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Abstract

Background: The European directive on basic safety standards (Council directive 2013/
59 Euratom) mandates dosimetry-based treatment planning for radiopharmaceutical
therapies. The directive comes into operation February 2018, and the aim of a report
produced by the Internal Dosimetry Task Force of the European Association of Nuclear
Medicine is to address this aspect of the directive. A summary of the report is
presented.

Results: A brief review of five of the most common therapy procedures is included in
the current text, focused on the potential to perform patient-specific dosimetry. In the
full report, 11 different therapeutic procedures are included, allowing additional
considerations of effectiveness, references to specific literature on quantitative
imaging and dosimetry, and existing evidence for absorbed dose-effect correlations for
each treatment. Individualized treatment planning with tracer diagnostics and verification
of the absorbed doses delivered following therapy is found to be scientifically feasible for
almost all procedures investigated, using quantitative imaging and/or external
monitoring. Translation of this directive into clinical practice will have significant
implications for resource requirements.

Conclusions: Molecular radiotherapy is undergoing a significant expansion, and the
groundwork for dosimetry-based treatment planning is already in place. The mandated
individualization is likely to improve the effectiveness of the treatments, although must
be adequately resourced.
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Background
Radiopharmaceuticals have been used for the treatment of various forms of cancer and

benign diseases since the 1940s [1, 2]. The level of radioactivity administered is primarily

fixed, sometimes adjusted by body weight, body surface area, or clinical factors. Prescrip-

tion levels for different treatments are commonly determined empirically, using similar

approaches as for chemotherapy. The term “molecular radiotherapy” (MRT) has gained

acceptance in recent years to describe the use of radiotherapeutics. Uniquely, for MRT,
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the patient-specific biodistribution can be determined by in vivo nuclear medicine im-

aging of the radiopharmaceutical, and basic biokinetics can also be monitored by external

probes. Quantitative imaging of a tracer amount of either the radiopharmaceutical or of a

companion diagnostic prior to therapy can enable the therapeutic administration to be

chosen to achieve prescribed absorbed doses to different tissues. Post-therapy imaging en-

ables the prescribed absorbed dose to be verified. Recently, the panel of mechanisms and

targets for radiopharmaceuticals has increased significantly. Together with newly available

radiotherapeutics, this has raised greater awareness of the field of molecular radiotherapy

and in combination with technical developments has also rekindled the interest for

patient-specific dosimetry in research settings and in clinical practice.

The European Council directive 2013/59/ Euratom mandates the use of dosimetry

for treatment planning and verification [3]. In Chapter VII, Medical Exposures, Article

56, it is stated that:

“For all medical exposure of patients for radiotherapeutic purposes, exposures of

target volumes shall be individually planned and their delivery appropriately verified

taking into account that doses to non-target volumes and tissues shall be as low as

reasonably achievable and consistent with the intended radiotherapeutic purpose of

the exposure.”

Furthermore, from Chapter II, Definitions, Article 4, Definition 81, it is stated that:

“‘radiotherapeutic’ means pertaining to radiotherapy, including nuclear medicine for

therapeutic purposes”.

The directive is due to come into force February 2018 and has been subject to con-

siderable debate regarding interpretation and how the requirements may be fulfilled.

Therefore, in 2015, the multidisciplinary Internal Dosimetry Task Force (IDTF) was

established by the European Association of Nuclear Medicine (EANM) to address as-

pects of the 2013/59/ Euratom directive specifically concerned with dosimetry for

MRT. The EANM IDTF consists of 17 members from Belgium, Czech Republic,

Germany, Greece, Italy, The Netherlands, Norway, Spain, Sweden, Switzerland, Turkey,

and the UK. Treatment-specific sections were drafted for 11 different categories of

therapy procedures and indications (Table 1). The aim of the group was to identify the

potential for patient-specific treatment planning and verification. While selected possi-

bilities for imaging or other measurements and dosimetric methodology are included,

no reviews regarding the optimal methods or the accuracy of the absorbed dose-effect

relationships were performed. The specific pre- and post-therapy sections are therefore

to be considered as suggested solutions and not definite guidelines. The report on the

potential and prospects for dosimetry-based treatment planning for MRT will be made

available on the EANM website. The aims of this article are to summarize the IDTF re-

port and briefly review examples of treatment-specific dosimetric planning procedures.

Summary of report
The radiopharmaceutical procedures covered in the full report are listed in Table 1,

which also displays selected post-therapy imaging and measurement methods that can
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form the basis for verification of absorbed doses delivered. Furthermore, the possibility

for administration of a tracer amount of the radiopharmaceutical itself or of a “com-

panion diagnostic” to estimate absorbed doses “up front” are indicated. Current clinical

therapy regimens vary from single administrations to multiple cycles, and prescriptions

range from the delivery of a fixed amount of radioactivity to dosimetric treatment plan-

ning. The range of current practice is reported in an IDTF survey on implementation

of dosimetry procedures in Europe [4].

In the following sections, the potential for dosimetric treatment planning are summa-

rized for five of the most common individual therapy procedures. In the full report, a

brief introduction to the disease and radiopharmaceutical is given for each procedure,

followed by a brief review of the reported effectiveness of the treatment, the potential

for quantitative imaging that underpins normal tissue and target dosimetry, and exist-

ing evidence for absorbed dose-effect correlations. The potential for personalized

dosimetry-based treatment planning is then considered. Finally, issues specific to the

Table 1 Molecular radiotherapies and possibilities for dosimetric treatment planning identified in
the report

Radiopharmaceutical Procedure Compounds used
for pre-treatment
imaging

Post-treatment imaging or
measurement methods

131I NaI Benign thyroid disease 131I NaI
124I NaI
123I NaI

Thyroid probe. Gamma
cameraa or SPECT/CT.

131I NaI Differentiated thyroid cancer (DTC)
with ablative intent and in the case of
recurrent disease

131I NaI
124I NaI
123I NaI

Gamma camera or SPECT/CT.
Whole-body probes, blood
sampling

131I mIBG Neuroblastoma in children and young
adults

131I mIBG
124I mIBG
123I mIBG

Whole-body probe for bone
marrow estimation.
Gamma camera or SPECT/CT

131I mIBG Neuroendocrine tumors in adults 131I mIBG
124I mIBG
123I mIBG

Gamma camera or SPECT/CT

177Lu DOTATATE Neuroendocrine tumors Radiolabelled
somatostatin
analogs

Gamma camera or SPECT/CT

90Y somatostatin
analogs

Adult neuroendocrine disease Analogs, as 86Y–
DOTATOC
111In-DOTATATE

Bremsstrahlung gamma
camera or SPECT/CT.
PET/CT.

89SrCl2,
153Sm-

EDTMP, 186Re-HEDP,
and 188Re-HEDP

Bone pain palliation 99mTc-MDP for
153Sm-EDTMP

Gamma camera or
SPECT/CT for
153Sm-EDTMP, 186Re-HEDP
and 188Re-HEDP

223Ra dichloride Bone metastases from castration-
resistant prostate cancer

99mTc-MDP Planar gamma camera
imaging

177Lu PSMA ligands
Metastatic castration-resistant pros
tate cancer

Analog PET
ligands

SPECT/CT

90Y microspheres Liver metastases or primary tumors 99mTc-albumin
macro aggregate

Bremsstrahlung SPECT/CT.
PET/CT.

90Y-ibritumomab
tiuxetan

Non-Hodgkin’s lymphoma 111In-
ibritumomab
tiuxetan

Bremsstrahlung gamma
camera or SPECT/CT.
PET/CT.

90Y, 32P, and 186Re
colloid, 169Er citrate

Radiosynovectomy 99mTc MDP/HDP/
HEDP and/or
99mTc-HIG

Planar Gamma camera
imaging,
# dicentric chromosomes

aGamma camera indicates both planar scintigraphy imaging and SPECT/CT imaging, if not otherwise specified
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treatment are considered along with questions that merit further investigation. For the

individual procedures included in the present summary, these have been condensed in

two paragraphs: the first presenting the therapy and current practice, followed by a sec-

ond describing the dosimetric procedures and dose-effects. Resource requirements are

reported in a separate section.

131I NaI for the treatment of differentiated thyroid cancer with ablative intent and in the

case of recurrent disease

The amount of 131I NaI activity to administer for differentiated thyroid cancer

(DTC) treatment is commonly empirically determined. Typically, a fixed activity

of 131I NaI ranging between 1.11 and 7.4 GBq is given [5]. In the case of recur-

rent disease, the administered activity may be calculated based on the absorbed

dose constraints of the normal tissue, usually red marrow as recommended in

EANM guidelines [6].

Radioiodine uptake in thyroid remnants and metastases can be determined with

gamma camera planar imaging or with SPECT/CT which can provide more accurate

quantification [7]. Camera calibrations and radiation protection measures may be

demanded due to a high photon flux [7]. PET/CT imaging can also be performed using
124I NaI, which may be advantageous for determination of remnant mass and small me-

tastases [8]. Currently, in the treatment of DTC, there are no well-established values

for absorbed doses to remnants and metastases which may be used as prescription

values. EANM guidelines recommend the calculation of red marrow absorbed doses

from whole-body and blood dosimetry [6], and a constraint of 2 Gy is considered when

using this methodology [9]. Additional organs at risk may include the lungs and salivary

glands [10–12]. Issues regarding the alteration of biodistribution can occur due to the

debated “stunning effect” for 131I NaI [13, 14] or due to prior administration of recom-

binant human thyroid-stimulating hormone (rhTSH) [15], which may have to be con-

sidered if treatment planning is performed.

131I mIBG for the treatment of neuroblastoma in children and young adults

The metaiodobenzylguanidine (mIBG) molecule structurally resembles norepinephrine

(also called noradrenaline), and tumors expressing the norepinephrine transporter show

mIBG uptake capacity. The prescription of 131I mIBG for neuroblastoma is often made

according to whole-body absorbed dose, which is related to bone marrow absorbed

dose and neutropenia [16].

If stem cell rescue is not scheduled, the main organ at risk is usually the bone mar-

row, with an absorbed dose constraint of 2 Gy [17]. An increasingly common protocol

is to deliver a whole-body absorbed dose of 4 Gy in two administrations of activity sep-

arated by 2 weeks, followed by stem cell rescue. The first administration is delivered ac-

cording to a body mass-based prescription of 444 MBq/kg [18]. The whole-body

absorbed dose can be estimated by dose-rate measurements obtained with a probe.

However, if there is bone marrow involvement, imaging is necessary to perform dosim-

etry. Quantitative imaging can be performed essentially as for 131I NaI, with the same

technical considerations [7].
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177Lu-DOTATATE for the treatment of neuroendocrine tumors
177Lu-DOTATATE is a radiolabelled somatostatin analog developed for the treatment

of patients with somatostatin receptor-positive neuroendocrine tumors. The most fre-

quent treatment protocol is currently to administer 7.4 GBq for up to four times with a

6 to 10-week interval between each administration [19]. However, protocols delivering

cycles of 7.4 GBq until a maximum prescribed absorbed dose to the kidneys and the

bone marrow is reached are under investigation [20].

Although the photon yield is relatively low, the high level of activity administered

makes quantitative gamma camera imaging of 177Lu possible [21, 22]. Late treatment-

related kidney toxicity has not been reported for patients receiving a kidney absorbed

dose over 28 Gy, a commonly used tolerance limit, indicating that this may be a con-

servative value [23]. A clear correlation between tumor absorbed doses and the re-

sponse to the treatment was reported in pancreatic neuroendocrine tumors [24].

Although it has been demonstrated that patient-specific absorbed doses for 177Lu can

be calculated and have a clinical benefit, the absorbed dose limits for normal tissue and

the desirable absorbed dose to the tumors require further investigations.

223Ra dichloride for the treatment of bone metastases from castration-resistant prostate

cancer
223Ra dichloride is an alpha-emitting radiopharmaceutical approved for the treatment

of patients with castration-resistant prostate cancer, symptomatic bone metastases, and

no known visceral metastatic disease. Being an analog to calcium, cationic radium is

taken up by areas of increased osteoblastic activity. A fractionated approach is routinely

used for the delivery of this treatment with six administrations of 55 kBq/kg body

weight.

The low yield of photons, combined with the low amount of activity administered,

makes quantitative imaging of 223Ra challenging. However, it has been demonstrated

that prolonged gamma camera imaging is feasible [25, 26] and that activity can be

quantified to within 20–50%, depending on the volume imaged. A study showed that

absorbed doses delivered to normal organs vary by an order of magnitude between in-

dividual patients [27]. Uptake of 223RaCl2 in metastases has been seen to correlate with

that of 99mTc MDP [28], demonstrating a potential for treatment planning. There is no

evidence as yet of correlations between the absorbed doses delivered and effect. Besides

developing reliable dosimetric methodology for this treatment, the relative biological ef-

fect is yet to be determined, and the short range of the alpha emissions necessitates in-

vestigations of microdosimetry and small-scale dosimetry.

90Y microspheres for the treatment of primary and metastatic liver cancer

Intra-arterial locoregional liver therapies have their rationale in the fact that liver le-

sions are fed mainly by the arterial stream, while normal parenchyma is supplied by

portal vein blood flow. At present, both 90Y glass microspheres and 90Y resin micro-

spheres are used, both licensed as medical devices to treat liver primary hepatocarci-

noma (HCC) and liver metastases [29]. Toxicity is of particular importance, as patient

death from radioembolization-induced liver disease leading to liver failure can be a

consequence of a standard treatment [30]. With current recommendations, dosimetry
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is sometimes used as a basis for treatment planning, although methods for absorbed

dose prescription vary.

Simulation scanning is performed with 99mTc-albumin macro aggregate (MAA) ad-

ministered under angiographic guidance for quantitative imaging and pre-treatment

dosimetry [29]. The permanent trapping into liver capillaries of the 99mTc MAA and of

the therapeutic 90Y microspheres allows dosimetry to be performed from only one scan

[30]. Post-therapy quantitative imaging can be performed by 90Y bremsstrahlung

SPECT or 90Y PET with suitable corrections [31, 32]. Correlations between the

absorbed doses delivered and toxicity and response have been reported both for hepa-

tocellular carcinoma [33–35] and colorectal metastases [36, 37].

Resource requirements

Implementation of dosimetry for therapy, particularly on a routine basis, has implica-

tions for infrastructure resourcing. The level of resources required will depend on the

complexity of the dosimetry procedure and will vary according to local and national

protocols and guidelines. Each procedure will have resource implications for both an

initial setup of a dosimetry service and for ongoing support.

Resources fall into categories of equipment and staff. Whole-body dosimetry may be

performed with a portable or externally mounted compensated Geiger counter which

enables multiple measurements to be made by either staff or, if necessary, possibly by

comforters and carers. Both the legal implications and the technical complexity should

be carefully considered if the latter group is to perform such measurements. Blood dos-

imetry may be derived from samples measured in a well counter. Image-based dosim-

etry requires a gamma camera or PET system that has been set up for the radionuclide

under investigation at activity levels relevant to the procedure. In addition to routine

quality control procedures, this entails determination of calibration factors for image

quantification and characterization of camera deadtime which is important for post-

therapy imaging. For each therapeutic procedure, the required number of measurement

time points (especially imaging time points) needs careful investigations as this directly

affects both the dosimetric accuracy and the resource implications. Unlike many of the

other resource requirements, this also impacts the time spent by the patients. Volume

estimation may be acquired from radiological images or, in the case of radioiodine

treatment of benign thyroid disease, from ultrasound scanning as well as from the

SPECT and PET data.

As a multidisciplinary area, a range of trained staff are necessary to provide a com-

prehensive service. These include medical physicists for image quantification and

absorbed dose calculations, nuclear medicine technologists and radiographers with ex-

perience in quantitative imaging, nuclear medicine physicians and radiologists for per-

forming or supervising volume outlining, and possibly other specialists to contribute

on patient-specific prescriptions and procedures.

Discussion
The potential for dosimetry-based treatment planning was demonstrated for all therapy

procedures, using either the same radiopharmaceutical or diagnostic analogs. Both plan-

ning and verification can be technically demanding due to various factors, including low
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activity levels in patients and/or low photon yield, image co-registration, calibration of the

system, volume definition, choice of imaging time points, and kinetic modelling. However,

extensive work has laid the foundation for individualized dosimetry of MRTs.

Absorbed dose-effect relationships have been determined for many therapy proce-

dures in single-center studies, and multicenter clinical trials are necessary to gather fur-

ther evidence and substantiate these findings. However, relevant data can be collected

by simply performing post-therapy imaging and dosimetry routinely in current practice

and by comparison of the absorbed doses delivered with response and toxicity data. For

many MRTs, a requirement for post-therapy verification may therefore represent a ra-

tional and feasible manner of initiating a dosimetry-based treatment planning program.

In conclusion, molecular radiotherapy is undergoing a significant expansion. Many

new radiotherapeutics are being introduced into the clinic and an increasing number of

patients are being treated for common as well as rare cancers. This will have a signifi-

cant effect on healthcare funding, patient management, and the logistical and scientific

challenges faced by nuclear medicine departments and their collaborators. As medicine

in general has begun to focus on personalized treatment, often accompanied by mo-

lecular imaging, this growth in radiotherapeutics offers unprecedented opportunities

for recognition, support, and significant development. Nuclear medicine combines

diagnostics and therapeutics and provides unique possibilities for personalized treat-

ment. The EANM IDTF report provides an overview of the potential and prospects for

dosimetry-based treatment planning of MRT, revealing that the groundwork is already

in place. The report focuses on the overall aspects of treatment planning, and further

work may be required to complement the status summary. Topics of interest include

the use of companion diagnostics, resource implications, the study of absorbed dose-

effect correlations, refinement of technical aspects including image quantification and

voxel-based dosimetry, biophysical considerations including biologically effective dose

(BED) calculations, education, and training. These investigations are important to en-

sure the clinical and cost-effectiveness of new radiotherapeutics, as well as for estab-

lished therapy procedures. However, MRT has the unique potential to provide patient-

specific molecular information allowing guidance for personalized treatment.
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