many plant and animal populations (16, 17).
Local cues, such as resource availability or stochastic perturba-
tions (e.g., drought and fire), also dictate when organisms enter
and exit periods of reduced metabolic activity (18). As with
macroorganisms, dormancy in microbes appears to be controlled
by environmental cues, such as crowding, oxygen or temperature
stress, and resource limitation (13). Despite the enormous
complexity surrounding the interpretation of environmental cues
(19), we argue that a simple theoretical framework is necessary
for generating predictions about the effects of dormancy on the
diversity and composition of microbial communities.
Here, we combine mathematical modeling and a molecular

survey to test predictions about the role of dormancy in main-
taining microbial diversity. Our model is derived from seed bank
models in plant ecology (20, 21) but captures important life
history features of microorganisms (Modeling Microbial Dor-
mancy). To evaluate patterns observed in our model, we con-
ducted a spatial survey of the active and total fractions of
bacterial and eukaryotic microbial communities from a set of
temperate lake ecosystems. Three major questions guided the
development of our model and analyses of survey data: (i) To
what extent does dormancy contribute to the taxon richness of
microbial communities? (ii) How does dormancy shape local and
regional patterns of microbial community composition? (iii) Is
the “rare biosphere” (22) predominantly comprised of dormant
bacterial taxa?

Modeling Microbial Dormancy
Mathematical formulation of dormancy in a variable environ-
ment has existed for decades (20, 21). Our model (Fig. 1 and
Eqs. 1–3) is partially based on this theory, but we implemented
the following modifications so that we could generate predictions
for microbial systems: (i) we allowed for bidirectional and
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repeatable transition between active and dormant states; (ii)
unlike annual plant models, we did not require passage through
the dormant state for microbial reproduction; and (iii) rather
than focusing exclusively on the dormant state (i.e., seeds), we
explicitly simulated both the active and dormant fractions of the
microbial community. By considering both active and dormant
fractions of each population, we were able to make direct com-
parisons to our empirical measurements of active and total
(active + dormant) community composition (23, 24). Although
some of these components have been considered for an indi-
vidual population (25), here we have developed a multispecies,
microbial dormancy model.
Our model represented a landscape with spatially distributed

patches (x), each with a unique position along an arbitrary
environmental gradient (EL). Within a patch, individuals from
each microbial species (j) could occupy an active (A) or dormant
(D) state. Change in the density of active and dormant individ-
uals of each population were described as follows:

dA jx

dt
¼ A jx½rð1−

A jx

K
Þ− ð1−R jxÞ−mA% þD jx R jx; [1]

dD jx

dt
¼ A jsð1−R jxÞ−D jxðR jx þmDÞ; [2]

where r is the population growth rate, K is the carrying capacity,
mA is the mortality rate of microbes in the active state, and mD is
the mortality of microbes in the dormant state. Resuscitation
from dormancy (Rjx) was described as follows:

Rjx ¼ Rmax e
−
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"2
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!E∗

R; j −ER
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"2
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For simplicity, we held all parameters except the environ-
mental optima (E*L and E*R) constant across species (Table 1).

Therefore, the proportion of dormant individuals that moved
into the active state during a given time step (Rjx) was based on
the maximum resuscitation rate (Rmax) and the local and regional
environmental optima for a given species j. To minimize the
number of parameters and environmental variables, we assumed
that cues for entrance into and resuscitation from a dormant
state were negatively correlated and used 1 − Rjx as the pro-
portion of active individuals entering dormancy.
To assess the influence of dormancy on model community

structure, we varied the rate of mortality for dormant individuals.
When mD = 0, no dormant individuals were removed and all
species persisted. In contrast, when mD = 1, dormancy was
effectively absent from the model, because all dormant individ-
uals died. Because dormancy is regulated by environmental cues,
we manipulated the relative strength of regional- and local-scale
environmental variability with a weighting term, W. Here, we
considered the local-scale environment as the physical, chemical,
and biological conditions that determined the success of a spe-
cies in a given patch. The regional environment was con-
ceptualized as a seasonal variable (e.g., air temperature) that
could synchronize community dynamics at a broad spatial scale.
When W = 1, the regional cue exclusively regulated transitions
between active (A) and dormant (D) states; when W = 0, only
the local environment influenced dormancy dynamics. To char-
acterize the response of microbial richness and composition to
changes in dormancy and the scale of environmental variability,
we solved Eqs. 1 and 2 at equilibrium for each population across
a range of values for W and mD (see SI Text and Fig. S1 for
equilibrium solutions and examples of model output).

Results and Discussion
Our multispecies model indicated that dormancy and environ-
mental cues interact to influence the biodiversity of microbial
communities. The ability to enter and successfully emerge from
dormancy had a strong, positive influence on model species
richness (Fig. 2). In addition, dormancy and environmental cues
affected the coupling of active and total community composition.
Specifically, the combination of dormancy and strong regional
cues synchronized the composition of active model communities
among patches (Fig. 3A) in a manner similar to the Moran effect
(26). In contrast, a lack of dormancy resulted in tight coupling

Fig. 1. Summary of multispecies microbial dormancy model structure. A
portion of each taxon can occupy an active and dormant state. Active portions
of populations have logistic growth and experience density-independent
mortality. Dormant individuals are inactive and can therefore not reproduce,
but are subject tomortality. Transition between the active anddormant states
is controlled by environmental cues at local and regional scales.

Table 1. Definition of parameter values used in our multispecies
microbial dormancy model and values used for analyses

Parameter Definition Value

r Population growth rate 0.75
K Carrying capacity 0.5
mA Mortality of active individuals 0.2
mD Mortality of dormant individuals (0–1)
tol Environmental tolerance 0.2
Rmax Maximum resuscitation rate 0.95
W Weighting of local vs. regional

environmental cues
(0–1)

E*L,jx Local optimum for species j in patch x (0–1)
E*R, j Regional optimum for species j (0–1)

Fig. 2. Mean local richness (number of species) of model equilibrium sol-
utions across a range of values for the strength of dormancy, manipulated
using the parameter for mortality of dormant individuals (mD), and strength
of regional environmental cues, manipulated by a weighting parameter (W).
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between active and total communities within each model
patch (Fig. 3B).
To test our model predictions, we determined how dormancy

influenced the structure of microbial communities in eight
freshwater lakes within a 3,000-km2 region of southwest Michi-
gan, United States. We assessed the composition of bacterial and
eukaryotic microbial communities in the mixed surface layers of
our lakes using molecular-based community fingerprinting.
Community fingerprinting is commonly applied in environmental
microbiology and has been widely used with ribosomal DNA
(rDNA), a phylogenetically informative molecule that is stable
and relatively easy to isolate. However, rDNA-based techniques
only identify populations that are potentially active. Because
growing cells require ribosomes for protein synthesis, ribosomal
RNA (rRNA) can be used to characterize the active portion of
communities (27). The simultaneous characterization of micro-
bial communities by rRNA and rDNA fingerprinting is analogous
to surveys of plant communities and their associated seed banks
(28). For example, rDNA-based composition of microbial com-
munities is akin to plant seeds, which represent propagules from
past and current members of an aboveground community. In
contrast, rRNA-based composition of microbial communities is
equivalent to the active, aboveground members of a plant com-
munity that directly contribute to current community function.
We observed strong domain-level contrasts in the coupling of

active and total community composition in our lake survey.
There was tight correspondence between active and total
eukaryotic composition within a given lake [multiple response
permutation procedure (MRPP), P > 0.25; Fig. 3D], suggesting
that when a population was present, it was active. Similar cou-
pling occurred in model communities with low dormancy,
regardless of the strength of regional cues (Fig. 3B). In contrast,
bacterial composition was significantly influenced by the mole-
cule used in our fingerprinting (i.e., rDNA vs. rRNA, MRPP, P <
0.001), suggesting that active taxa were only a subset of the total
community in a given lake (Fig. 3C). We observed such decou-

pling in our model when there was high dormancy and strong
regional cues (Fig. 3A).
The contribution of dormant taxa to community richness was

dependent on microbial domain (i.e., bacteria vs. eukaryotes)
and local-scale environment cues (Fig. 4; indicator variable
multiple regression, R2 = 0.85, n = 16, P < 0.001). Dormant taxa
made up a constant proportion (12%) of eukaryotic microbial
communities regardless of local environmental conditions. In
contrast, total phosphorus (TP) concentrations influenced the
proportion of bacterial community richness that was dormant. In
high-TP lakes, bacterial dormancy was comparable to eukaryotic
microbial dormancy, but in low-TP lakes, nearly 40% of the
bacterial taxa were dormant (Fig. 4). It is well documented that
phosphorus is a strong driver of aquatic microbial productivity
(29), and our results are consistent with observations indicating
that bacterial dormancy may be more prevalent in resource-
limited ecosystems (30). Moreover, our results agree with reports
that have identified strong links between resource availability
and dormancy in zooplankton, insects, and mammals (31–33).
Although many eukaryotic microbes are capable of forming

resting stages (34, 35), differential sinking rates may potentially
explain the domain-level contrast in the apparent role that
dormancy plays in structuring microbial community composition.
On average, sinking velocities are 350 times greater for phyto-
plankton than they are for bacteria (34, 36). Moreover, inactive
phytoplankton cells sink 50–1,000% faster than active individuals
within the same population (34). Thus, owing to differences in
body size, dormancy may be a more advantageous life history
strategy for bacteria than for eukaryotic microbes, at least in
aquatic ecosystems. These results suggest that there may be
important differences in the factors that generate and maintain
bacterial versus eukaryotic microbial diversity.
A growing number of studies have demonstrated that the

biodiversity of microbial communities is primarily comprised of
rare species (22, 37), but the metabolic status of these taxa is
unclear. Theory suggests that rare species are prone to extinction
due to stochastic events or biological processes that create pos-
itive density dependence (38). Alternatively, rare taxa may rep-
resent a reservoir of genetic diversity that actively responds
to environmental change (22, 39). To test these contrasting hy-
potheses, we used tag-encoded pyrosequencing to deeply sample
the rDNA and rRNA from bacteria residing in two of our lakes.
We classified each taxon as active or inactive based on its
recovery in rDNA and rRNA samples. We scored a taxon as

Fig. 3. UPGMA dendrograms depicting the degree of coupling between
active and total (active + dormant) composition in simulated and lake
microbial communities. By varying the mortality rate of dormant individuals
(mD) and the relative strength of regional and local environmental cues (W),
we explored how dormancy and regional cues influenced coupling or
decoupling of active and total communities. Vertical scales indicate Bray-
Curtis distance. (A) Simulated communities with low mortality of dormant
individuals (mD = 0.1) and strong regional environmental cues (W = 0.95)
resulted in decoupling of active and total communities. (B) In contrast,
simulated communities with low persistence of dormant individuals (mD =
0.9) and weak regional control (W = 0.05) resulted in coupling between
active and total communities. (C) The composition of active (rRNA) and total
(rDNA) bacterial communities in eight lakes was decoupled. (D) In contrast,
the composition of active and total eukaryotic communities was more
strongly coupled.

Fig. 4. The contribution of dormant taxa to microbial richness along a total
phosphorus (TP) gradient in our lake survey. Dormant taxa were identified
from terminal restriction fragments that were recovered in rDNA fingerprint
profiles but not in rRNA fingerprint profiles. The proportion of dormant bac-
terial taxa decreased with increasing TP (a proxy for ecosystem productivity),
but this was not the case for eukaryotic microbes. Together, the proportion of
dormant taxa (DT) could be predicted for different microbial domains (M; 1 for
bacteria, 0 for eukaryotes) with the following multiple regression model: DT =
0.12 + 0.25M − 0.005(M)(TP) (R2 = 0.85, n = 16, P < 0.001).
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active if the rRNA relative recovery was greater than its recovery
from rDNA. Conversely, a taxon was scored as inactive if the
relative recovery of rRNA was less than the relative recovery of
rDNA. In both lakes, there was an inverse relationship between
the probability of a taxon being active and its rDNA rank
(logistic regression, P < 0.001; Fig. 5), indicating that, on aver-
age, rare taxa are more likely to be active than common bacterial
taxa. These results support the idea that microbial rank abun-
dance curves may be highly dynamic (39, 40). For example, if we
assume no change in environmental conditions, populations that
were scored as active are likely to increase in abundance and
move to the left on the rDNA rank abundance curve, whereas
the opposite would be true for inactive populations. In addition,
we observed strong taxonomic contrasts in the distribution of
active and inactive operational taxonomic units (OTUs). Spe-
cifically, 48% of Bacteroidetes OTUs and 69% of the α-Pro-
teobacteria OTUs were scored as active, whereas almost all of
the Actinobacteria and Acidobacteria OTUs were scored as
inactive (89% and 93%, respectively). Our findings provide evi-
dence that many rare bacterial taxa are active and thus have the
potential to increase when rare, which is an important criterion
when evaluating species coexistence and the assembly of food
webs (41). Moreover, as has been found with macroorganisms
(42), rare taxa may have important implications for the con-
tribution of microbial diversity to ecosystem functioning.
The identification and enumeration of dormant populations in

complex communities is of great interest to microbial ecologists
but is also challenged by some conceptual and technical diffi-
culties. For example, microbial dormancy is commonly identified
via morphological features such as endospores, cysts, or conidia.
However, microbes can enter reversible states of reduced met-
abolic activity without investment in specialized cellular struc-

tures (12, 43). Persistor cells, which are capable of surviving
antibiotic treatment without resistance mutations, represent one
example of this form of dormancy (13). Here, we define dor-
mancy based on reduced metabolic activity inferred from the
detection of a population in the total community (measured
using rDNA) and an inability to detect the population among the
active members of the community (measured using rRNA). It is
unlikely that our approach perfectly discriminated between
dormant populations and extremely slow-growing populations
(44, 45). However, there is some evidence that dormant and
slow-growing populations can respond similarly to favorable
environmental change (45, 46). Although there is potential for
refined definitions and improved measurements, we view our
approach as a reasonable approximation for quantifying the
contribution of dormancy to microbial diversity.
Our initial theoretical exploration of microbial dormancy

portrayed a simplified scenario where all populations were
equally likely to enter and emerge from a dormant state. Despite
being a taxonomically widespread phenomenon (13, 34), it seems
unlikely that all microbes are capable of using dormancy as an
adaptive life history strategy. In addition, the cues that trigger
entrance into and emergence from a resting state are likely to
vary among populations. This interpopulation heterogeneity
represents a level of complexity beyond our current mathemat-
ical formulation of microbial dormancy. Under more realistic
scenarios, we expect that populations with the capacity to
become dormant would experience a higher probability of per-
sisting through inhospitable periods and thus make a larger
contribution to microbial richness.
Of course, the ability to maintain a dormant state is only useful

if more favorable environmental conditions return before intra-
cellular reserves are depleted or the dormant cells fall victim to
some other source of mortality. If the return interval of optimal
conditions is relatively short, investment into dormancy may
prove unnecessary and costly (20). However, populations with
the capacity to enter a dormant state would likely realize benefits
in systems that experience gradual or predictable environmental
change (47). The optimization of reproductive behavior in the
face of environmental variation has been explored for plant and
insect populations (20, 21) and the findings are likely to apply to
microbial communities, as well.
Dormancy has the potential to explain numerous ecological

patterns observed in microbial systems over the past decade,
including repeated seasonal succession (6), the rare microbial
biosphere (22), and the apparent resilience to disturbance of
microbially mediated processes (48). In addition, the dormancy-
driven decoupling of active and total composition observed in
our study raises the question of whether we must consider the
use of rRNA-based approaches to link microbial community
structure and function. However, dormancy does not appear to
be equally important for all microbes. Our findings suggest that
ecosystem features (e.g., productivity) or species traits (e.g., body
size) may explain the relative importance of dormancy in
microbial communities. Together, our findings provide evidence
that dormancy is likely to play a key role in the maintenance of
microbial diversity, and our theoretical framework paves the way
for microbial dormancy research in a variety of natural and
managed systems.

Materials and Methods
Limnological Methods. We sampled from the surface mixed-layer of eight
lakes in southwest Michigan, United States, between 8 and 12 September
2008. The discrete boundaries of lakes create spatially distinct patches with a
range of local environmental conditions (Table S1). We sampled all lakes over
a short time period (<1 week) to help ensure that the microbial communities
experienced similar regional cues (e.g., photoperiod and weather). Water
temperature and pH were measured on-site with a Hydrolab Quanta probe
(Hach Environmental). TP was measured by persulfate oxidation of organic

Fig. 5. Rank-abundance curves for the total (rDNA-based) community of
bacteria from two lakes. Points indicate the relative recovery of the corre-
sponding OTUs (97% sequence identity) in the active community (rRNA-
based). Gray squares indicate OTUs that were scored as disproportionately
active, and black squares indicate OTUs that were scored as dis-
proportionately inactive. Logistic regression revealed that with each
increasing rank, the probability of a taxon being active increased by 6% and
2% for Lake 1 and Lake 2, respectively.
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phosphorus to phosphate followed by colorimetric analysis of phosphate
(49). Total nitrogen (TN) and dissolved organic carbon (DOC) were measured
by oxidation and subsequent chemiluminescence or nondispersive infrared
(NDIR) detection, respectively, using a Shimadzu TOC-V equipped with a
TNM-1 unit. For measurement of chlorophyll a concentrations, plankton
were captured on 0.7-μm glass fiber filters and frozen at −20 °C. Chlorophyll
a was extracted from filters in 95% ethanol overnight at 4 °C and quantified
via fluorometry (50). Finally, plankton from 250 mL of lake water were
captured onto 0.2-μm filters and stored at −80 °C until processing for
molecular-based microbial composition.

Microbial Community Composition. We extracted DNA and RNA from cryo-
stored filters using commercially available kits and protocols (DNA FastPrep
purification kit from BIO 101; RNeasy isolation kit from Qiagen). We syn-
thesized cDNA from RNA using random hexamer primers and a SuperScript III
first-strand synthesis kit (Invitrogen). Terminal restriction fragment length
polymorphism (T-RFLP) was conducted on both DNA and cDNA using general
16S [8F and 533R (51)] and 18S [Euk1Af and Euk516r (52)] rRNA primers.
Fragment analysis was conducted at the Research Technology Support
Facility at Michigan State University. In addition, the DNA and cDNA from
two lakes were used as template in PCR reactions with barcoded primers
targeting the V4 region of bacterial 16S rDNA. PCR products were sequenced
using an Illumina Genome Analyzer II at the Research Technology Support
Facility. Both T-RFLP profiles and tag-encode pyrosequences are available
from the authors upon request.

16S rDNA and rRNA tag sequences were assigned to operational taxo-
nomic units (97% sequence identity) using RDP 10 (53). To avoid interpreting
random sequencing errors as rare community members, we only considered
OTUs that possessed two or more tag sequences. This resulted in 231 and 147
observed OTUs from Lake 1 and Lake 2, respectively. After scoring each tag
sequence-based OTU as active or inactive based on the relative recovery of
sequences from rRNA and rDNA, we tested whether rDNA-based rank (a
proxy for abundance) was a significant predictor of activity using logistic
regression. Logistic regression was implemented using the glm function in
the R Statistics Environment with a binomial distribution family. A sig-
nificant positive slope would indicate that low-ranking (i.e., rare) OTUs were
more likely to be active, whereas a significant negative slope would indicate
that common OTUs tended to be more active.

As in all biodiversity studies, sampling depth may have influenced some of
our conclusions. However, the probability of detecting a given population is
proportional to its abundance relative to other community members. Of
course random sampling error and molecular techniques can impart bias in

our recovery rates, but tag-encoded pyrosequencing should help avoid these
issues by providing greater sampling depth and using short amplicons with
uniform length.

Model Details. To mirror our lake sampling, we used a model landscape
comprised of eight patches. The local environmental conditions of the
patches were evenly spaced from 0 to 1. We seeded a total of 2,601 microbial
species, representing all combinations of local and regional environmental
optima spanning from 0 to 1 by increments of 0.02, into each patch. The
qualitative results, however, were robust to the number of species added to a
simulated patch (36–2,601). We did not include dispersal among patches in
our model. An explicit exploration of the consequences of dormancy in a
microbial metacommunity would be a logical extension of the current
model. Although all species were initially present in all patches, environ-
mental cues and the strength of dormancy determined the persistence of a
species in a given patch. The total equilibrium density (A*jx + D*jx) was used
as an analog for the total (rDNA-based) community, and A*jx was taken as
the active (rRNA-based) community. We assessed patterns of community
composition using cluster analysis (Statistical Analyses).

Statistical Analyses. All statistical analyses, including UPGMA cluster analysis,
indicator variable regression, logistic regression, and multiple response
permutation procedure (vegan package), were performed in the R Statistical
Environment. Pairwise Bray-Curtis distance matrices were used to summarize
difference in both model and T-RFLP-based community composition. The
distance matrices were used for visualization of compositional patterns of
active and total communities by UPGMA clustering. In UPGMA clustering, the
most similar communities (dendrogram tips) are joined by a branch with total
length equal to their Bray-Curtis dissimilarity, the most similar communities’
entries in the distance matrix are combined by averaging, and the process is
repeated until all communities are included in the dendrogram. We used the
multiple response permutation procedure (MRPP) to test for significant
differences in composition between active and total communities. Indicator
variable regression was fit using negative log likelihood minimization in R.
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