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To maintain a stable intracellular environment, cells utilize complex and specialized defense systems against a variety
of external perturbations, such as electrophilic stress, heat shock, and hypoxia, etc. Irrespective of the type of stress,
many adaptive mechanisms contributing to cellular homeostasis appear to operate through gene regulatory networks
that are organized into negative feedback loops. In general, the degree of deviation of the controlled variables, such as
electrophiles, misfolded proteins, and O2, is first detected by specialized sensor molecules, then the signal is
transduced to specific transcription factors. Transcription factors can regulate the expression of a suite of anti-stress
genes, many of which encode enzymes functioning to counteract the perturbed variables. The objective of this study
was to explore, using control theory and computational approaches, the theoretical basis that underlies the steady-
state dose response relationship between cellular stressors and intracellular biochemical species (controlled variables,
transcription factors, and gene products) in these gene regulatory networks. Our work indicated that the shape of dose
response curves (linear, superlinear, or sublinear) depends on changes in the specific values of local response
coefficients (gains) distributed in the feedback loop. Multimerization of anti-stress enzymes and transcription factors
into homodimers, homotrimers, or even higher-order multimers, play a significant role in maintaining robust
homeostasis. Moreover, our simulation noted that dose response curves for the controlled variables can transition
sequentially through four distinct phases as stressor level increases: initial superlinear with lesser control, superlinear
more highly controlled, linear uncontrolled, and sublinear catastrophic. Each phase relies on specific gain-changing
events that come into play as stressor level increases. The low-dose region is intrinsically nonlinear, and depending on
the level of local gains, presence of gain-changing events, and degree of feedforward gene activation, this region can
appear as superlinear, sublinear, or even J-shaped. The general dose response transition proposed here was further
examined in a complex anti-electrophilic stress pathway, which involves multiple genes, enzymes, and metabolic
reactions. This work would help biologists and especially toxicologists to better assess and predict the cellular impact
brought about by biological stressors.
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Introduction

Cells in vivo must maintain a relatively stable intracellular
milieu in an extracellular environment that is constantly
changing and is potentially unpredictable. Notably, many
intracellular biomolecules need to be held within closely
regulated ranges of concentrations for normal cell functions.
Examples of these biochemical species, which could be
detrimental and/or beneficial to cellular health, are electro-
philes, reactive oxygen species (ROS), DNA adducts, mis-
folded proteins, O2, and glucose. When external stressors
cause these molecules to deviate from their basal operating
concentrations for an extended period of time, normal cell
functions become disrupted, and cell cycle arrest and
apoptosis may ensue [1]. Homeostatic regulation of vital
intracellular biochemical species appears to operate primar-
ily via gene regulatory networks that respond specifically to
particular types of physical/chemical insults, such as electro-
philic chemicals, heat shock, hypoxia, and hyperosmolarity
[2–5]. As with many manmade control devices, such as
thermostats and automobile cruise controls, these homeo-
static gene regulatory networks are usually organized into
negative feedback circuits that can be generalized into a
common control scheme (Figure 1). The output of the system,
referred to as controlled variable, is the biochemical species
that is perturbed by external stressors and therefore needs to
be tightly controlled. The system contains specific tran-

scription factors that serve as transducers to either directly or

indirectly sense the level of the controlled variable. In this

fashion, alterations in the concentration of the controlled

variable affect the activity or abundance of the transcription

factor. Activated transcription factors then upregulate

expression of individual or suites of anti-stress genes, many

of which encode enzymes that participate in an array of

interconnected biochemical reactions to counteract the

perturbation of the controlled variable.

Control and dynamic system theory has benefited applied
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fields such as electronic and mechanical engineering for

many decades, and in recent years increasing efforts have

been made to apply similar concepts to biological systems

including adaptive responses [6–14]. Our goal is to under-

stand nature’s design principle for anti-stress cellular homeo-

stasis and to improve prediction of the disrupting effects of

biological stressors. Of practical importance for risk assess-

ment at the cellular level is the steady-state dose response

relationship between stressor levels and various measurable

biochemical endpoints including the controlled variables,

transcription factors, and gene expression. Cell responses in

the low-dose region are particularly relevant to human health

risk assessment, and it is traditionally difficult to explain and

predict dose response behaviors in this region due to

uncertainty and subtlety of the curvature. To accurately

describe and fully understand complex dose response

behaviors, the underlying biochemical networks will have to

be examined through quantitative models. With respect to

the mathematical approaches involved, theoretical develop-

ment in quantitative analysis of controls in biochemical

networks, including metabolic control analysis (MCA) and

biochemical systems theory (BST), has proven to be of great

value [15–18]. Using numerical simulation and concepts from

MCA, BST, and classical control theory, the present study

focused on understanding the quantitative basis for the

steady-state dose response in an anti-stress gene regulatory

network. While some of the conclusions presented in this

paper may seem implicitly familiar, or even obvious, to

engineers, they nonetheless provide an important framework

by which biologists and especially toxicologists can improve

the accuracy with which they evaluate the influence of

biological stressors on intracellular control processes under

different exposure conditions.

Result

Primer: Response Coefficient (Gain) and Shape of Dose
Response Curve
If a signal molecule X controls a target molecule Y, either

directly or indirectly, then the steady-state transfer function

from X to Y can be quantitatively described as the ratio of the

fractional change in Y over the fractional change in X, i.e.,

RY
X ¼ lim

DX!0

DY=Y

DX=X
¼

d lnY

d lnX
: ð1Þ

Figure 1. Anti-Stress Gene Regulatory Networks

(A–C) Schematic representations of the gene regulatory networks that mediate electrophilic stress response, heat shock response, and hypoxic
response, respectively.
(D) Generalized negative feedback control scheme for the anti-stress gene regulatory networks in (A–C).
HIF, hypoxia-inducible factor.
doi:10.1371/journal.pcbi.0030024.g001
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Author Summary

To maintain a stable intracellular environment, cells are equipped
with multiple specialized defense programs that are launched in
response to various external chemical and physical stressors. These
anti-stress mechanisms comprise primarily gene regulatory net-
works, and like many manmade control devices, such as thermostats
and automobile cruise controls, they are often organized into
negative feedback circuits. A quantitative understanding of how
these control circuits operate in the cell can help us to assess and
predict more accurately the cellular impacts brought about by
perturbing stressors, such as environmental toxicants. Using control
theory and computer simulations, we explored nature’s design
principle for anti-stress gene regulatory networks, and the manner
in which cells respond and adapt to perturbations. We showed that
cells can exploit multiple mechanisms, such as protein homodime-
rization, cooperative binding, and auto-regulation, to enhance the
feedback loop gain, which, according to control theory, is a basic
principle for effective perturbation resistance. We also illustrated
that the steady-state dose response curve is likely to transition
through multiple phases as stressor level increases, and that the
low-dose region is inherently nonlinear. Our results challenge the
common practice of linear extrapolation for evaluating the low-dose
effect, and would lead to improved human health risk assessment
for exposures to environmental toxicants.

Anti-Stress Dose Response Transition



RY
X , known as the response coefficient in MCA [16,19], and

logarithmic gain in BST [17,20], is analogous to the gain of an

amplifier or a transducer in electronics (in the rest of the text,

we use the terms gain and response coefficient interchange-

ably). Assuming that RY
X remains constant within a range of X

of interest, then for some constant k,

lnY ¼ RY
X ln X þ ln k; ð2Þ

which is a linear function on a logarithmic scale, with RY
X

being the slope and lnk the intercept (Figure S1A). When

transformed to a linear scale, Equation 2 becomes

Y ¼ kXRY
X : ð3Þ

Hence, response Y is a single-term polynomial function of

dose X of degree RY
X . The value of RY

X , relative to unity,

determines the curvature of the Y versus X dose response

curve (Figure S1B). Specifically, for RY
X ¼ 1, Y ¼ kX, the Y

versus X dose response is linear; for RY
X . 1, the dose

response is sublinear (concave upward), denoting an ultra-

sensitive response; for 0 , RY
X , 1, the dose response is

superlinear (concave downward), denoting a subsensitive

response. In situations where X negatively regulates Y, hence

RY
X , 0, 1/Y versus X relationship observes the same curvature

rule as above, which depends on jRY
X j. This logarithmic to

linear transformation and the shape of dose response curve

with respect to response coefficient has been previously

described with the S-system in BST [17,21].

Dose Response in Negative Feedback Regulation with
Constant Local Gains

In this section, we set out to investigate the steady-state

dose response relationships for the generalized negative

feedback control scheme (Figure 2A; for model details see

Figure S2 and Tables S1–S3). We defined that stress signal S

increases the production rate of controlled variable Y with a

local gain r0. Y then activates transcription factor T with a

gain r1. T induces gene expression of enzyme G with a gain r2.

Finally, G catalyzes the clearance of Y with a gain r3. Since G
negatively regulates Y, the local gain r3 has a negative value.
The total stress S is composed of S0 and Se (S¼ S0þ Se) where
S0 is the background stress level at the basal condition, and Se
is the stress level introduced by external stressors. The total
stress level S is expressed as multiples of S0. Levels of Y, T, and
G are also normalized to their respective levels at the basal
condition where S¼S0. For simplicity, we first considered the
circumstance where all local gains are independent of each
other and remain constant as the value of S is varied.
According to signal transfer/modular response analysis [22–

24], the systems-level gain for Y, T, and G over S can be
mathematically derived (see Text S1 for derivation) and
expressed as follows:

RY
S ¼

r0

1þ jr1r2r3j
; ð4Þ

RT
S ¼

r0r1

1þ jr1r2r3j
; ð5Þ

RG
S ¼

r0r1r2

1þ jr1r2r3j
: ð6Þ

After rearranging the feedback control graph in Figure 2A
by taking S as the input, and Y, T, and G as the respective
output (Figure 2C), Equations 4–6 can be uniformly expressed
in the format of

RC
S ¼

RC
SðopenÞ

1þ Rloop

; C 2 fY ;T;Gg ð7Þ

where RC
S and RC

SðopenÞ are, respectively, the systems-level
(closed-loop) gain and open-loop gain for C over S, and Rloop

¼ jr1r2r3j is the loop gain. This formalism, conforming to that
originally derived for intracellular signal propagations with
feedback [17,20,22,24], is analogous to the closed-loop gain of
a proportional feedback control system such as an electronic
amplifier (Figure 2B).

Figure 2. Analogy between the Anti-Stress Gene Regulatory Network and Proportional Negative Feedback Control System

(A) The generalized anti-stress gene regulatory system. Stressor S increases production of controlled variable Y, which is cleared by gene product G; Y
activates transcription factor T, which upregulates gene expression of G; r0 � r3 are local gains.
(B) Proportional negative feedback system and its closed-loop gain. A is the open-loop gain, F is the feedback gain, and AF is the loop gain.
(C) The feedback system in (A) is rearranged so that S is the input, and the species of interest (Y, T, and G) is positioned as the output. The systems-level
gain for each of the species can be generalized in terms of the open-loop gain (r0, r0r1, r0r1r2 for Y, T, G, respectively) and loop gain jr1r2r3j, conforming
to the closed-loop gain in (B).
doi:10.1371/journal.pcbi.0030024.g002
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The shapes of dose response curves, i.e., linear, superlinear,
or sublinear, for the control circuit in Figure 2A depend on
the systems-level gains. Assuming the production rate of Y is
proportional to stress level S, and Y is cleared at a first-order
rate by G (i.e., level of Y is far from saturating G), then r0¼ 1,
i.e., the controlled variable Y increases linearly with S in the
absence of the feedback. Equations 4–6 can be simplified to:

RY
S ¼

1

1þ jr1r2r3j
; ð8Þ

RT
S ¼

r1

1þ jr1r2r3j
; ð9Þ

RG
S ¼

r1r2

1þ jr1r2r3j
: ð10Þ

According to Equation 8, for the controlled variable Y, RY
S

is always less than or at best equal to unity since the loop gain
Rloop � 0 (zero is equivalent to open loop). Therefore, the Y
versus S dose response curve is superlinear or at best linear.
The smaller RY

S is, the more superlinear the dose response
curve becomes, and Y is more insensitive to changes in S.
Since the goal of the feedback gene regulation is to maintain
homeostasis for Y (which could be ROS, DNA adduct,
misfolded protein, etc.), it is desirable to have Rloop as large,
hence RY

S as small as possible, to effectively resist perturba-
tions.

Augmentation of loop gain Rloop can be achieved by
increasing local gain r1, r2, and r3, either alone or in
combination. Along the feedback loop—from activation of
transcription factor, to gene induction, to enzyme formation,
to enzymatic reaction—a variety of local interactions can
operate in an ultrasensitive manner to provide high local
gains (ultrasensitivity is generally defined as a response that
has a Hill coefficient greater than unity). For instance, in
response to stress, some transcription factors involved form
homodimers or homotrimers to become transcriptionally
active [25,26]. Ideally, homodimerization and homotrimeriza-
tion can give r1 a characteristic value of 2 and 3, respectively.
Simulation results indicated that dimerization or trimeriza-
tion of T increasingly suppresses the Y versus S dose response
curve, consistently matching the analytic results (Figure 3A,
top panel). For local gain r2, it can be enhanced at least by the
following two mechanisms. For one, a transcription factor
may interact with promoters of inducible genes cooperatively
if multiple copies of its response element exist. This
cooperativity in DNA binding results in a more repressed Y
versus S dose response curve in our control scheme (Figure
3B, top panel, blue line). For another, many enzymes induced
in response to cellular stresses need to form homodimers or
even tetramers from their initial translated products to
become fully active. For instance, enzyme glutathione
peroxidase (GPx), induced by oxidative stress and responsible
for removing H2O2 and lipid peroxide, is a tetramer [27].
Similar to dimerization of transcription factors, these multi-
merization processes enhance local gain r2, leading to a more
robust homeostatic control of Y (Figure 3B, top panel, green
line). As far as r3 is concerned, which is the local response
coefficient of Y controlled by G, no obvious interactions
appear to be able to specifically enhance it. And since an
enzyme generally has a linear control over its reaction rate

(i.e., the elasticity is unity [15]), a characteristic value of �1
would be expected for r3 under conditions where G is far
from being saturated by Y (how S and Y level influences r3 will
be considered in later sections). Lastly, cells are likely to use
combinations of ultrasensitive steps described above to
achieve a large loop gain for robust homeostasis. For
instance, dimerization of T, coupled with cooperative binding
and dimerization of G, gives rise to a very insensitive, almost
horizontal Y versus S dose response curve (Figure 3C, top
panel, blue line). In contrast, when the feedback loop is
broken, by opening up at either of the local steps, the Y versus
S dose response curve is linearized (Figure 3, top panels,
orange lines).
The shape of dose response curves for gene expression of G

is determined by the systems-level gain RG
S according to

Equation 10. In contrast to the Y versus S dose response, which
is superlinearized by increases in local gain r1 and r2, similar
increases in r1 and r2 tend to linearize the G versus S dose
response curve (Figure 3, bottom panels). This is because when
the loop gain Rloop �1, Equation 10 can be simplified to
RG

S ’ 1=jr3j. As previously discussed, jr3j’ 1 for relatively small
Y, hence RG

S ’ 1, indicating a linear relationship. This sole
dependency ofRG

S on feedback gain r3, and linearization of the
output, as suggested by Savageau with BST [17,20], is similar to
that of an operational amplifier with a very high open-loop
gain. On a similar basis, it has been shown that mitogen-
activated protein kinase (MAPK) signaling cascade can
potentially ultrasensitize or linearize its output by adjusting
the negative feedback strength [28,29]. The shape of dose
response curves for transcription factor T is determined by
the systems-level gain RT

S according to Equation 9. Local gain
r1 and r2 alter the curvature of the dose response curve in
opposite directions—increases in r1 reduce the superlinearity,
whereas increases in r2 further superlinearize the T versus S
dose response curve (Figure 3, middle panels).

Dose Response in Negative Feedback Regulation with
Varying Local Gains
In the above section, we explored in principle the shape of

dose response curves in a homeostatic gene regulatory system
with negative feedback, and how the curvature is altered by
local gains distributed in the feedback loop. In these analyses,
local gains were independent of each other and remained at
their respective characteristic values as S varied. In an actual
gene regulatory network, local gains at different steps and the
total loop gain are unlikely to remain constant in response to
a wide range of S. The resulting dose response curves are
typically more complex than a simple linear, superlinear, or
sublinear function can describe. Despite such complexity, it is
possible to decompose a dose response curve into distinct
phases each associated with a specific profile of changes in
local/loop gains. In this section we set out first to consider the
shape of each individual phase in isolation, and then to
reconstruct the full-range dose response curve by linking
individual phases in the order they are expected to become
active as S increases.
Recovery of local gains from constitutive activation-

imposed gain repression. In a feedback control scheme such
as in Figure 2A, in addition to being activated by its upstream
species with a characteristic response coefficient, each
downstream species in the feedback loop may have an
independent basal constitutive activity. For instance, gene G
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may be constitutively expressed at a certain level even in the
absence of transcription factor T. With T controlling G on
top of this basal level, the actual value of local gain r2 varies as
T drives the expression of G to higher levels. With small S and
therefore small T, constitutive expression of G dominates,

rendering the overall expression of G insensitive to changes
in T, hence a small r2. As S and T increases, T-induced
expression of G will gradually surpass the constitutive
expression and become dominant. In this process, r2 steadily
recovers to approach a maximal level (i.e., the characteristic

Figure 3. Effects of Local Gains on Shape of Dose Response Curves in the Anti-Stress Gene Regulatory Network in Figure 2

(A) Enhancing local gain r1 through dimerization or trimerization of transcription factor T increases the superlinearity of Y versus S dose response curve,
decreases the superlinearity of T versus S and G versus S dose response curves.
(B) Enhancing local gain r2 through T cooperative binding to the gene promoter or tetramerization of gene product G increases the superlinearity of Y
versus S and T versus S dose response curves, decreases the superlinearity of G versus S dose response curve.
(C) Effects of combinatorial changes in r1 and r2; green line (r1¼ 2, r2¼ 4), blue line (r1¼ 2, r2¼ 231.5); note that high loop gains tend to linearize the G
versus S dose response curve.
Default local gains: r1 ¼ r2 ¼�r3 ¼ 1. Solid line, simulation results; symbol, analytical results using Equations 8–10.
doi:10.1371/journal.pcbi.0030024.g003
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local response coefficient of G controlled by T in the absence
of constitutive expression). Local gains in other steps in the
feedback loop may undergo a similar recovery from
repression owing to constitutive activities. Such slow in-
creases in local gains in approaching their respective
characteristic values lead to a similar sluggish increase in
the loop gain Rloop. As a result, the systems-level gain RY

S for Y
(Figure 4A and dash-dotted line in Figure 4B) begins with
unity, then decreases to asymptotically approach a fixed value
�R
Y
S . The corresponding Y versus S dose response (Figure 4B,

solid line) is characterized by a curve transitioning from an
initial linear function of Y ¼ y0S for very small S to a
superlinear function of Y ¼ y1S

�R
Y
S for very large S. And

compared with the situation devoid of constitutive activation
(Figure 4B, dotted line), the dose response in its presence,
though superlinear in appearance, does not bend downward
as much, indicating a less controlled stage of stress response.
For G, the systems-level gain RG

S (Figure 4C, dash-dotted line)
increases from zero, asymptotically approaching a fixed value
�R
G
S . The G versus S dose response (Figure 4C, solid line) is

characterized by a curve transitioning from a horizontal line
G ¼ g0, through a transient sublinear stage, to function
G ¼ g1S

�R
G
S . And compared with the situation devoid of

constitutive activation (Figure 4C, dotted line), gene expres-
sion in its presence is sluggish.
Decreasing r1 and r2 due to saturable activation. After

recovering from gain repression by constitutive activation or
in its absence, each local step operates at its characteristic
gain value. However, it is unlikely that local gains would
remain at these values for very high input of S. The saturable
nature of biochemical interactions sets an upper limit for the
degree of activation. For instance, if the transcription factor
is activated by phosphorylation, then the abundance of the
phosphorylated form cannot be greater than the total
amount of that transcription factor. With respect to
promoter binding, once the concentration of the specific
transcription factor becomes much greater than the dissoci-
ation constant (Kd), the percentage binding will increase little
even if the transcription factor continues to rise in concen-
tration. In the process of approaching saturation of activa-
tion, local gains fall from their characteristic values toward
zero. Accordingly, the loop gain Rloop decreases from an initial
value to zero, as well. For the controlled variable Y, the
systems-level gain RY

S would increase, according to Equation
8, from an initial value �R

Y
S to unity (Figure 5A and dash-

Figure 4. Effect of Constitutive Activation on Systems-Level Gains and
Dose Response Curves

Constitutive activation was modeled by implementing a basal-level
expression of G in addition to T-driven expression.
(A) The lnY versus lnS curve transitions from a linear function lnY ¼ lnS
þ lny0 to lnY ¼ �R

Y

S lnS þ lny1 in the presence of constitutive activation.
(B) In the presence of constitutive activation, systems-level gain RYS
(dash-dotted line) decreases from unity to asymptotically approach
�R
Y

S ; in the absence of constitutive activation, RYS remains at �R
Y

S
(unpublished data). Y responds to S in a more sensitive or less
controlled manner in the presence of constitutive activation (solid
line) than in its absence (dotted line).
(C) In the presence of constitutive activation, systems-level gain RGS (dash-
dotted line) increases from zero to asymptotically approach a maximum
�R
G

S ; in the absence of constitutive activation, RYS remains at �R
G

S
(unpublished data). G responds to S in a more sluggish manner in the
presence of constitutive activation (solid line) than in its absence (dotted
line).
doi:10.1371/journal.pcbi.0030024.g004
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dotted line in Figure 5B). The resulting Y versus S dose
response (Figure 5B, solid line) is characterized by a curve
transitioning from an initial superlinear function Y ¼ y1S

�R
Y
S

for small S to a linear function Y¼ y2S for large S, interposed
with a transitional sublinear segment. In the process of
approaching saturation, the systems-level gain RG

S for G
(Figure 5C, dash-dotted line) decreases from a fixed value �R

G
S

to zero. Accordingly, the G versus S dose response starts with
a function of G ¼ g1S

�R
G
S , then plateaus as RG

S approaches zero
(Figure 5C, solid line). In a sense, once gene activation is
saturated, the control scheme degenerates to an open-loop
system.
Increasing r0 and r3 due to saturation of G by Y. The steady-

state concentration of the controlled variable Y is determined
by its production and clearance rates. In the generalized
control scheme, Y is produced at a rate of k0S, and removed
by enzyme G at a Michaelis–Menten rate of kcGY/(Km þ Y).
Then, the local gain

r0 ¼ �r3 ¼
kcG

kcG � k0S
ð11Þ

Consistent with the early assumption, r0¼�r3 ’ 1 for small
S. As S increases, r0 rises from unity to infinity because the
enzymatic activity of G is eventually saturated by Y. In the
absence of negative feedback, the controlled variable Y will
first increase linearly with S, then sublinearly with an
accelerated gain (Figure 6A, dotted line); as k0S surpasses
kcG, the system becomes unstable. Such an accelerated rise in
Y at the late stage could be catastrophic to cells because a
small increase in S causes an amplified elevation in Y. In
contrast, with the negative feedback loop in place, the
systems-level gains described by Equations 4–6 can be
reformatted to

RY
S ¼

1
1
r0
þ r1r2

; ð12Þ

RT
S ¼

1
1

r0r1
þ r2

; ð13Þ

RG
S ¼

1
1

r0r1r2
þ 1

: ð14Þ

Thus, as long as r1r2 remains relatively large, i.e., gene
activation is still at work, engagement of the negative
feedback permanently suppresses the otherwise catastrophic
response of Y, with the systems-level gain RY

S at 1/(1þ r1r2) for
small S and 1/r1r2 for large S. Correspondingly, the Y versus S
dose response will migrate from a superlinear to a less
superlinear curve (Figure 6A, solid line), and the G versus S
dose response from a superlinear to a nearly linear curve
(Figure 6B, solid line). Notably if r1r2 is sufficiently large, these

Figure 5. Effect of Saturation of Gene Activation on Systems-Level Gains
and Dose Response Curves

Saturation of gene activation was modeled by implementing saturable T
binding to the gene promoter.
(A) In the presence of saturation of gene activation, the lnY versus

lnS curve transitions from a linear function lnY¼ �R
Y

S lnSþ lny1 to lnY¼ lnS
þ lny2.
(B) Systems-level gain RYS (dash-dotted line) increases from �R

Y

S to
asymptotically approach unity. The Y versus S curve (solid line)
transitions from a superlinear function Y ¼ y1S

�R
Y

S , through a sublinear
segment, to a linear function Y ¼ y2S.
(C) Systems-level gain RGS (dash-dotted line) decreases from the
maximum �R

G

S to asymptotically approach zero. The G versus S curve
(solid line) transitions from a function G ¼ g1S

�R
G
S to a horizontal line G

¼ g2.
doi:10.1371/journal.pcbi.0030024.g005
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curvature changes could be negligible. It should also be noted

that although Equation 11 was derived using a simple

Michaelis–Menten kinetics, the equivalence between r0 and

�r3 and the generally increasing trend of these gains as S

increases hold true for other enzymatic kinetics, such as

reversible reactions and multisubstrate reactions (derivation

not shown), given the fact that in most cases an enzyme’s

elasticity is unity [15].

Composite dose response curves. Above, we have discussed

how individual gain-changing events associated with con-

stitutive activation, saturation of gene activation, and

saturation of G-catalyzed reaction, generate different types

of curvature changes in dose response relationships. In a
homeostatic gene regulatory network, it is unlikely that these
events take place exclusively of one another. Rather, these
processes could come into play in combinations and in orders
as the stressor level increases, steering the dose response
curve through distinct phases. A very possible scenario which
can fully manifest all the effects of these events is as follows
(Figure 7). In the beginning when S is very small, the gain-
repressing effect of constitutive activation keeps the loop
gain Rloop very small, hence RY

S is close to unity. As S increases,
the influence of constitutive activation lessens, bringing RY

S

closer to the lowest possible value. In this initial RY
S -

decreasing phase, the Y versus S dose response becomes
increasingly superlinear, but compared with situations where
no constitutive activation exists, Y is less controlled. The
second phase, which is also superlinear in appearance, is
characterized by RY

S remaining at the lowest value, and is a
stage where Y is least sensitive to changes in S compared with
other phases. As S increases further, signaling events leading
to gene activation move closer to saturation; RY

S thus starts to
rise and approaches unity as saturation of activation fully sets
in. In this process, the superlinear second phase first bends
upward through a transitional sublinear segment, then
extends into the third phase, which is largely linear. As
discussed in the next section, the sublinear transition from
phase 2 to 3 could play a significant part in the shape of the
curve in the low-dose region. At the end of the third phase,
saturation of G by Y becomes increasingly significant, the
dose response curve extends into the catastrophic fourth
phase, which is sublinear in appearance and grows with
increasing RY

S . The corresponding G versus S dose response
initially experiences a transient unresponsive phase, followed
by a superlinear or nearly linear phase, which eventually
levels off into a plateau phase (Figure 7C).
Although in theory the Y versus S dose response curve

could consist of at least four phases, the actual occurrence
and length of each phase depends on whether the required
individual gain-changing events exist and how far they are
separated from each other in terms of level of S. If little or no
basal constitutive activation exists, the initial superlinear
phase will be minimal. The span of the superlinear second
phase depends on how soon the signaling events leading to
gene activation saturate. Advancing the gene saturation event
by, for instance, lowering the Kd value for transcription
factor T binding to the gene promoter, shortens the second
phase (Figure 8A). The span of the linear third phase depends
on the distance of separation between saturation of gene
activation and that of clearance of Y by enzyme G. Simulation
results indicated that with smaller Km for G, which brings the
latter gain-changing event closer to the former, the linear
phase increasingly shortens, and eventually plays little role in
the overall shape of the curve (Figure 8B).
Curvature in the low-dose region. A common practice in

assessing the biological risk for exposure to low-dose external

stressors is to extrapolate linearly from high doses, where the
impact can be reliably measured, to the background risk level
at basal conditions (where S¼S0). The underlying assumption
is that the dose response behaves consistently in a linear
fashion from high- through low-dose regions. Yet in the
absence of the knowledge of low-dose curvature and its
relationship with high-dose responses, linear extrapolation is
unlikely to accurately represent low-dose risks. As we

Figure 6. Effect of Saturation of Enzyme G Activity by Controlled Variable

Y on Systems-Level Gains and Dose Response Curves

(A) In the absence of feedback control, saturation of G by Y causes a
sublinear catastrophic increase in Y in response to S (dotted line); in the
presence of feedback control, the Y versus S dose response curve (solid
line) grows in a much suppressed, superlinear fashion; the corresponding
systems-level gain RYS is low and varies only slightly as suggested by
Equation 12.
(B) The enzyme G versus S dose response curve (solid line) grows in a
nearly linear fashion, as the systems-level gain RGS increases to approach
unity according to Equation 14.
doi:10.1371/journal.pcbi.0030024.g006
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demonstrated above, in a homeostatic cellular defense system
the low-dose region is intrinsically nonlinear. Notably, the
dose response curve for Y versus external stress Se in the low-
dose region is composed primarily of the superlinear phases
and the transitional sublinear segment linking phase 2 and 3
(note: in constructing the dose response curve for Y versus
the external stress Se, the background stress level S0 needs to
be subtracted from the total stress S, and this is simply done
by shifting the dose response curve derived for S to the left by
S0 amount, which is unity in this study). The primary
curvature in the low-dose region depends on the relative
influences from the superlinear phase and sublinear segment.
Simulation results demonstrated that under conditions where
the pre-transcriptional local gain (for instance r1) is relatively
small, the effect of constitutive activation is not negligible,
and gene activation does not saturate early, a superlinear
appearance occupies the low-dose region (Figure 9A). In
contrast, the reverse conditions render a sublinear curve to
dominate the low-dose region (Figure 9C). Intermediate
conditions lead to less dramatic curvature changes in either
direction (Figure 9B). Furthermore, introduction of feedfor-
ward activation of anti-stress genes can depress concentra-
tion of Y initially, leading to a J-shaped nonmonotonic dose
response in the low-dose region (Figure 9D, see Text S2 for
details on feedforward activation).

Anti-Electrophilic Stress Gene Regulatory Network
The anti-stress gene regulatory network illustrated in

Figure 2A is a generalized control scheme for cellular

Figure 8. Variation of Saturation Terms Affects the Length of Superlinear

Controlled and Linear Uncontrolled Phases

(A) Lowering the dissociation constant Kd for transcription factor T
binding to the gene promoter shortens the superlinear highly controlled
phase.
(B) Lowering the Michaelis–Menten constant Km of enzyme G for
clearance of Y shortens the linear uncontrolled phase.
doi:10.1371/journal.pcbi.0030024.g008

Figure 7. Multi-Phasic Dose Response Relationships and Systems-Level

Gains in the Presence of Constitutive Activation, Saturation of Gene

Activation, and Saturation of Enzyme G by Y

Phase 1: superlinear with lesser control; phase 2: superlinear more highly
controlled; phase 3: linear uncontrolled; phase 4: sublinear catastrophic.
doi:10.1371/journal.pcbi.0030024.g007
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homeostasis. With respect to risk assessment, it is practically

important to determine whether the dose response transition

derived from this general scheme would hold in more

complex and realistic anti-stress biological systems, which

often involve multiple genes, enzymes, and biochemical

reactions. Extensive validation of the proposed transition

would require experimental studies systematically character-

izing the full-range dose responses, especially at low doses

with detailed and reliable measurements. Unfortunately, such

studies are rare so far, and, in most cases, the inability to

obtain low-dose data reliably and efficiently has been the

primary motivation behind dose response extrapolation.

Nevertheless, in keeping with the current idea, available

experimental data in rat livers have shown that the level of

DNA adducts in response to carcinogen dimethylnitrosamine

(DMN) [30], and that of protein conjugates in response to

electrophile-generating agent vinylidene chloride (VDC) [31],

indeed followed the proposed dose response transition (Text

S3). To further solidify our conclusions, in the remaining

section we focused specifically on the mammalian anti-

electrophilic stress system. By formulating a detailed model

of this system (Figure 10), we studied its dynamic and dose

response behaviors and how the complexity of the underlying

gene regulatory network contributes to the system’s controll-
ability (for model details, see Text S4 and Tables S4 and S5).
Electrophiles are electron-attracting chemical agents/me-

tabolites that are cyto- or genotoxic via reactivity with
proteins and DNAs. They are primarily detoxified in the cell
by conjugation with reduced glutathione (GSH) enzymatically
or in some cases non-enzymatically. The anti-electrophilic
stress gene regulatory network in mammalian cells can be
decomposed, from an engineer’s perspective, into three
functional units as seen in a classical control system, i.e.,
transducer, controller, and biochemical plant (Figure 10). The
transducer contains Kelch-like ECH-associating protein 1
(Keap1) and nuclear factor erythroid 2-related factor 2 (Nrf2),
which sense the levels of intracellular electrophile (X) and
ROS. Specifically, Keap1 is a cytosolic cysteine-rich protein
that facilitates the degradation of transcription factor Nrf2
through ubiquitination [32,33]. An increase in the level of
intracellular electrophiles causes conjugation and/or oxidiza-
tion of certain key cysteine residues in Keap1, rendering
Keap1 incapable of mediating Nrf2 ubiquitination and
degradation [34,35]. The ensuing stabilization of Nrf2 results
in elevated cytosolic Nrf2 levels through de novo protein
synthesis and subsequently its nuclear translocation. The
controller receives the input from Nrf2 through the electro-
phile response element (EpRE) and integrates it with other
transcriptional signals to regulate gene expression of a set of
anti-electrophilic enzymes, including glutamate cysteine
ligase catalytic subunit (GCLC), glutamate cysteine ligase
modifier subunit (GCLM), glutathione synthetase (GS),
glutathione S-transferase (GST), and multidrug resistance-
associated protein (MRP) [36–40]. These enzymes function in
cohort to control the level of electrophiles by catalyzing a set
of interconnected metabolic reactions in the biochemical
plant. Specifically, GCLC, holoenzyme GCL, (heterodimer of
GCLC and GCLM), and GS collectively contribute to the de
novo synthesis of GSH in two sequential reactions. GST then
transforms, using GSH as a co-substrate, the electrophile into
less toxic and more water-soluble glutathione conjugates
(GSX). GSX is then extruded by MRP out of the cell.
Our simulation indicated that the anti-electrophilic de-

fense system launches a typical adaptive response when
challenged continuously with electrophilic stresses (Figure
11A). The simulated dynamics is similar to experimental
observations in a variety of cells exposed to many electro-
philes, such as 4-hydroxy-2-nonenal (4-HNE) and 15-deoxy-
delta(12,14)-prostaglandin J2 (15d-PGJ2) [41,42]. The electro-
phile X initially rises sharply, but after a few hours it settles at
much lower steady-state levels. GSX follows a similar dynamic
change, albeit it declines to steady states more slowly. In
comparison, Nrf2, GCL, GS (unpublished data), and GST
levels peak in a more delayed manner before leveling off.
MRP, due to its long half-life (27 h in the current model), does
not reach a steady state until a much later time (unpublished
data). The level of intracellular GSH initially decreases as a
result of consumption by electrophiles. But the downtrend is
soon reversed as the expression level of GCL and GS
increases. After a few hours, GSH surpasses its basal level
and then peaks before settling down on elevated steady-state
levels.
The steady-state dose response curve for electrophile X,

which is a controlled variable here, transitions from an initial
superlinear controlled phase, through a minimal linear phase,

Figure 9. Variations in the Pre-Transcriptional Local Gain (r1), Level of

Constitutive Activation, Earliness of Saturation of Gene Activation, and

Degree of Feedforward Activation Can Qualitatively Alter the Curvature

of the Y versus Se (External Stress) Dose Response Curve in the Low-Dose
Region

(A) Relatively small r1, high constitutive activation, and large Kd tend to
retain the superlinear appearance in the low-dose region.
(B) Intermediate conditions lead to minimal curvature change.
(C) Relatively large r1, small constitutive activation, and small Kd render a
sublinear appearance in the low-dose region.
(D) Introduction of feedforward activation can depress Y initially, giving
rise to a J-shaped dose response.
Note: solid lines are simulation results, dashed straight lines were drawn
to show how linear extrapolation from the high-dose region to the basal
level can mis-estimate the response at low doses. Saturation of gene
activation was modeled by changing Kd for transcription factor T binding
to the gene promoter.
doi:10.1371/journal.pcbi.0030024.g009
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to a sublinear catastrophic phase (Figure 11B). This transition

is clearly consistent with the dose response profile derived

from the generalized control scheme. Conjugation product

GSX, a minor controlled variable here due to its much lower

toxicity, also experiences an initial superlinear phase, albeit

of much less extent, before moving upward sublinearly.

Compared with X, the smaller superlinear controlled phase of

GSX is likely due, at least in part, to the fact that MRP is the

only gene controlling GSX. The steady-state GSH dose

response has a biphasic appearance—it first increases at

small doses then decreases as the dose increases further. This

biphasic profile has been observed in human epithelial cells

treated with lipid electrophile 15-deoxy-delta(12,14)-prosta-

glandin J2 (15d-PGJ2) [43]. Interestingly, nuclear Nrf2 appears

to have a dose response profile similar to X, suggesting the

transducer containing Keap1 may have a close-to-linear

signal transfer property. Levels of enzymes such as GCL and

GST increase dose dependently and tend to plateau at high

doses.

As far as homeostatic feedback control is concerned, the

mammalian anti-electrophilic system, as at least in the

current model, is complex in the following aspects. First,

control of detoxification of electrophile X is a concerted

action by multiple genes through a series of metabolic

reactions, including co-substrate GSH synthesis by GCL and

GS, conjugation of X by GST, and extrusion of GSX by MRP.

Second, there are several places in the feedback loop where

local gains can be enhanced for effective homeostatic control.

These include formation of GS, GST, and MRP homodimers

by their respective monomeric subunits [44–46], formation of

holoenzyme GCL heterodimers by GCLC and GCLM [36], and

positive auto-regulation of Nrf2 [47,48]. Third, the core

electrophile-detoxifying reaction catalyzed by GST is, in

many cases, subjected to product inhibition by GSX [49–51].

This inhibition suggests that extrusion of GSX and regulation

of MRP, though downstream of X, may also play a role in its

homeostatic control. In the following section, we investigated

how individual elements of these complexities affect the

homeostatic performance of the control system.

According to the two-gene control system analyzed in Text

Figure 10. Schematic Diagram of the Anti-Electrophilic Gene Regulatory Network Model

Refer to the main text for general description of the interactions, Text S4 and Tables S4 and S5 for kinetic details in the numbered reactions. Dashed
lines with empty arrow head indicate the direction of logical control flowing between the transducer, controller, and plant. The diagram was generated
in PathwayLab (InNetics, http://www.innetics.com).
doi:10.1371/journal.pcbi.0030024.g010
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Figure 11. Simulation Results for the Anti-Electrophilic Gene Regulatory Network Model

(A) Temporal changes in the levels of electrophile X, conjugation product GSX, GSH, Nrf2, GCL, and GST, in response to different stressor doses.
(B) Steady-state dose response curves for the molecular species listed in (A). Dashed tangent lines originating from (�1, 0) were drawn to help
visualizing curvature changes. One unit of external stressor level is equivalent to producing X at the basal production rate.
doi:10.1371/journal.pcbi.0030024.g011
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S5, inclusion of each additional feedback gene regulation

adds to the loop gain (Equation S8). To examine the role of

each individual gene regulation in the controllability of

electrophile X, simulations were performed by clamping their

expression levels at values seen at the basal condition. The

results revealed that deregulation of genes responsible for

GSH synthesis, i.e., Gclc, Gclm, and Gs, does not affect the

controllability at low stressor levels significantly, as X level

follows very closely that in the complete system (Figure 12A).

However, the response diverges at intermediate stressor

levels, swinging upward sharply with clamped Gs expression,

but more mildly with clamped Gclc or Gclm expression.

Regardless, the general superlinear-to-sublinear dose re-

sponse profile seems to hold in these cases. In contrast,

deregulation of Gst results in a sharp early rise in X level such

that it enters the catastrophic phase at very low doses (Figure

12A, red line). Clamping Mrp gene expression resulted in an

initial superlinear response that overlaps with that for the

complete system, but it soon shoots upward almost vertically

as the dose increases further (Figure 12C, red line). In

summary, it appears that to keep the electrophile level

contained, it is more crucial to adaptively upregulate Gst and

Mrp than to enhance GSH replenishment by upregulating Gcl

and Gs. Moreover, the simulation supports the concept that

Figure 12. Dose Response Curves of Electrophile X versus Stressor under Various Disrupted Conditions

(A) Effects of deregulation of Gclc, Gclm, Gs, and Gst genes by Nrf2. Deregulation was implemented by clamping mRNAs of respective genes at levels
seen at the basal condition.
(B) Effects of lack of Nrf2 autoregulation and/or GST functioning as a homodimer. Removal of Nrf2 autoregulation was implemented similarly as in (A);
de-dimerization of GST was implemented by replacing the quadratic term in Reaction 44 with a linear term that left GST concentration at the basal
condition unchanged.
(C) Effects of product inhibition of GST-catalyzed reaction. For reduced GSX inhibition, Ki in Reaction 57 was increased to 850 lM from the default value
85 lM; for increased GSX inhibition, Ki was lowered to 8.5 lM. Deregulation and de-dimerization of MRP were similarly implemented as above for other
enzymes.
(D) Effects of alteration in GSH levels via gene disruption or GCL activity inhibition. Genetic disruption of Gclc and Gclm genes was implemented by
either setting the respective genes to half of the default values for heterozygous deficiency or to zero for homozygous deficiency. GCL activity inhibition
was implemented by lowering kc in Reaction 54 to 2.5% of the default value.
doi:10.1371/journal.pcbi.0030024.g012
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transcriptional feedback regulation of multiple anti-stress
enzymes enhances the loop gain and improves the resistance
to cellular stressors, albeit each individual gene regulation
may exert its effect at different dose levels.

We next investigated the homeostatic role played by
processes potentially enhancing local gains. Simulations
indicated that in the absence of certain gain-enhancing
processes, such as GST homodimerization, Nrf2 autoregula-
tion, or both, the dose response curve for X diverges upward
at low doses with an earlier onset of the catastrophic
sublinear phase (Figure 12B). In the case where MRP can
function without forming a dimer, the dose response curve
for X mostly overlaps with that for the complete system until
it diverges upward at intermediate doses (Figure 12C, green
line). While exclusion of these gain-enhancing processes
notably renders the system more sensitive to external
perturbations of different levels, the superlinear-to-sublinear
dose response profile remains intact in most cases. Simulating
the system without GS dimerization does not alter the dose
response curve for X when compared with the complete
system (unpublished data), suggesting a lesser role of this
process in the homeostatic control.

The GSH conjugates of many electrophiles can exert an
inhibitory action on the catalytic activity of GST [49–51].
With product inhibition, the homeostatic control of X will be
affected by the level of GSX and MRP that controls GSX
extrusion. This effect was clearly demonstrated by altering
the inhibition constant Ki of GSX over GST. An increase in Ki

delays the occurrence of the catastrophic phase, whereas a
decrease in Ki sensitizes the response, advancing the
occurrence of the catastrophic phase (Figure 12C). As
mentioned above, deregulation of Mrp gene expression (red
line) and lack of MRP functioning as a homodimer (green
line) both unfavorably affect the homeostatic performance,
with the former being more damaging. Thus, through
product inhibition, MRP, the enzyme located last in the
detoxification chain, plays a significant role in the homeo-
static control of X. In supporting this role, it has been
experimentally demonstrated that MRP2 can potentiate GST
A1–1 mediated cellular resistance to electrophilic agents
[52,53]. All in all, the superlinear-to-sublinear dose response
profile remains intact regardless of the alterations made to
the system with respect to product inhibition.

The intracellular GSH level has been experimentally
manipulated via both genetic and pharmacological means
to study the role of GSH in anti-oxidant/electrophilic
response [54–56]. Here we examined, in silico, how altered
GSH levels via disruption of Gclc and Gclm genes, as well as
inhibition of GCL activity, affect the homeostatic control in
anti-electrophilic defense. Because mouse homozygous
Gclc(�/�) knockout is embryonically lethal, it is not discussed
here. While basal GSH level is 5 mM in the complete model
system, it decreases to 4, 3.6, and 1.2 mM in our models,
equivalent to Gclc(þ/�), Gclm(þ/�), and Gclm(�/�) knockouts,
respectively. These values are in line with or close to changes
in GSH levels reported experimentally for respective knock-
out mice, which are 80%, 43%;83%, and 9%;16% of that
in the wild-type [54,55]. Our simulation revealed that both
the Gclc(þ/�) and Gclm(þ/�) models produce a dose response
curve for X that is almost identical to that with the complete
system (Figure 12D). This unaltered anti-electrophilic control
capability predicted with our model resonates with the fact

that the heterozygous animals have nearly normal pheno-
types and viability [54,55]. In contrast, more severe disrup-
tion of basal GSH levels, as observed with Gclm(�/�)
homozygous knockout, results in a slightly elevated super-
linear controlled phase followed by an earlier onset of the
catastrophic phase (Figure 12D, green line). A similar dose
response curve with a more advanced catastrophic phase was
obtained by inhibiting GCL activity, which produces a basal
GSH level of 0.5 mM in this case (Figure 12D, red line).
Overall, these results are consistent with experimental
findings that Gclm(�/�) knockout mice and cells depleted of
GSH with GCL-inhibiting agent BSO are more sensitive to
electrophilic/oxidative damage [54,56].
While most electrophilic compounds are detoxified

through conjugating with GSH enzymatically, certain chem-
icals, such as the electrophilic intermediates of vinylidene
chloride (VDC), can efficiently react with GSH to form
conjugates without GST [57]. Thus, it is necessary to ascertain
whether the dose response transition observed for electro-
phile X, which is conjugated enzymatically, will recur in
nonenzymatic situations. Simulations indicated that although
the dynamic responses are similar to GST-catalyzed situations
(Figure S3A), lack of GST participation results in a less robust
homeostatic control of X—the same stressor level produces a
higher X level (Figure S3B). Nevertheless, the superlinear-to-
sublinear profile seems retained, albeit less prominently.
Interestingly, compared with GST-catalyzed situations, the
homeostatic control of the minor controlled variable GSX
becomes more robust and exhibits a more pronounced
superlinear-to-sublinear appearance.
In summary, we have demonstrated that the dose response

transition derived from the generalized control scheme holds
well in an anti-stress gene regulatory network as complex as
the system defending electrophilic stresses, which involves
multiple genes, enzymes, and metabolic reactions. The
transition profile is even retained in highly impaired circum-
stances, such as gene knockout and deregulation. The
feedback regulation of multiple genes not only enhances
the system’s controllability, but also makes the system less
vulnerable to functional disruptions of individual genes.

Discussion

Cells do not remain passive when confronted with environ-
mental challenges. To maintain a relatively stable intra-
cellular milieu, they are equipped with a suite of specialized
defense programs that are launched in response to various
external stressors [2–5]. These defense mechanisms often
comprise gene regulatory networks organized into negative
feedback circuits, which can be decomposed into basic
functional units seen in a classical control system. Our
ultimate goal is to assess quantitatively the impact of external
stressors, such as environmental toxicants, on such a complex
control system and on consequent higher-level functions such
as cell survival and death. To this end, it would be helpful to
first reduce the complex systems to a basic control scheme
and to study its behavior. The present study demonstrated
that local gains, distributed in the feedback loop of a
homeostatic gene network, shape the steady-state dose
response curves, leading to linear, superlinear, or sublinear
relationships under different conditions. The dose response
relationship for intracellular controlled variables is multi-
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phasic as stressor level increases—initial superlinear with
lesser control, superlinear more highly controlled, linear
uncontrolled, and sublinear catastrophic. The appearance of
each phase depends on specific gain-changing events that
come into play as the stressor level increases. Our work also
indicated that responses in the low-dose region could vary
from superlinear to sublinear, and even to J-shaped curva-
tures, depending on the strength of homeostatic regulation.
Overall, these changing responses are consistent with the so-
called dose-dependent transition proposed for many chem-
ical compounds [58,59].

Analogous to the I/O relationship in a manmade control
system implemented via proportional negative feedback, the
steady-state systems-level gain in a gene regulatory network
functioning to resist perturbations abides by a similar
transfer principle. The systems-level gain for the controlled
variable Y, transcription factor T, and gene product G can be
generically described by their respective open-loop gain and
the loop gain (Equation 7), a formalism that resembles the
closed-loop gain of an electronic amplifier and conforms to
that originally derived for intracellular signal propagations
with feedback [17,20,22,24]. Under small S where r0 ’ 1, the
systems-level gain, or sensitivity of Y to S, RY

S , is less than
unity (Equation 8). This results in a superlinear Y versus S
dose response curve. Since Y is the controlled variable, to
minimize alterations in Y in response to changes in stress
level S, it is desirable to keep RY

S as small, and thus the loop
gain Rloop as large, as possible. The larger Rloop is, the more
superlinear the Y versus S dose response curve becomes, and
cells are more resistant to perturbations. Since Rloop is the
product of individual local gains sequentially distributed
along the feedback loop, increases in any individual local gain
will augment Rloop, leading to more robust homeostasis.

Delving into the molecular details of many anti-stress gene
regulatory networks readily reveals that local gain enhance-
ment appears to be a common strategy cells utilize for robust
homeostasis. In this regard, cells are furnished with many
biochemical reactions/interactions or functional modules that
can transfer signals in an ultrasensitive, or even switch-like
manner, and thereby enhance local gains. It is not uncommon
that many transcription factors specifically involved in stress
responses must homodimerize or homotrimerize to become
transcriptionally active. For instance, in response to heat
shock, heat shock transcription factor 1 (HSF1) monomers
multimerize into homotrimers to gain affinity to bind the heat
shock element (HSE) [25]. Ideally homodimerization and
homotrimerization can enhance signal transfer sensitivity,
thus the local gain, by a factor of 2 and 3, respectively. Binding
of transcription factors to specific DNA response elements is
the next step where the stress-triggered signal can be
amplified. Existence of multiple copies of a response element
in a gene promoter provides the possibility for cooperative
binding, which is a classical interaction that can give rise to
ultrasensitivity. In yeast, where the Hsp82 promoter contains
three copies of HSE in adjacency, HSF binds the promoter in
a profound cooperative fashion to induce Hsp82 gene
expression [60]. Similar homeostatic roles played by tran-
scription factor multimerization and cooperative binding
have been suggested in maintaining intracellular protein
concentrations [61,62]. Subsequent steps in the feedback loop,
including RNA transcription and protein translation, are
largely linear processes, adding little, if any, to local gains. But

in many cases, the initial translation products need to form
high-order multimers to become fully active enzymes. This
process provides a gain-enhancing mechanism similar to
transcription factor dimerization or trimerization. For
instance, among the antioxidant enzymes that are activated
in oxidative stress response, glutathione reductase and
superoxide dismutase are homodimers [63,64]. More intrigu-
ingly, glutathione peroxidase (GPx) and catalase (CAT), the
two major enzymes responsible for removing intracellular
H2O2 and lipid peroxide, exist largely as homotetramers
[27,65]. It is thus highly likely that apart from potentially
stabilizing the enzymes, a primary function of dimer or
tetramer formation is to augment the loop gain for robust
redox homeostasis. To further improve signal transfer
sensitivity, cells can also use localized positive feedback which
is known to enhance response coefficient. A common positive
feedback motif in the cell is gene autoregulation, in which a
transcription factor upregulates gene expression of itself or
its cofactors. In Nrf2-mediated gene regulatory network
against electrophilic stress, the electrophile response element
(EpRE) is found in Nrf2 gene promoters, and Nrf2 can
transcriptionally upregulate its own gene expression [47,48].
Lastly, a very common ultrasensitive signaling motif is the
MAPK cascade, which can produce a switch-like response due
to the combination of zero-order ultrasensitivity, distributive
dual-phosphorylation, and layered arrangement [66]. Specif-
ically, c-Jun N-terminal kinase (JNK), a member of the MAPK
family, mediates a series of stress responses [67] and was
shown to transfer signals in an ultrasensitive fashion [68]. Cells
are likely to use combinations of these ultrasensitive
mechanisms to enhance the loop gain as well as to compensate
for gain losses from individual mechanisms operating at less
ideal conditions, such as significant degradation of high-order
multimers and substrate sequestration in zero-order covalent
modification cycles [69].
Local gains do not remain characteristically constant as the

feedback network is increasingly activated by external
stressors. This stress level–dependent variation suggests that
a dose response curve could undergo multiple phases that
cannot be represented by a simple function. The slow
recovery of local gains from repression [70], owing to
constitutive activity of transcription factors or anti-stress
genes, results in a sluggish response in gene expression,
leaving the perturbation less countered under low-level
stresses. Although such inadequacy in effectively mounting
a protective response is seemingly undesirable, in certain
situations it may be an energy-saving design. For cells living
in an environment featuring frequent but minor fluctuations,
they may have purposely evolved to tolerate perturbations of
small magnitude to avoid otherwise expensive and frequent
activation of anti-stress genes. Another situation where the
less-regulated phase may be preferred is in cells where the
controlled variable is also used for signaling purposes. For
instance, in adipocytes where H2O2 is used to mediate
intracellular insulin signaling, it would be less desirable for
an insulin-induced H2O2 signal to frequently trigger anti-
oxidant gene expression, which will otherwise dampen H2O2

as a second messenger [71].
The second phase of the Y versus S dose response curve is

superlinear in appearance and characterized with the highest
loop gain. In this phase the homeostatic mechanism operates
at full capacity so that cells are best able to effectively resist
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external disturbance. With a large loop gain, the controlled
variable could change very little in response to a wide range
of stress levels. But ultimately, activation of gene expression
would approach saturation, and the superlinear controlled
phase will transition either into the linear phase or directly
into the catastrophic sublinear phase, depending on the
degree of enzyme saturation by that point. In the two latter
phases, the system loses active controls, and persistent
elevation of the controlled variable may lead to cell death.
Since the feedback regulation in a homeostatic gene network
is transcriptionally mediated, it can take hours or longer for
the system to settle at a new steady state, as demonstrated in
the electrophilic stress response. Before reaching the steady
state, the controlled variable may be at very high levels. If cells
cannot tolerate such a short-term spike of the controlled
variable internally, programs such as apoptosis may be
initiated, and the steady-state response for high doses would
not be achieved.

The homeostatic benefit of a high loop gain is obvious—it
increases the resistance of the cell to external perturbations
at low doses, and extends the resistance to higher doses by
delaying catastrophic rises in the levels of controlled
variables. A high loop gain can be obtained either by
concentrating it in one or two local steps or by distributing
it more evenly throughout the feedback loop. Overly
concentrated loop gains may be less preferred since they
may impose special biochemical or energy challenges to the
specific reactions/interactions involved. Even if allocating the
loop gain more evenly is a better design, some locations
within the feedback loop may be preferred over others for
gain placement. Among three of the ultrasensitive steps
discussed here where local gains can be enhanced—tran-
scription factor multimerization, cooperative binding of
transcription factor to response elements, and enzyme
multimerization—the latter is probably preferred over the
former two when a choice has to be made about gain
placement. Although a high loop gain achieved at the two
pre-transcriptional locations can definitely enhance the local
superlinearity of the controlled phase, thus boosting resist-
ance to perturbations by relatively low-dose stressors, this
increased resistance eventually has to succumb to the limiting
effect of gene saturation, with the response converging
invariably into a similar linear and eventually catastrophic
phase (Figure S4A). In contrast, a loop gain enhanced post-
transcriptionally through enzyme multimerization cannot
only superlinearize the controlled phase further but also
extend it, delaying the arrival of the uncontrolled linear and
particularly the catastrophic phase (Figure S4B). Since
metabolic enzymes usually exist in much higher abundance
than transcription factors, the homeostatic benefit of post-
transcriptional gain enhancement is nonetheless at the cost
of higher energy consumption for synthesizing more enzyme
molecules. Additional considerations for gain placement may
include avoidance of persistent oscillation, which has been
observed in gene regulatory networks with delayed negative
feedback [72,73].

Although the present study is concerned with the steady-
state behaviors of anti-stress gene regulatory networks, it is
important to note that gene expression is intrinsically
stochastic and may fluctuate to a great extent around the
steady state in both simple and complex gene networks [74–
86]. Given the homeostatic objective of an anti-stress gene

regulatory network, it is important to understand how cells
can cope with this noisy nature of gene expression that may
undermine the stability of the intracellular environment. A
recent genome-wide study indicated that compared with
other genes, those essential to the fitness of organisms are
expressed at higher transcription but lower translation rates
[87]. This is a strategy believed to lower protein expression
noise [74]. Given the fact that most anti-stress genes are
indispensable for normal cell functions (the deletion of which
is often embryonically lethal or results in severely impaired
viability [55,88,89]), a similar expression strategy, i.e., high
transcription low translation, may have been adopted by
genes responsible for cellular homeostasis to reduce fluctua-
tion. Moreover, the negative feedback nature of anti-stress
gene regulatory networks may also help alleviate noise in
gene expression. Despite a few studies suggesting that
negative autoregulation may increase protein expression
noise under certain conditions [90–92], the majority of the
literature, including experimental evidence, regards negative
feedback as a design that effectively attenuates intrinsic noise
in gene expression [6,11,74,90,91,93–98]. Additionally, it has
also been shown that dimerization of transcription factors
can further reduce protein expression noise in gene feedback
loops [93,96]. This noise-reducing interaction resonates with
the fact that transcription factors involved in anti-stress
regulation often dimerize or trimerize to become active
[25,26]. Recently, El-Samad and Khammash suggested that
regulated degradation of heat shock factor r32 is a mecha-
nism for suppressing stochastic fluctuation in the heat shock
gene regulatory network [98]. In this regard, it is worth
mentioning that Nrf2 and HIF, the key transcription factors
mediating electrophilic and hypoxic stress responses, respec-
tively, are also regulated primarily through protein degrada-
tion [34,99,100]. Taken together, it is highly likely that
fluctuations in protein expression and thus controlled
variables in anti-stress gene regulatory networks may well
be at a minimum through, at least, the above noise-
attenuating mechanisms.
A critically important issue in toxicological research and

risk assessment is how to estimate low-dose effect from
experimental data obtained for high doses. Although linear
extrapolation from the high-dose region to the basal point has
been a popular practice, in many situations the assumption
that dose response relationships in the low-dose region
behave linearly does not have theoretical basis. The present
study revealed that for cells capable of anti-stress homeostatic
regulation, the low-dose region has various nonlinear charac-
teristics. The nature of negative feedback regulation deter-
mines that the low-dose region for the controlled variable is
basically superlinear, and the stronger the feedback is, the
more superlinear it becomes. However, in the presence of
diminishing gains for gene activation owing to saturation, the
superlinear phase gradually reverses its curvature to become
sublinear during its course to join the subsequent linear
phase. Therefore, the primary curvature in the low-dose
region depends, by and large, on the relative influence from
the superlinear controlled phase and the sublinear segment
that immediately follows. In conditions where the effect of
constitutive activation is insignificant, pre-transcriptional
gain is high, and saturation of gene activation occurs early,
the superlinear controlled phase appears only transiently,
leaving the low-dose region dominated by the sublinear
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segment. In the presence of feedforward gene activation, the
sublinear appearance is even more prominent, and eventually
a J-shaped curve could arise. It has long been hypothesized
that low-dose effects including hormesis are of homeostatic
and adaptive nature [101,102]; our results are consistent with
such a concept. Given the diversity and complexity of the dose
response curve in the low-dose region, it thus appears
inappropriate to extrapolate from high- to low-dose regions
with any simple function. Regardless of the curvature within
the low-dose region, if linear extrapolation starts from high-
dose points in the catastrophic sublinear phase, the low-dose
effect is likely to be consistently overestimated, albeit to
various degrees. However, if the extrapolation starts from the
linear phase or even below, the cellular impact from low doses
would be either underestimated or overestimated, depending
on the curvature in the low-dose region (Figure 9). For
government regulatory purposes, different curvatures in the
low-dose region, relative to linear extrapolation, may give rise
to significantly different cutoff ‘‘safe’’ exposure levels for a
biological stressor of interest. As a result, the difference in the
economic cost associated with preventive measures taken to
keep exposures below the regulated safe level can be
significant.

The present study represents our initial effort to achieve a
quantitative understanding of the adaptive cellular response
for homeostasis. We realize that the generalized control
scheme we studied is a simplification of realistic biological
networks that are more complex. But as we showed for the
anti-electrophilic defense system, complex feedback networks
involving multiple genes, enzymes, and biochemical reactions
may observe similar transitions in their controllability.
Although the dose response transition we proposed remains
to be extensively examined, experimental studies by others on
the formation of DNA adducts and protein conjugates [30,31]
have provided preliminary evidence indicating the proposed
transition may indeed operate in realistic biological systems
(Text S3). Clearly, low-dose extrapolations for risk assessment
need to acknowledge the complexity of adaptive responses in
order to be consistent with biological signaling dynamics and
the inherent ability of organisms to detect environmental
stressors and maintain homeostatic functions.

Materials and Methods

Details of the model structures, reactions, and parameter values are
provided under Supporting Information, which contains references
and rationale for the choice of parameter values. For the generalized
control scheme, the parameter values were kept dimensionless and
chosen to assist in visualizing the analytical results (Tables S1–S3). For
the anti-electrophilic stressmodel, the parameter valueswere obtained
from the literature if available, or estimated to meet the constraints
imposed by experimental observations of our ownor others (seeTables
S4 and S5 for details). All models were first constructed and
parameterized in PathwayLab (InNetics, http://www.innetics.com)
and then exported into MatLab (MathWorks, http://www.mathworks.
com). All the dose response simulation results were obtained by
running the models to steady state in MatLab. Models in the format of
MatLab are available for downloading in File Collection S1.
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