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Abstract: 

Purpose: The study aimed to provide evidence-based recommendations for the prescription of a 

single session of exercise to improve cognitive performance. In particular, the purpose was to 

determine the dose–response relation between exercise duration and cognitive performance for a 

moderate-intensity session of aerobic exercise. 

  

Methods: Twenty-six healthy young men participated in a reading control treatment and three 

exercise treatments presented in a random order. The exercise treatments were designed on the 

basis of the American College of Sports Medicine guidelines and consisted of a 5-min warm-up, 

a 5-min cooldown, and cycling at moderate intensity (approximately 65% HR reserve) for 10, 

20, or 45 min. The Stroop test was administrated after completion of each assigned treatment. 

  

Results: Exercise at moderate intensity for 20 min resulted in significantly better cognitive 

performance, as assessed by shorter response time and higher accuracy. This result was found 

regardless of the type of cognitive function assessed. In addition, a curvilinear dose–response 

relation between exercise duration and cognitive performance was observed. 

  

Conclusions: An exercise session consisting of a 5-min warm-up, 20 min of moderate-intensity 

exercise, and a 5-min cooldown improves cognition, whereas shorter or longer durations of 

moderate exercise have negligible benefits. This study provides the foundation for the 

prescription of a single session of moderate exercise to facilitate cognitive function in healthy 

younger adults. 
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Article: 

Substantial literature has demonstrated a positive effect of a single bout of exercise on cognitive 

performance (9,27,35). Specifically, the results of two meta-analyses indicate that acute exercise 

produces a small, significant, positive effect on cognitive performance performed after the 

exercise session (Chang et al. (9): effect size (ES), 0.11 for immediately after, and ES, 0.10 for 

after a delay; Lambourne and Tomporowski (27): ES, 0.20 for after exercise). Given this 

facilitative effect on cognitive performance, one important direction for research is to explore 

dose–response characteristics to define the optimal level of acute exercise with regard to 

cognitive benefits (9,27). This is important because an understanding of dose–response relations 

will provide the foundation from which to establish exercise prescription to facilitate cognitive 

performance. 

 

Exercise-induced change in arousal is one mechanism that has been proposed to underlie the 

relation between acute exercise and cognition. A large number of studies have focused on 

understanding how variations in physiological arousal induced by different exercise intensities 

influence the effects on cognitive performance. However, much of this research has examined 

the influence on cognitive performance, as assessed during exercise rather than after exercise. 

Some of the studies exploring the effects during exercise demonstrate a linear dose–response 

trend, such that increased exercise intensity is directly related to improved cognitive performance 

(8,15,31). Other researchers have reported a curvilinear trend, also described as an inverted U 

relation, indicating that moderate exercise intensity results in the best cognitive performance as 

compared with low and vigorous exercise intensities (2,12). In contrast, there are only a few 

studies in which the dose–response relation between aerobic exercise intensity and cognitive 

performance performed after exercise has been assessed. Results of these studies support an 

inverted U relation, such that neuroelectric indices of cognition were best at moderate intensity 

and not as good at lower or higher intensities (24–26). Differences in findings across these 

studies may be due to myriad factors including the timing of the cognitive assessment and the 

particular cognitive task assessed. Interestingly, two studies have explored the dose–response 

relation between resistance exercise intensity and cognitive performance after exercise and 

indicated that the nature of the relation between exercise intensity and performance is specific to 

a task. Specifically, Chang et al. (6,7) found that resistance exercise performed at 100% of 10-

repetition maximum (RM) facilitated lower-level cognitive function relative to 40% and 70% of 

10RM, suggesting a linear trend, whereas 70% of 10RM resulted in better performance on 

interference and working memory (7) and planning (6) aspects of executive function than did 

either 100% or 40% of 10RM, reflecting an inverted U trend. Thus, it is important for future 

studies to consider the potential task specificity of dose–response relations between acute 

exercise intensity and cognitive performance. 

 It is worth noting that an exercise prescription for acute exercise involves intensity, modality, 

and duration (1), and despite relatively well-described dose–response relations between exercise 

intensity and cognitive function, the effect of exercise duration has not yet been examined. In a 

narrative review, Tomporowski (34) proposed that submaximal exercise performed for 20–60 



min would benefit cognitive performance. However, this conclusion was based on studies that 

generally emphasized lower-level cognitive performance, and hence, the results may not apply to 

higher-order measures such as measures of executive function. To date, the effect of exercise 

duration on higher-order functions can only be considered indirectly by comparing across results 

from studies that have looked at a single duration (e.g., 10, 30, 120 min), and when examined 

this way, results are ambiguous. For instance, whereas some studies indicate that moderate-

intensity exercise performed for 20–30 min has a positive effect on executive function, exercise 

for less than 20 min or more than 30 min has resulted in facilitation, no effect, or even 

impairment on executive function tasks (3,13,14,23). These conflicting results emphasize the 

importance of studying the effects of exercise duration on cognition in a single study, with the 

long-range goal being to inform exercise prescription. When reviewed meta-analytically, results 

for studies testing the effects of acute exercise on cognitive performance performed after the 

cessation of exercise indicate that the exercise must last at least 11 min to result in a positive 

effect (9). However, because these results rely on averaging effects across studies, this 

conclusion may be influenced by other variables that differ between studies. 

 

As such, the aim of the present study was to test the dose–response relation between exercise 

duration and cognitive function in a single study. In addition, the study was designed to consider 

the potential moderating effect of cognitive task type. While several cognitive tasks have been 

used in studies testing the effects of acute exercise on cognition (e.g., flanker task, go/no go test, 

and Tower of London) (6,21,26), the Stroop test was particularly chosen because it is one of the 

most commonly used neuropsychological assessments to measure executive function (16). The 

Stroop test is also sensitive to acute exercise and consists of two tasks, which allow for the 

assessment of basic information processing and higher-order aspects of cognition (10,16). 

Considering previous studies, we hypothesized that exercise performed at moderate intensity for 

20 min would facilitate performance on both of the Stroop tasks whereas exercise performed for 

10 or 45 min would have limited positive effects. 

 

METHODS 

Participants 

Twenty-six young male adults between the ages of 20 and 22 yr from two universities 

surrounding Taoyuan County, Taiwan, were recruited via flyers or referral from participants 

previously included in the study. Participants provided a written informed consent to participate 

after being provided with information regarding the potential risks and discomforts related to the 

study. The project was approved by the institutional review board of National Taiwan 

University. All participants met the inclusion criteria, as determined from the health screening 

questionnaire (e.g., participants had to be categorized as low risk) and the Physical Activity 

Readiness Questionnaire (participants had to answer “no” for all items). These questionnaires 

were reviewed following the guidelines of the American College of Sports Medicine (ACSM) 

(1) to ensure the safety of the participants performing the cardiovascular fitness test and acute 



bouts of exercise. In addition, all of the participants were right hand dominant and none reported 

any neurological or psychiatric disorders, color blindness, medical conditions, or abnormal 

vision that might influence performance of the cognitive tasks. Eligible participants were 

required to complete the International Physical Activity Questionnaire (IPAQ), an international 

surveillance measure assessing physical activity participation (4,29), and the digit span test of the 

Wechsler Adult Intelligence Scale (36) to describe other variables that may influence cognitive 

performance. The sample size was determined using power analysis in which a one-way 

ANOVA with ES partial eta squared ([eta]2) of 0.42, power of 0.8, and alpha at 0.05 were used 

(11). Participants’ demographic characteristics are presented in Table 1. 

 

TABLE 1 Participants’ demographic characteristics (mean ± 1 SD). 

   

Cardiovascular Fitness Test 

 Participants performed a submaximal exercise test on an electronically braked cycle ergometer 

(Ergoselect 100/200; Ergoline GmbH, Germany) to indirectly determine their V·O2peak. This 

test was conducted so that fitness levels could be reported for the participants. The exercise test 

was the adapted YMCA cycle ergometry protocol recommended by the ACSM (1,18). The 

YMCA protocol involves 2–4 consecutive 3-min cycling stages that are intended to elevate HR 

to a target zone of between 110 bpm and 70% of the HR reserve (HRR) (i.e., resting HR plus 

70% of the difference between age-predicted HRmax and resting HR) for two consecutive 

stages. The initial workload was 150 kpm·min-1 or 0.5 kg with a pedaling speed of 50 rpm. The 

experimenter recorded the participant’s HR in the last 15–30 s of the second and third minutes, 

and the average of these two HR values was used to determine the workload for the next stage 

after the YMCA protocol (see ACSM guidelines, Ninth Edition (1), page 82). Once the HR 

reached the target HR zone for two consecutive stages, the test was terminated and V·O2peak 

was calculated on the basis of age-predicted HRmax, body mass, and a line depicting the relation 

between HR and power output during the final two stages. 

 

 Exercise Intensity Measurement 



HR 

HR provides an objective index of exercise intensity. Thus, HR monitors (Sport Tester PE 3000; 

Polar Electro Oy, Kempele, Finland) were used to confirm the exercise intensity manipulation. 

The HR monitor was worn by participants throughout the treatment conditions, and HR was 

recorded by the experimenter at 2-min intervals. Two HR indices were identified: resting HR 

represents HR assessed after sitting quietly in a comfortable chair for 15 min before the 

treatment, whereas treatment HR represents HR during the treatment. 

 

RPE 

Ratings of perceived exertion (RPE) provide a subjective measurement of an individual’s 

perception of effort during exercise (5). The Borg scale ranges from 6 to 20. RPE was measured 

at 2-min intervals during the moderate exercise portion of the exercise treatments. 

Cognitive Task: Stroop Test 

 The Stroop test, also known as the Stroop Color–Word test, is a popular neuropsychological 

assessment used to measure a variety of cognitive functions and is sensitive to effects from an 

acute bout of exercise (10). Typically, the stimulus of the Stroop test is a color name that is 

printed in a different color of ink and the participant is instructed to name the color of the ink. 

The present study employed a modified computerized Stroop test administered using the Stim2 

software (Neurosoft Labs, Inc., Sterling, VA), which allows for the assessment of reaction time 

and accuracy. This task consisted of two conditions. The congruent condition included three 

Chinese color words (i.e., for green, for blue, and for red) that were displayed in the same color 

(e.g., “green” printed in green ink), whereas the incongruent condition included the same three 

color names but each was displayed in a different color (e.g., “green” displayed in blue or red). 

 Each trial consisted of a fixed cross displayed on the center of the screen followed by a stimulus 

that was displayed for 506 ms. Participants performed six blocks of 60 trials consisting of 

congruent trials (trials, n = 38) and incongruent trials (trials, n = 22) presented in a random order. 

The interval between the fixed cross and the presentation of the stimulus was randomly chosen 

for each trial as either 383, 583, or 783 ms to avoid stimulus expectation. Each stimulus was a 2-

cm square displayed on the center of the computer screen. The participant was required to 

identify the “color” of the target stimulus by pressing one of three labeled buttons with their right 

thumb on a response pane (10 × 8 × 2 cm box) as quickly and accurately as possible. With 

participants seated at approximately 70 cm from the computer screen, the participant’s visual 

angle of the stimulus was 2°. An acceptable response was considered one that occurred within 

200 and 1000 ms of the presentation of the stimulus. Responses that were not within the time 

range (i.e., 200–1000 ms) and responses when the participant pressed the wrong color button 

were considered inaccurate responses (Fig. 2 shows the percentages of accurate and inaccurate 

responses). Participants performed six blocks with a 2-min rest interval between each block (360 

target trials in total), resulting in approximately 30 min for cognitive testing. Outcome variables 

were the average response time and accuracy rate for congruent and incongruent conditions. 



 

FIGURE 2. Dose–response relation between exercise duration and Stroop test performance in accuracy. Note that 

higher scores for accuracy are indicative of better performance. Values are presented as mean ± SEM. 

 

Treatments 

In the reading treatment, participants were asked to read a book related to exercise and cognition 

for 30 min. Immediately after this 30-min period, participants performed the Stroop task. After 

performing the Stroop task, participants performed the submaximal exercise test to assess 

cardiovascular fitness for descriptive purposes. 

In the exercise treatments, participants were asked to perform an acute bout of steady-state 

exercise on a stationary cycle ergometer at 65% HRR and a pedal rate of 65 rpm. The percentage 

of HRR was selected because this is considered to be of moderate intensity (1), and moderate 

intensity has been shown to be an appropriate intensity at which to observe cognitive 

performance benefits (11). The exercise durations were 10, 20, or 45 min with additional warm-

up and cooldown stages for 5 min each. The inclusion of a 5-min warm-up and a 5-min 

cooldown was based on the recommendations of the ACSM (1). In all treatments, the room 

temperature was 23°C and the humidity was between 40% and 60%. 

Procedures 

Each participant was requested to come to the laboratory individually on four occasions with at 

least 3 d between each occasion. On these days, the participant received one of the four possible 



treatments (i.e., reading for 30 min or exercise for 10, 20, or 45 min) presented in a randomized 

counterbalanced order. 

On the first visit, each participant was asked to complete the demographic questionnaire, the 

health screening questionnaire, and the Physical Activity Readiness Questionnaire. Eligible 

participants were then asked to complete the IPAQ and perform the digit span test. Then, each 

participant was instructed to perform practice trials on the Stroop test until at least an 85% 

accuracy rate was met. From this point on during the first visit, procedures were the same as 

those at every subsequent visit. At every visit, participants sat quietly for 15 min, after which, a 

measure of resting HR was recorded. The participant then performed the assigned treatment for 

that session. After completing the assigned treatment (e.g., reading or exercise), participants 

were asked to complete the Stroop test within 5 min of cessation of treatment. 

 

Statistical Analyses 

Descriptive data are presented as mean ± SD, and three sets of analyses were conducted. To 

confirm the effectiveness of the exercise intensity manipulation, a 2 × 4 repeated-measures 

ANOVA (time: resting HR and treatment HR; treatment: reading and 10, 20, and 45 min) was 

conducted for the HR data. Two 4 × 2 (treatment × Stroop test condition) repeated-measures 

ANOVAs were then used to detect differences in response time and accuracy of performance on 

the Stroop test. Lastly, trend analyses were conducted to address the dose–response trend 

between exercise duration and Stroop test performance in terms of response time and accuracy. 

If the sphericity assumption was not met, Greenhouse–Geisser corrections. were used. Paired 

post hoc t-tests with Bonferroni adjustments for multiple comparisons were performed to follow 

up significant effects, ES of partial [eta]2 were reported for significant effects, and an alpha of 

0.05 was used for the significance level. 

 

RESULTS 

 

Exercise intensity manipulation check 

 Table 2 summarizes the descriptive data for HR and RPE relative to treatment condition. RPE 

during all exercise treatments ranged between 12 and 15, confirming that the exercise sessions 

were perceived as being at moderate intensity. 

 

TABLE 2 Descriptive data for exercise manipulation check and Stroop test performance (mean ± 1 SD). 

 



A 2 × 4 repeated-measures ANOVA revealed that there were significant main effects for time 

(F1,75 = 6067.33, P < 0.001, partial [eta]2 = 0.99) and treatment (F3,75 = 780.54, P < 0.001, 

partial [eta]2 = 0.97). These significant main effects were superseded by a significant interaction 

between treatment and time (F3,75 = 2748.12, P < 0.001, partial [eta]2 = 0.99). Follow-up 

multiple comparisons indicated that although no significant difference in resting HR existed 

among the four treatments, HR during the treatment was significantly higher during the three 

exercise treatments than during reading (P values < 0.001). As expected, there were no 

significant differences among the three exercise durations and the average observed HR 

indicated that the exercise sessions were of moderate intensity (i.e., 65%–67% HRR) (Table 2). 

 

Stroop test performance 

 Table 2 summarizes the descriptive data for response time and accuracy relative to treatment 

and Stroop test condition. 

Regarding response time, results revealed a significant main effect of treatment (F1,75 = 4.78, P 

< 0.01, partial [eta]2 = 0.16) and Stroop test condition (F1,75 = 60.63, P < 0.001, partial [eta]2 = 

0.71) but no interaction effect between treatment and Stroop test condition. Multiple follow-up 

comparisons for the treatment main effect revealed that response times were significantly shorter 

after the 20-min exercise session as compared with those after reading, 10 min of exercise, and 

45 min of exercise (P < 0.02) and that response times after reading and 10 and 45 min of exercise 

were not significantly different from one another (P > 0.05). The results of the trend analysis 

support the finding by indicating a significant curvilinear trend (P < 0.01, partial [eta]2 = 0.39) 

but not a significant linear trend (P > 0.05). The main effect for the Stroop test condition 

indicated that longer response times were found for the incongruent condition compared with 

those for the congruent condition. Figure 1 displays the curvilinear effect of treatment and the 

main effect of the Stroop test condition on response time. 

 

FIGURE 1. Dose–response relation between exercise duration and Stroop test performance in response time. Note 

that lower scores for response time are indicative of better performance. Values are presented as mean ± SEM. 



 

  

Similar results were found in accuracy, where there were significant main effects for treatment 

(F3,75 = 7.16, P < 0.001, partial [eta]2 = 0.22) and Stroop test condition (F1,75 = 4.2, P < 0.05, 

partial [eta]2 = 0.14) but no interaction effect between treatment and Stroop test condition. 

Multiple follow-up comparisons for the treatment main effect showed that accuracy was 

significantly better after 20 min of exercise as compared with that after the other three treatments 

(P < 0.01), which were not significantly different from one another (P > 0.05). Results of the 

trend analysis indicate a significant curvilinear trend (P < 0.001, partial [eta]2 = 0.41) but no 

linear trend (P > 0.05). Results for the main effect for the Stroop test condition indicated that 

higher accuracy rates were found for the congruent condition compared with those for the 

incongruent condition. Figure 2 displays the curvilinear effect of treatment and the main effect of 

the Stroop test condition on accuracy. 

   

DISCUSSION 

  

Acute bouts of exercise are thought to result in improved cognitive function, and several studies 

have investigated the dose–response relation between exercise intensity and cognitive 

performance after exercise. However, empirical studies have not been designed to test the effects 

of varying durations of acute exercise on cognitive performance, and therefore, the purpose of 

this study was to examine the effects of various durations of moderate-intensity aerobic exercise 

on cognitive performance after exercise. The results of this study showed that when exercising at 

moderate exercise intensity, the duration of the exercise affects both accuracy and response time 

on the Stroop task. The main finding was that exercising for 20 min resulted in shorter response 

time and higher accuracy compared with that in no exercise (reading control) and with exercise 

conducted for 10 or 45 min, suggesting that there is a curvilinear relation between exercise 

duration and cognitive performance. In addition, because there was not a significant interaction 

between the Stroop test condition and treatment, it can be concluded that acute moderate-

intensity exercise positively affected performance regardless of the type of cognitive function 

assessed. 

 

Our finding relative to the main effect for Stroop test condition replicates previous research that 

demonstrates the “Stroop effect”; that is, the incongruent condition resulted in longer response 

times and less accuracy relative to the congruent condition (30). In addition, we observed that 

moderate-intensity exercise performed for 20 min elicited the best performance in both 

incongruent and congruent conditions, suggesting that this duration of acute aerobic exercise at 

moderate intensity benefits lower- and higher-order aspects of cognition in general. The finding 

somewhat agrees with that in a previous study by Chang et al. (10) indicating general 

improvements in five different Stroop test conditions after acute exercise although larger benefits 



in the incongruent condition were also revealed. Importantly, the findings of this study suggest 

that moderate exercise intensity for 20 min, with a 5-min warm-up and cooldown as 

recommended by the ACSM, results in the largest benefits to cognitive performance. 

 

One hypothetical mechanism that has been proposed to explain the facilitative effect of 20 min 

of acute moderate-intensity exercise on cognitive performance is that after the exercise, greater 

attentional allocation, more efficient information processing speed, and optimal physiological 

arousal occurs. This interpretation is supported by studies applying neuroelectric techniques 

(21,22,24,26). For example, Hillman et al. (22) observed that exercise at a moderate-intensity 

level elicits larger P3 amplitude and shorter P3 latency during a flanker task performed after the 

exercise. The authors interpreted this finding as indicative of an individual being able to devote 

more attentional resources after exercise. Similarly, Kamijo et al. (26) found that after exercising 

at moderate intensities, larger P3 amplitude was elicited compared with that after baseline 

(control) and vigorous exercise intensities, suggesting that exercise may be used to induce 

appropriate attentional allocation during performance of a cognitive task. Alternatively, research 

also supports that exercise at a moderate-intensity level induces higher contingent negative 

variation (CNV) compared with that induced by light and vigorous exercise intensities. Because 

CNV is positively associated with attention and arousal level, this suggests that exercise may 

induce appropriate arousal when performing a cognitive task (24). 

 

Although only a few studies have examined the effect of exercise for less than 20 min on 

cognition, our nonsignificant differences on cognitive performance after exercise for less than 20 

min is consistent with previous findings. Yagi et al. (38) investigated the differences in visual 

and auditory oddball task performance as well as its elicited P3 after 10 min of exercise at light 

to moderate intensity; however, no exercise effects on either behavioral or neuroelectric indices 

were found. In addition, these results are consistent with the findings from the meta-analysis of 

Chang et al. (9), which indicated that when summarized across studies, the effects of exercise for 

less than 10 min on subsequent cognitive performance were negative. Our research adds to the 

knowledge base by examining a cognitive task involving both information processing and 

executive function and by testing the effects of duration on these aspects of cognitive 

performance. Thus, the results of this study in consideration with findings from previous 

research indicate that exercise performed for 10 min has no benefits for cognitive performance 

after exercise. 

  

In contrast to findings from previous studies looking at the effects of exercise of “long” duration 

on Stroop test performance (23) or short-term memory (13,14,19), in this study, the 45-min acute 

exercise session had no effect on cognition, as assessed by the Stroop test. Notably, the 

participants we recruited and the exercise duration we used in this study (i.e., healthy younger 

adults, 45 min) were different from those used by Hogervorst et al. (23) (i.e., highly trained 

triathletes and 60 min), Cian et al. (13), Cian et al. (14) (i.e., endurance-trained adults and 120 



min), and Grego et al. (19) (i.e., trained cyclists and 180 min). Individuals with high levels of 

fitness (as used in the previous studies) may improve cognition with longer durations of exercise, 

whereas participants with normal fitness status (as used in this study) do not achieve these same 

benefits. This conclusion is also supported by findings that greater benefits from acute exercise 

are observed in individuals with high fitness (9) or highly trained older participants relative to 

those with low-to-moderate levels of fitness or those who are untrained (33). It should be noted 

that after prolonged exercise (i.e., 2 h), even participants with a high level of fitness would be 

expected to experience decreases in cognitive performance possibly because of central fatigue 

associated with heat stress, dehydration, or hypoglycemia (13,14,28) or with negative effects on 

information processing (19). In contrast, it is speculated that individuals with a lower level of 

fitness or less physical training may receive more beneficial cognitive effects from acute exercise 

of shorter duration. Hence, future studies will be necessary to identify the optimal intensity and 

duration combination for groups that differ in terms of cognitive abilities (e.g., relative to age-

related cognitive decline), fitness (e.g., in those with low vs those with high levels of fitness), or 

other variables that might conceivably moderate the relation between acute exercise and 

cognitive performance. 

  

Some limitations of this study should be acknowledged and considered in interpreting these 

results. The study was focused exclusively on moderate exercise intensity. It is possible that 

intensity and duration must be considered simultaneously to understand the optimal effects on 

cognitive performance. In other words, although results of this study indicate that 20 min of 

exercise is optimal for the effects of moderate intensity on Stroop task performance, other 

durations may be optimal for light- or vigorous-intensity exercise. Another limitation of this 

study was the focus on a single measure of executive function. Executive function is a 

comprehensive cognitive construct that consists of several subcomponents of cognitive 

performance, namely shifting, updating, and inhibition. The Stroop test is considered to provide 

a measure of inhibition (32). Etnier and Chang (16) have argued that the effect of acute exercise 

on executive function might be dependent on the particular subcomponents of executive function 

assessed. Hence, future studies are necessary to expand our understanding of how duration and 

intensity work together to influence cognitive performance and to explore how effects are similar 

or different depending on the particular type of cognitive task. Furthermore, although the sample 

size was appropriate to statistically assess the beneficial effect of acute exercise on cognition on 

the basis of an a priori power analysis, because we limited our sample to right-handed college-

age men, future research with a larger and more heterogeneous sample will be necessary to 

assess the extent to which these findings apply to the broader population. 

  

With regard to future research, it is important for researchers to expand on the behavioral 

findings of this study by including measures of potential mechanisms. By understanding 

mechanisms, we have the potential to dramatically advance our understanding of how acute 

exercise might be prescribed to benefit cognitive performance. For example, one might consider 

applying neuroeletric techniques such as electroencephalography to further our understanding in 



terms of the relation between exercise duration and underlying neuroelectric responses (e.g., 

event-related potential [ERP], CNV, spectral frequency) in cognition. Researchers might also 

assess neurotrophic factors such as brain-derived neurotrophic factor or catecholamines (e.g., 

dopamine, norepinephrine) because these biological mechanisms have also been implicated in 

research on acute exercise and cognitive performance (17,20,37). It is particularly important that 

evidence of a relation between exercise duration and cognitive function has been demonstrated in 

the present study, providing the foundation to further investigate the underlying mechanism. 

  

In conclusion, acute aerobic exercise for 20 min at a moderate intensity facilitates cognitive 

performance for both information processing and inhibition; however, this improvement was not 

observed when exercising for 10 or 45 min. Although future research is required to replicate 

these findings, the present research has implications with regard to prescribing exercise to 

enhance cognition in healthy younger adults. 
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