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Dose Finding with Escalation with
Overdose Control (EWOC) in Cancer
Clinical Trials
Mourad Tighiouart and André Rogatko

Abstract. Traditionally, the major objective in phase I trials is to identify a
working-dose for subsequent studies, whereas the major endpoint in phase II
and III trials is treatment efficacy. The dose sought is typically referred to as
the maximum tolerated dose (MTD). Several statistical methodologies have
been proposed to select the MTD in cancer phase I trials. In this manuscript,
we focus on a Bayesian adaptive design, known as escalation with overdose
control (EWOC). Several aspects of this design are discussed, including large
sample properties of the sequence of doses selected in the trial, choice of
prior distributions, and use of covariates. The methodology is exemplified
with real-life examples of cancer phase I trials. In particular, we show in the
recently completed ABR-217620 (naptumomab estafenatox) trial that omit-
ting an important predictor of toxicity when dose assignments to cancer pa-
tients are determined results in a high percent of patients experiencing severe
side effects and a significant proportion treated at sub-optimal doses.

Key words and phrases: Cancer phase I trials, dose-limiting toxicity, esca-
lation with overdose control, tolerated dose, optimal Bayesian feasible.

1. INTRODUCTION

The main objective in cancer phase I clinical trials is
to identify a tolerable dose of a cytotoxic or therapeu-
tic agent for subsequent studies. Phase I trials represent
the first testing of an investigational agent or combina-
tion of agents whose safety profile has been established
individually. These trials typically enroll patients with
advanced cancer stages and who have exhausted avail-
able standard treatment options [24].

Cancer phase I trials are carried out sequentially,
assigning dose levels to subjects based on the ob-
served side effects of the previously treated patients.
From a safety and therapeutic perspective, these tri-
als should be designed to minimize the number of un-
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acceptable toxic events and maximize the number of
patients treated at an optimal dose. Ideally, the design
should control the probability of overdosing patients at
each stage of the trial, produce a sequence of doses that
converge to the MTD, and should take into account the
heterogeneous nature of cancer phase I trial patients
[29].

Decisions to escalate or de-escalate dose levels in
cancer phase I trials are made after one cycle of therapy
to patients. The length of a cycle is usually between
3 and 6 weeks. Therefore, the target phase I dose is
typically defined in terms of treatment-related side ef-
fects, ignoring treatment efficacy. This is due to the fact
that treatment efficacy, expressed as a reduction in tu-
mor size or an increase in survival, requires months (if
not years) of observation [21, 34], a length of time far
greater than the length of one cycle of therapy. Thus, it
can be stated that the main objective of a cancer phase
I clinical trial is to determine a safe dose of a new
drug or combination of drugs for subsequent clinical
evaluation of efficacy. This dose is known as the max-
imum tolerated dose (MTD), or phase II dose. Specif-
ically, the MTD, γ , is defined as the dose expected to
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produce some degree of medically unacceptable, dose-
limiting toxicity (DLT) in a prespecified proportion θ

of patients [14],

P(DLT|Dose = γ ) = θ.(1)

The target probability of DLT θ depends on the
severity of the treatment-attributable toxicity. It is set
relatively high when the DLT is reversible or nonfa-
tal condition, and low if it is life-threatening [3]. Ting
[33] and Rosenberger and Haines [27] gave good re-
views of statistical methods for dose finding in cancer
phase I trials. In particular, the widely used continual
reassessment method (CRM) proposed by O’Quigley,
Pepe and Fisher [21] and its extensions by Faries
[12], Goodman, Zahurak and Piantadosi [15], Möller
[19], Piantadosi, Fisher and Grossman [23], and Storer
[28], and the escalation with overdose control (EWOC)
method proposed by Babb, Rogatko and Zacks [3], Za-
cks, Rogatko and Babb [36], Babb and Rogatko [4],
Tighiouart, Rogatko and Babb [31] and Rogatko et al.
[25] are Bayesian adaptive and produce consistent se-
quences of doses under some model assumptions and
regularity conditions. These designs can be easily im-
plemented in practice using published tutorials and free
interactive software; see, for example, the works of
Garrett [13], Zohar et al. [38], Xu, Tighiouart and Ro-
gatko [35], and Rogatko, Tighiouart and Xu [26].

In this article, we review several aspects of EWOC,
including large sample properties, choice of prior dis-
tributions, and use of covariates. The methodology is
exemplified with cancer phase I clinical trials we de-
signed and conducted at Fox Chase Cancer Center in
Philadelphia and the Winship Cancer Institute in At-
lanta.

This article is organized as follows. In Section 2, we
introduce the phase I design known as EWOC and re-
view its large sample properties. We illustrate its im-
plementation using a real-life example. An extension
of this design to account for patients’ specific charac-
teristics is described in Section 3 and the methodology
is illustrated by a recently completed phase I cancer
trial. Section 4 contains some concluding remarks and
discussion.

2. ESCALATION WITH OVERDOSE CONTROL

Denote by Y the binary indicator of DLT for a patient
given dose x. Assume that there exist x∗ and x∗∗, x∗ <

x∗∗ such that

P(Y = 1|x = x∗) = 0,(2)

P(Y = 1|x = x∗∗) = 1 − ε,(3)

where 0 < ε < 1 is known and θ < 1 − ε.
Let F(z) be a strictly increasing cumulative distrib-

ution function (c.d.f.) having probability density func-
tion f (z). We consider a dose-toxicity relationship of
the form

P(Y = 1|x)
(4)

= F

(
F−1(1 − ε) + β log

(
x − x∗

x∗∗ − x∗
))

,

where β is unknown, and 0 < β∗ ≤ β ≤ β∗∗ for some
positive real numbers β∗ and β∗∗. This model as-
sumes that the quantiles of F are linear in the log-
standardized dose z = log[(x − x∗)/(x∗∗ − x∗)]. An
example of F that is commonly used in practice is
the logistic model F(z) = ez/(1 + ez). It is easy to
verify that model (4) satisfies the constraints (2) and
(3). The condition β > 0 implies that the probabil-
ity of DLT is an increasing function of dose. Let φ =
F−1(1 − ε) − F−1(θ). Using (4), it can be shown that
the MTD γ defined in (1) is

γ = x∗ + (x∗∗ − x∗)e−φ/β.(5)

This also shows that γ ∈ [x∗, x∗∗]. Let γ ′ = log((γ −
x∗)/(x∗∗ − x∗)) be the MTD on the log-standardized
scale. Then (5) implies that γ ′ = −φ/β .

2.1 Dose Escalation Based on Bayesian Estimates

Let G(u) = F(F−1(θ) + φ + u), g(u) = G′(u) and
z1 = −φ/β∗ be the level assigned to the first patient.
Then,

G(βz1) = F
(
F−1(θ) + F−1(1 − ε) − F−1(θ) + βz1

)
= F

(
F−1(1 − ε) + βz1

)
= P(Y = 1|z1) ≤ F

(
F−1(1 − ε) + β∗z1

)
= F(F−1(θ)) = θ,

since z1 < 0 and F(z) is strictly increasing. This shows
that this log-standardized dose z1 is safe in the sense
that the probability of DLT at this level does not exceed
θ . Let Dn = {(zi, Yi), i = 1, . . . , n} be the data after
enrolling n patients to the trial where Yi is the observed
DLT status of the patient getting level zi , zi ∈ L∗ =
[− φ

β∗ ,− φ
β∗∗ ].

Let h(β) be a prior density function for the parame-
ter β on [β∗, β∗∗] and �n(β) = �(β|Dn) the posterior
c.d.f. given the data Dn. Let 0 < α < 1. A sequence of
dose levels zn such that

P(zn ≤ −φ/β|Dn−1) ≥ 1 − α(6)
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for all n ≥ 2 is called Bayesian-feasible at level (1−α);
see the article by Zacks, Rogatko and Babb [36]. Let

z(α)
n = − φ

�−1
n−1(α)

, n ≥ 2.(7)

Then, it is easy to verify that for all n ≥ 2, z
(α)
n is

Bayesian-feasible at level (1 − α). The choice of z
(α)
n

as the log-standardized dose levels in the trial implies
that the posterior probability of exceeding the MTD is
equal to the feasibility bound α. Let Fn = σ(Dn) be
the sigma-field generated by Dn and ψ(α) be the class
of all Bayesian-feasible sequences zn ∈ Fn of level
(1 − α).

DEFINITION 2.1. A sequence of levels {z∗
n, n ≥

1} ∈ ψ(α) is called optimal Bayesian-feasible at level
(1 − α), if for all N ≥ 1,

N∑
n=1

Eh{(γ ′ − z∗
n)

+} = inf
{zn}∈ψ(α)

N∑
n=1

Eh{(γ ′ − zn)
+},

where z+ = zI (z > 0) denotes the positive part of a
random variable.

This means that z∗
n minimizes the average amount

by which patients are underdosed. Using the law of to-
tal expectation, Zacks, Rogatko and Babb [36] showed
that z

(α)
n is optimal Bayesian-feasible. Conditions un-

der which this sequence converges to the true MTD in
probability are stated in the next theorem.

THEOREM 2.1. Suppose that for β0 ∈ [β∗, β∗∗]:
1. 0 < ε1 < G(−β0φ/β∗) ≤ G(−β0φ/β∗∗) ≤ 1 − ε.
2. 0 < ε2 < inf{g(β0x) :x ∈ L∗} ≤ sup{g(β0x) :x ∈

L∗} ≤ g∗.
3. g(x) is continuously differentiable.
4. −∞ < inf{g′(β0x) :x ∈ L∗} ≤ sup{g′(β0x) :x ∈

L∗} < ∞.
5. h(β) is uniform on [β∗, β∗∗]. Then, z

(α)
n

p−→ −φ/

β0 as n → ∞.

PROOF. See the article by Zacks, Rogatko and
Babb [36]. �
2.2 Coherence of EWOC

Coherence of adaptive designs was introduced by
Cheung [7] in the context of cancer phase I clinical tri-
als. Due to ethical concerns, the dose of a cytotoxic
agent for the next patient in a trial should not be higher
than the current allocated dose if the current patient
exhibits DLT. Likewise, the dose for the next patient
should not be lower than the current one if the current

patient does not exhibit DLT. This desirable property is
known as coherence and Cheung [7] showed that CRM
is coherent. The author also showed how the coherence
property can be lost when ad hoc modifications are in-
troduced to CRM. In this section, we show that EWOC
as described in Section 2.2 is coherent.

Let F(x, γ ) = P(Y = 1|x) be the model given in
(4) reparameterized in terms of the MTD γ . Let Dn =
{(x1, Y1), . . . , (xn, Yn)} be the data generated using the
EWOC scheme described in Section 2.2. This design is
said to be coherent in escalation if for all n ≥ 2, xn ≥
xn−1 whenever Yn−1 = 0. The design is said to be
coherent in de-escalation if for all n ≥ 2, xn ≤ xn−1
whenever Yn−1 = 1. The design is said to be coherent
if it is coherent in both escalation and de-escalation.

THEOREM 2.2. Suppose that F(x, γ ) is nonin-
creasing in gamma for fixed dose x. Then the EWOC
scheme described in Section 2.2 is coherent.

The proof of Theorem 2.2 is given in the Appendix.
It is easy to verify that the monotonicity condition on
F(x, γ ) is satisfied by model (4), and in particular, the
logistic function.

2.3 Two-Parameter Logistic Model

Denote by Xmin and Xmax the minimum and max-
imum dose levels available for use in the trial. One
chooses these levels in the belief that Xmin is safe
when administered to humans. Babb, Rogatko and Za-
cks [3] considered a two-parameter logistic model for
the dose-toxicity relationship:

P(Y = 1|Dose = x) = exp(β0 + β1x)

1 + exp(β0 + β1x)
,(8)

where we assume that β1 > 0 so that the probability of
DLT is a monotonic increasing function of dose. Model
(8) is reparameterized in terms of the MTD γ and the
probability of DLT at the starting dose ρ0, parameters
clinicians can easily interpret. This might be advanta-
geous since γ is the parameter of interest and one of-
ten conducts preliminary studies at or near the starting
dose so that one can select a meaningful informative
prior for ρ0. Using the definition of the MTD in (1)
and (8), it can be shown that

β0 = Xmin logit(θ) − γ logit(ρ0)

xmin − γ
,

(9)

β1 = logit(ρ0) − logit(θ)

xmin − γ
.

The second equation in (9) shows that the assump-
tion that β1 > 0 implies 0 < ρ0 < θ .
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2.3.1 Trial design. After specifying a prior distrib-
ution h(ρ0, γ ) for (ρ0, γ ), denote by �n(γ ) the mar-
ginal posterior c.d.f. of γ given Dn. EWOC can be de-
scribed as follows. The first patient receives the dose
x1 = Xmin and conditional on the event {y1 = 0}, the
(n + 1)st patient receives the dose xn+1 = �−1

n (α) so
that the posterior probability of exceeding the MTD is
equal to the feasibility bound α. If y1 = 1, we recom-
mend that the clinician stops the trial. Calculation of
the marginal posterior distribution of γ is performed
using numerical integration; see [3]. Often in practice,
phase I clinical trials are typically based on a small
number of prespecified dose levels d1, . . . , dr . In this
case, the (n + 1)st patient receives the dose

d̂n+1 = max
1≤i≤r

{di :di − xn+1 ≤ T1

and �n(xn+1) − α ≤ T2},
where T1, T2 are nonnegative numbers we refer to as
tolerances. We note that this design scheme does not
require that we know all patient responses before we
can treat a newly accrued patient. Instead, we can se-
lect the dose for the new patient on the basis of the
data currently available. At the conclusion of the trial,
the MTD is estimated by minimizing the posterior ex-
pected loss with respect to some suitable loss func-
tion l. One should consider asymmetric loss functions
since underestimation and overestimation have very
different consequences. Indeed, the dose xn selected by
EWOC for the nth patient corresponds to the estimate
of γ having minimal risk with respect to the asymmet-
ric loss function

lα(x, y) =

⎧⎪⎪⎨
⎪⎪⎩

α(γ − x),

if x ≤ γ , that is, if x is an underdose,
(1 − α)(x − γ ),

if x > γ , that is, if x is an overdose.

Note that the loss function lα implies that for any
δ > 0, the loss incurred by treating a patient at δ units
above the MTD is (1−α)/α times greater than the loss
associated with treating the patient at δ units below
the MTD. This interpretation might provide a mean-
ingful basis for the selection of the feasibility bound.
The above methodology can be implemented using the
user-friendly software of Rogatko, Tighiouart and Xu
[26].

2.3.2 Correlated priors on ρ0 and γ . In models (4)
and (8), we assumed that the support of the MTD
was strictly contained in [x∗, x∗∗] and [Xmin,Xmax],
respectively. The assumption that γ is bounded from

above may be too restrictive. In the absence of toxic-
ity, this assumption causes the dose escalation rate to
slow down and in general, the target MTD will never
be achieved if it lies outside the support of γ . Further-
more, since the support of the probability of DLT at
the initial dose ρ0 is [0, θ ] and γ is a function of θ ,
the assumption of prior independence between ρ0 and
γ may not be realistic. Intuitively, the closer ρ0 is to θ ,
the closer the MTD is to Xmin. Tighiouart, Rogatko and
Babb [31] introduced a class of correlated priors for
h(ρ0, γ ) on [0, θ ] × [Xmin,∞) using truncated normal
distributions for the parameter γ . They showed that a
candidate joint prior for (ρ0, γ ) with negative a priori
correlation structure results in a safer trial than the one
that assumes independent priors for these two parame-
ters while keeping the efficiency of the estimate of the
MTD essentially unchanged.

2.4 EWOC with Varying Feasibility Bound

Many of the phase I cancer trials the authors de-
signed at Fox Chase Cancer Center and Winship Can-
cer Institute used a variable feasibility bound α; see
the work of Babb and Rogatko [2, 4], Cheng et al. [6],
Tighiouart and Rogatko [29, 30], and Xu, Tighiouart
and Rogatko [35]. The rationale behind this approach
is that uncertainty about the MTD is high at the on-
set of the trial and a small value of α offers protec-
tion against the possibility of administering dose levels
much greater than the MTD. As the trial progresses,
uncertainty about the MTD declines and the likelihood
of selecting a dose level significantly above the MTD
becomes significantly smaller. However, design operat-
ing characteristics were not studied. Chu, Lin and Shih
[9] compared the performance of different versions of
CRM with EWOC with both constant and varying α.
The design of EWOC with varying α was termed “hy-
brid design.” The authors conducted extensive simula-
tions to compare these designs in terms of (1) the pro-
portion of patients given doses above the “true” MTD
and (2) the proportion of times the recommended dose
is the “true” MTD after each patient is enrolled in the
trial and his or her DLT status is resolved. It was found
in general that both the hybrid and CRM designs had
better convergence rate than EWOC with fixed α and
that EWOC with fixed and varying feasibility bound α

provide a better overdose protection than the CRM de-
signs in the sense that fewer patients are given doses
above the “true” MTD.

2.5 Example

EWOC was used to design a phase I clinical trial
that involved the R115777 drug at Fox Chase Cancer
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Center in Philadelphia, USA in 1999. R115777 is a
selective nonpeptidomimetic inhibitor of farnesyltrans-
ferase (FTase), one of several enzymes responsible for
posttranslational modification that is required for the
function of p21(ras) and other proteins. This was a re-
peated dose, single center trial designed to determine
the MTD of R115777 in patients with advanced incur-
able cancer. The target probability of DLT was set to
θ = 1/3. The dose-escalation scheme was designed to
determine the MTD of R115777 when drug is adminis-
tered orally for 12 hours during 21 days followed by a
7-day rest. This constitutes one cycle of therapy. Toxic-
ity was assessed by the National Cancer Institute (NCI)
Common Toxicity Criteria [20]. DLT was determined
by week 3 of cycle 1, as defined by Grade III non-
hematological toxicity (with the exception of alopecia
or nausea/vomiting) or hematological Grade IV toxic-
ity with a possible, probable or likely causal relation-
ship to administration of R115777. Dosing continued
until there was evidence of tumor progression or DLT
leading to permanent discontinuation. The initial dose
judged to be safe by the clinician for this study was
Xmin = 60 mg/m2 and the maximum allowable dose
was Xmax = 600 mg/m2. More details about the dos-
ing regimen for this trial can be found in the work of
Tighiouart and Rogatko [29]. Assuming vague priors
for ρ0 on [0, θ ] and γ on [60,600], the prior probabil-
ity density of (ρ0, γ ) is

h(ρ0, γ )

=
{

1/180, if (ρ0, γ ) ∈ [0,1/3] × [60,600],
0, otherwise.

Thus, ρ0 and γ are independent a priori, uniformly
distributed over their corresponding interval. Figure 1
shows the posterior distributions of the MTD as the
trial progressed and Figure 2 shows the posterior den-
sity of the MTD after 33 patients have been treated.
The posterior mode is 323 which corresponds to the
47th percentile of the distribution. In this trial, we used
a variable feasibility bound α, starting with α = 0.3,
this value being a compromise between the therapeu-
tic aspect of the agent and its toxic side effects. As the
trial progressed, α increased in small increments un-
til α = 0.5 so that, by the end of the trial, the given
dose corresponds to the 50th percentile, that is, the me-
dian of the marginal posterior probability density func-
tion. Thus, the dose to be given to the 34th patient
is 328. The 95% highest posterior density interval is
[160.5,536.1].

FIG. 1. Posterior density of the MTD when the number of treated
patients (from bottom to top) is 1,5,10,15,20,25,30,33.

FIG. 2. Posterior density of the MTD after 33 patients have been
treated. The posterior mode is 323 (47th percentile) and the median
and dose to be given to the 34th patient is 328. The 95% highest
posterior density interval is [160.5,536.1].

3. ADJUSTING FOR PATIENTS’ BASELINE
COVARIATES

A key assumption implied by the definition of the
phase I target dose (MTD) is that every subgroup of
the patient population has the same MTD. That is, it is
assumed that the patient population is homogeneous in
terms of treatment tolerance and every patient should
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be treated at the same dose. As a result, no allowance is
made for individual patient differences in susceptibility
to treatment [11].

Babb and Rogatko [4] extended EWOC to allow
the incorporation of information concerning individ-
ual patient differences in susceptibility to treatment.
The method adjusts doses according to patient-specific
characteristics while safeguarding against overdosing.

3.1 Model

Let W be a p-dimensional baseline covariate vector.
We consider the dose-toxicity model

P(Y = 1|Dose = x,W = w)
(10)

= exp(β0 + β1x + η′w)

1 + exp(β0 + β1x + η′w)
,

where η ∈ R
p is the effect of the baseline covariate

vector on DLT. Let px(w) = P(Y = 1|Dose = x,W =
w). We assume that β1 > 0 so that px(w) is an increas-
ing function of dose x for fixed w. The MTD for a pa-
tient with baseline covariate value w is defined as the
dose γ (w) that results in a probability equal to θ that a
DLT will manifest. It follows from model (10) that

γ (w) = β−1
1

[
log

(
θ

1 − θ

)
− β0 − η′w

]
.(11)

As in Section 2.3, we reparameterize this model in
terms of (γ (w∗), ρ) for a selected value of the baseline
covariate vector w = w∗ and ρ is a (p+1)-dimensional
nuisance parameter.

3.1.1 Trial design. Let h(ρ, γ (w∗)) be a prior dis-
tribution for (ρ, γ (w∗)) and denote by �n,w∗(γ (w∗))
the marginal posterior c.d.f. of γ (w∗) given the data
Dn = {(x1, Y1,w1), . . . , (xn, Yn,wn)}. The first patient
receives the dose x1 = Xmin and conditional on the
event {y1 = 0}, the (n+1)st patient with covariate vec-
tor value wn+1 receives the dose xn+1 = �−1

n,wn+1
(α)

so that the posterior probability of exceeding the MTD
is equal to the feasibility bound α. Note that here,
�−1

n,wn+1
(·) is the inverse c.d.f. of �n,wn+1(γ (wn+1)).

For a binary covariate W , Tighiouart, Rogatko and
Xu [32] studied operating characteristics of this model
with extensive simulations under different scenarios
for the underlying true MTDs. They found that if the
two MTDs are different and the design does not adjust
for this heterogeneity, then the trial will result in more
patients being overdosed. If the two MTDs are differ-
ent and parallel trials are used, then the estimates of the
MTDs are less efficient. Finally, if the two MTDs are

the same and the design adjusts for patients’ hetero-
geneity, then few more patients can be overdosed if the
true MTD is low relative to a design with no covariate
but the difference is not practically important. Thus, we
stand to lose little if we do include a statistically non-
significant covariate in the model. This conclusion is
in agreement with the findings of O’Quigley, Shen and
Gamst [22].

3.2 Example

ABR-217620 (naptumomab estafenatox) is a recom-
binant fusion protein that consists of the 5T4Fab moi-
ety genetically fused to the engineered superantigen
variant SEA/E-120. This fusion protein is a new gen-
eration tumor-targeted superantigen based on the pre-
viously described ABR-214936 (anatumomab mafena-
tox). ABR-217620 was designed to reduce antigenicity
and toxicity. We use model (10) with W = C represent-
ing the Anti SEA/E120 covariate to design a phase I
study for nonsmall cell lung cancer (NSCLC) patients.
The goal is to determine the MTD of ABR-217620 as
a function of patients’ baseline Anti SEA/E120 and
test whether the neutralizing effect of Anti SEA/E120
on the cytotoxic agent which was observed by Babb
and Rogatko [4] has been reduced or eliminated with
this new agent. The modeling approach is similar to
the PNU trial described in [4], the target probability of
DLT θ was set to 0.2. The feasibility bound α was set
at 0.25 for the first nine patients, then was increased to
a maximum value of 0.5 by increments of 0.05 every
time a new patient was enrolled in the trial and a DLT
assessment was resolved. Based on preliminary clinical
data, the minimum and maximum allowable doses for
ABR-217620 set by the clinicians are xmin = 1 ug/kg
and xmax = 100 ug/kgl. The minimum and maximum
values of Anti SEA/E120 anticipated in the trial are
c1 = 0 pmol/ml and c2 = 200 pmol/ml, respectively.
As in the PNU trial [4], we reparameterize model
(10) in terms of γmax = γ (c2), ρ1 = pxmin(c1), ρ2 =
pxmin(c2) with (γmax, ρ1, ρ2) uniformly distributed on
{(x, y, z) :y ∈ (0, θ ], z ∈ (0, y), x ∈ [1,100]} a priori.

Figure 3 shows the doses allocated to all 39 patients
as a function of their pretreatment Anti SEA/E120. The
solid line is the estimated conditional MTD, obtained
by taking the posterior median of the marginal distri-
bution of the MTD conditional on the covariate Anti
SEA/E120. The dashed lines delimit the 95% Bayesian
credible region. Six patients experience DLT (15.4%)
and the MTD seems to indicate that the neutralizing
effect of Anti SEA/E120 has been reduced consider-
ably. The protocol was amended to include patients
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FIG. 3. Dose allocation as a function of baseline Anti SEA/E120
during the trial for all 39 patients. The solid line is the MTD con-
ditional on the covariate Anti SEA/E120 which corresponds to the
posterior median of the conditional posterior distribution of the
MTD and the dashed lines delimit the 95% Bayesian credible re-
gion.

with renal cell (RCC) and pancreatic cancer (PC). Fig-
ures 4 and 5 show the doses allocated to NSCLC &
PC patients and RCC patients, respectively. The solid

FIG. 4. Dose allocation as a function of baseline Anti SEA/E120
during the trial for all 28 NSCLC & PC patients. The solid line is
the MTD conditional on the covariate Anti SEA/E120 which corre-
sponds to the posterior median of the conditional posterior distri-
bution of the MTD and the dashed lines delimit the 95% Bayesian
credible region.

FIG. 5. Dose allocation as a function of baseline Anti SEA/E120
during the trial for all 11 RCC patients. The solid line is the MTD
conditional on the covariate Anti SEA/E120 which corresponds to
the posterior median of the conditional posterior distribution of
the MTD and the dashed lines delimit the 95% Bayesian credible
region.

line represents the conditional MTD obtained after fit-
ting the data in each group to model (10), reparameter-
ized in terms of (γmax, ρ1, ρ2). This shows that NSCLC
& PC patients were treated at sub-optimal doses and
RCC patients were overdosed, with 36.4% experienc-
ing DLT, way above the target probability of DLT
θ = 0.2.

The effects of Anti SEA/E120 and type of cancer
were tested by fitting model (10) with W = (C,Z),
where C is the baseline Anti SEA/E120 and Z is
a binary covariate representing the cancer type, Z =
z1 = 1 for NSCLC and PC patients and Z = z2 = 0
for RCC patients. To be consistent with the priors
used to design the trial, we reparameterized the model
in terms of γmax = γ (c2, z1), ρ1 = pxmin(c1, z1), ρ2 =
pxmin(c2, z1) and ρ3 = pxmin(c1, z2). Independent uni-
form priors are placed on these parameters. It can be
shown that this induces priors centered at 0 for the
Anti SEA/E120 and cancer type effect parameters η1
and η2. We used WinBUGS [18] to fit this model and
the 95% HPD intervals for the parameters η1 and η2
were (−0.14,0.24) and (−4.6,0.6), respectively. We
conclude that the agent ABR-217620 was successful in
reducing the neutralizing capacity of Anti SEA/E120
and that the phase II dose should be carefully tailored
to account for patients’ cancer type and hence avoid
excessive overdosing and underdosing patients.



224 M. TIGHIOUART AND A. ROGATKO

4. DISCUSSION

In this article, we described EWOC, a Bayesian dose
finding design for cancer phase I clinical trials. The
method is flexible enough to allow prior information
about the drug from laboratory or animal studies to be
incorporated in the model, is coherent, makes use of
all the information available at the time of each dose
assignment and controls the probability of overdos-
ing patients at each stage. EWOC can be implemented
with the user-friendly software EWOC 2.1 [26] or Win-
BUGS [18] for general class of prior distributions [31].
The two-parameter model described in Section 2.3 ac-
counts for the uncertainty regarding the probability of
DLT at the initial dose by placing a vague prior dis-
tribution on ρ0. If expert opinion about this parameter
is available, then it should be incorporated in the prior
for ρ0. In particular, if the clinician strongly believes
that this prior can be approximated by a point mass
distribution, then the one-parameter model described
in Section 2.1 may be used. In any case, design oper-
ating characteristics should be performed with a sen-
sitivity analysis about the parameter ρ0 when design-
ing the trial. Our own experience in designing dose-
finding studies in cancer is that the uncertainty of the
clinicians regarding the probability of DLT at the ini-
tial dose is large. Thus, in more than ten years of de-
signing trials with EWOC, the use of a one-parameter
model was never chosen by the clinical researchers we
worked with.

It is worth highlighting that the values of α and θ

are chosen independently when the trial is designed.
They have distinct meanings and functions. For exam-
ple, taking a value of α greater than θ only affects the
loss function used to estimate the next dose and the
MTD at the conclusion of the trial. It does not mean
that patients are given doses at a rate above the target
probability of DLT θ . When α = 0.5, the method dif-
fers from CRM in the sense that the loss functions are
different. The loss function for EWOC is taken with
respect to the parameter γ , the MTD. The overprotec-
tion property of EWOC is with respect to the posterior
distribution of the MTD, given the data. The overpro-
tection property states that the posterior probability of
exceeding the MTD given the current data is bounded
by α. This overprotection is as good as the posterior
distribution of the MTD at each stage of the trial. For
instance, if we used a flat prior on the MTD and the
true MTD turns out to be very close to the initial dose,
then it would take many patients for the median of the
posterior distribution to cluster around the true MTD.

Another aspect of cancer phase I clinical trials not
discussed here is the choice of the number of patients to
enroll. Most sample size recommendations in the liter-
ature are based on prespecified stopping rules; see, for
example, the work of Zohar and Chevret [37] on se-
lecting the number of patients by considering different
stopping rules using the CRM. Lin and Shih [17] and
Ivanova [16] described sample size recommendations
based on the expected number of patients allocated to
each dose selected from a set of prespecified dose lev-
els. However, these methods apply to a prespecified set
of discrete doses and it is not clear how they can be
applied to continuous doses. Unlike the frequentist ap-
proach, there is no consensus on a specific Bayesian
method for the sample size determination problem; see
the article by Adcock [1] for a review of Bayesian ap-
proaches. We conducted extensive simulation studies
in order to estimate the sample size based on a desired
accuracy of the Bayes estimate on the average. Specif-
ically, we determined the minimum number of patients
so that the posterior variance of the MTD on the aver-
age over all possible trials is no more than a specified
margin. Tabulated values of the average mean poste-
rior standard deviation, length of 90% and 95% HPD
intervals for different values of the target probability of
DLT θ are available from the authors upon request.

The methodology described in this article assumes
that DLT status is binary and does not account for pa-
tients’ time to toxicity. Information on time to DLT is
crucial to clinicians in that it permits a dynamic up-
dating of the posterior distribution of the MTD based
on the number of patients who experienced DLT and
the ones who are still at risk. If new patients are eli-
gible to enter the clinical trial while the DLT status of
currently enrolled patients is still being resolved, then
the new patients are allocated to the current established
dose because it is not ethical to resolve DLT status at
the expense of treatment delay. In this case, there is
no adaptation to the most current information and the
design will not be efficient. Time to DLT was first in-
vestigated by Cheung and Chapell [8] and later adapted
to estimation of a maximum cumulative dose by Braun
et al. [5]. These methods are extensions of the CRM
and incorporate information on partially observed pa-
tients using weighted binomial likelihoods. EWOC can
be adapted to this framework by modeling time to DLT
as a Cox [10] type model with a parametric or nonpara-
metric baseline risk of toxicity h0(t). We are currently
investigating the performance of a large class of mod-
els within this framework via extensive simulations.
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APPENDIX

PROOF OF THEOREM 2.2. Let �n(t) be the pos-
terior c.d.f. of γ given Dn,n ≥ 2. Then, it suffices to
show that:

1. �n(t) ≤ �n−1(t) for all t whenever Yn = 0.
2. �n(t) ≥ �n−1(t) for all t whenever Yn = 1.

Let

Ln(γ |Dn) =
n∏

i=1

(F (xi, γ ))Yi
(
1 − F(xi, γ )

)1−Yi

be the likelihood function and h(γ ) be a proper
prior distribution for γ . To simplify notation, let
Ln(γ |Dn) = Ln(γ ), Fi(γ ) = F(xi, γ ) and suppose
that x∗ = 0, x∗∗ = 1. Using Bayes’ rule, the posterior
c.d.f. �n(t) given Dn is

�n(t) =
∫ t

0 Ln(γ )h(γ ) dγ∫ 1
0 Ln(γ )h(γ ) dγ

.

Suppose that Yn = 0. Then, Ln(γ ) = Ln−1(γ )(1 −
Fn(γ )) and

�n(t) =
∫ t

0 Ln−1(γ )(1 − Fn(γ ))h(γ ) dγ∫ 1
0 Ln−1(γ )(1 − Fn(γ ))h(γ ) dγ

.

It follows that

�n(t) − �n−1(t)

=
∫ t

0 Ln−1(γ )(1 − Fn(γ ))h(γ ) dγ∫ 1
0 Ln−1(γ )(1 − Fn(γ ))h(γ ) dγ

−
∫ t

0 Ln−1(γ )h(γ ) dγ∫ 1
0 Ln−1(γ )h(γ ) dγ

= A−1
[∫ t

0

∫ 1

0
Ln−1(γ )Ln−1(γ

′)h(γ )h(γ ′)

× [Fn(γ
′) − Fn(γ )]dγ ′ dγ

]
,

where

A =
∫ 1

0

∫ 1

0
Ln−1(γ )

(
1 − Fn(γ )

)
h(γ )

Ln−1(γ
′)h(γ ′) dγ ′ dγ,

�n(t) − �n−1(t)

= A−1
∫ t

0

∫ t

0
Ln−1(γ )Ln−1(γ

′)h(γ )h(γ ′)

× [Fn(γ
′) − Fn(γ )]dγ ′ dγ

+ A−1
∫ t

0

∫ 1

t
Ln−1(γ )Ln−1(γ

′)h(γ )h(γ ′)

× [Fn(γ
′) − Fn(γ )]dγ ′ dγ

= A−1
∫ t

0

∫ 1

t
Ln−1(γ )Ln−1(γ

′)h(γ )h(γ ′)

× [Fn(γ
′) − Fn(γ )]dγ ′ dγ ≤ 0,

since Fn(γ ) is nonincreasing in γ . Hence, �n(t) ≤
�n−1(t), which implies that �−1

n (α) ≥ �−1
n−1(α), that

is, xn+1 ≥ xn. Using a similar argument, one can show
that �−1

n (α) ≤ �−1
n−1(α) if Yn = 1. This shows that

EWOC is coherent. �
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