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Radiation pneumonitis (RP) is one of the major toxicities of thoracic radiation therapy.

RP incidence has been proven to be closely associated with the dosimetric factors

and normal tissue control possibility (NTCP) factors. However, because these factors

only utilize limited information of the dose distribution, the prediction abilities of

these factors are modest. We adopted the dosiomics method for RP prediction. The

dosiomics method first extracts spatial features of the dose distribution within ipsilateral,

contralateral, and total lungs, and then uses these extracted features to construct

prediction model via univariate and multivariate logistic regression (LR). The dosiomics

method is validated using 70 non-small cell lung cancer (NSCLC) patients treated with

volumetric modulated arc therapy (VMAT) radiotherapy. Dosimetric and NTCP factors

based prediction models are also constructed to compare with the dosiomics features

based prediction model. For the dosimetric, NTCP and dosiomics factors/features, the

most significant single factors/features are the mean dose, parallel/serial (PS) NTCP and

gray level co-occurrence matrix (GLCM) contrast of ipsilateral lung, respectively. And the

area under curve (AUC) of univariate LR is 0.665, 0.710 and 0.709, respectively. The

second significant factors are V5 of contralateral lung, equivalent uniform dose (EUD)

derived from PS NTCP of contralateral lung and the low gray level run emphasis of gray

level run length matrix (GLRLM) of total lungs. The AUC of multivariate LR is improved

to 0.676, 0.744, and 0.782, respectively. The results demonstrate that the univariate

LR of dosiomics features has approximate predictive ability with NTCP factors, and

the multivariate LR outperforms both the dosimetric and NTCP factors. In conclusion,

the spatial features of dose distribution extracted by the dosiomics method effectively

improves the prediction ability.
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INTRODUCTION

Radiation pneumonitis (RP) is one of the major toxicities
of thoracic radiation therapy. The clinical symptoms range
from fever, cough to pulmonary function failure, which may
occur during the first 6 months after irradiation. Reducing the
prescription dose could lower the risk of RP incidence, but also
impairs tumor control. An accurate RP predictor (or prediction
model) is desired to “safely” irradiate the tumor target without
increasing the risk of RP incidence.

RP incidence is directly associated with the dose distribution
within lung volume. Dosimetric factors, such as mean lung dose
(MLD) and the lung volume within which the dose is greater
than xGy (Vx), are widely used for RP prediction. Boonyawan
et al. reported that RP incidence increases with V10 and V20

(1). Ramella et al. found that RP incidence is associated with
V20 and V30 (2). Briere et al. reported that RP incidence
significantly increases if the sparing lung volume is <1852cc
(receiving dose≤40Gy) (3). Pinnix et al. reported that V5 has
better prediction capability than V10, V15, and V20 (4). Palma
et al. analyzed 836 patient cases from international institutions
and concluded that symptomatic RP is associated with V20,
and fatal RP associated with the mean dose per day during
treatment (5). Those studies demonstrate that the dosimetric
factors are associated with RP incidence. Although enlightening
for understanding the causes of RP incidence, the conclusion of
those studies differs from individual institution or dataset.

The dosimetric factors only utilize partial information
contained in the dose distribution. For instance, Vx is only
a discrete point on the dose volume histogram (DVH)
curve. Compared with dosimetric factors, the normal tissue
complication probability (NTCP) model utilizes all information
of the DVH curve by compressing the entire curve to a single
factor with dose response functions (DRFs). Better prediction
performance could be achieved by fitting the DRF parameters (6–
8). And the standard deviation of the fitted parameters is 16.5%
between different institutions (9). The improved prediction
ability of NTCP factors are partly contributed by the introduction
of DRF, butmore importantly because theNTCP factors utilize all
information of DVH curve. However, since the DVH curve does
not take the spatial information into consideration, completely
different dose distributions may result in identical DVH curve,
and then identical NTCP factors.

By investigating the prediction ability of dosimetric and
NTCP factors, it is reasonable to hypothesize that if the spatial
information of dose distribution were utilized properly, the
prediction ability should be further improved. The recently

emerged radiomics method extracts numerous spatial features

from medical images and uses these features to predict
therapeutic responses (10–12). Enlightened by those works,

the “dosiomics” method has been proposed, which attempts
to extract the spatial features from dose distribution for
radiotherapy response prediction (13–15). In this work, we
adopted the dosiomics method for RP incidence prediction.
The prediction ability of the dosiomics features is validated
using 70 non-small cell lung cancer (NSCLC) patients treated
with volumetric modulated arc therapy (VMAT) radiotherapy,

and further evaluated by comparing with the dosimetric and
NTCP factors.

METHODS AND MATERIALS

Patient Data
Seventy NSCLC patients treated in our institution from 2013
to 2016 are used in this study. All patients were treated with
6MV VMAT without surgical operation. Treatment plans were
designed using Pinnacle treatment planning system (v 9.0). The
slice spacing of planning CT image was 5mm, and the grid
spacing of dose calculation was 4 ×4 × 4mm. The dose was
prescribed to 95% of the planning target volume (PTV). RP
was graded from 0 to 5 according to Common Terminology
Criteria for Adverse Events (CTCAE v3.0). Bootstrap method
is adopted to address the issue of limited dataset. Bootstrap of
original dataset is performed 1,000 times, and the resulting 1,000
bootstrap samples are used as training datasets for both the
univariate and multivariate LR.

Feature Extraction
The dosiomics features are extracted from the dose distribution
within ipsilateral, contralateral and total lungs, separately. The
extracted features are a set of indices, such as autocorrelation,
sum of squares and cluster prominence etc, derived from
the gray level co-occurrence matrix (GLCM) and gray level
run length matrix (GLRLM). The calculation formulas can be
referred in (16). All the extracted features are normalized to
zero mean and unit variance with z-score normalization before
further processing.

Univariate Analysis
The endpoint of this study is the occurrence of grade ≥2 RP.
Prediction model is built using LR, of which the coefficient is
derived using maximum likelihood estimation method. For each
extracted feature, univariate LR is performed 1,000 times based
on the bootstrap samples of original dataset. The mean AUC
of training datasets (bootstrap samples) is calculated. The most
significant feature is determined as the feature with maximal
mean training AUC. The final coefficient is determined as the
median of the 1,000 resulting coefficients. The predictive ability
of each single feature is evaluated on the original entire dataset by
the area under curve (AUC) of receiver operating characteristic
(ROC) (17).

Multivariate Analysis
According to the one tenth rule, the number of predictors of
multivariate LR should be one tenth of the outcome events.
Recent studies show that the one tenth rule is generally too
conservative, and can be relaxed for the logistic and Cox
regression (18). The outcome event (grade ≥2 RP occurrence) of
this study is 15, and the number of predictors of multivariate LR
is relaxed to 2.

In this study, all possible two-feature combinations are
traversed to search for the optimal combination. For each
combination, multivariate LR and Spearman test between the
two features are performed 1,000 times using bootstrap samples.
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The optimal combination is determined as the combination
with maximal mean training AUC while the mean Spearman
correlation within [−0.8, 0.8]. The Spearman correlation
threshold excludes the combination of strongly correlated
features to prevent overfitting. The final coefficient is also
determined as the median of the 1,000 resulting coefficients, and
the multivariate LR model is validated on the entire dataset.

Dosimetric and NTCP Factors
The predictive ability of dosiomics features is further evaluated
by comparing with the dosimetric and NTCP factors. Both
univariate and multivariate analyses are performed using: 1.
dosimetric factors and 2. NTCP factors. As listed in Table 1,
the dosimetric factors include V5, V10, V15, V20, and MLD. The
NTCP factors are two sets of equivalent uniform dose (EUD) and
NTCP factors of Lyman (19) and parallel/serial (PS) models (20).
All factors are calculated for the ipsilateral, contralateral and total
lungs, separately.

With DVH reduction technique, the heterogeneous dose
distribution is reduced to a single EUDL parameter, which by
definition has the same complication probability with the original
heterogeneous dose distribution. Lyman model assumes that all
sub-volumes are of the same contribution to side effects, and the
NTCP factor (NTCPL) is calculated as:

NTCPL =
1

√
2π

T∫

−∞

exp(−
t2

2
)dt (1)

T =
EUD− TD50

mTD50
, (2)

EUDL = (
1

N

∑
i

Da
i )

1
a

where TD50 is the tolerance dose, under which the complication
probability of normal tissue is 50%.m is the curve slope at TD50.

The PS model considers the normal tissues are composed
of a large number of microscopic functional sub-volumes. The
parallel model supposes the sub-volumes are independent. Side
effects occur only if a significant number of sub-volumes are
destroyed, and small portion of the damaged sub-volumes will
not cause side effects. In contrast, the serial model assumes the
sub-volumes are dependent. Side effects occur even only a small
portion of sub-volumes are damaged. The entire volume is an
arbitrary mixture of both serial and parallel sub-volumes. The
NTCP (NTCPPS) factor is calculated as:

NTCPPS = (1−
N∏
i=1

(1− P(Di)
k)N)

1
k , (3)

P(D) = 2
− exp(e·m(1− D

TD50
))

TABLE 1 | Dosimetric and NTCP factors.

Dosimetric factors V5, V10, V15,V20 and MLD

NTCP factors EUDL, NTCPL, EUDPS and NTCPPS

where k is the ratio of serial to parallel sub-volume. Like Lyman
model,m is the slope of NTCP curve atTD50. EUDPS is calculated
according to formula proposed in (21):

EUDPS = TD50
e ·m− ln(− ln(NTCPPS))

e ·m− ln(ln(2))
(4)

The study presented in (22) optimized the parameters of NTCP
models for grade≥2 RP prediction based on 382 thoracic patient
cases. As the endpoint is the same and patient population is
similar with our study, we directly used the same parameters,
which are listed in Table 2.

The dose distribution within lung volumes is derived from
the treatment plan data in DicomRT format. This procedure is
implemented with Matlab software (MathWorks, Natick, MA).
Feature extraction is implemented with the python pyradiomics
package (v2.0.0) (16). LR is implemented in R language, with the
stats (v3.4.1) package (23).

RESULTS

Clinical factors of analyzed patients are listed in Table 3.
Figure 1A shows the dose distribution within total lungs, and
Figures 1B,C shows the corresponding GLCM and GLRLM
in logarithmic scale for the sake of clearance. Twenty and
sixteen features, which are commonly used in radiomics studies,
are derived from GLCM and GLRLM, respectively. All the
features are calculated for the dose distribution within ipsilateral,
contralateral and total lungs, separately. In total, 129 [(27 + 16)
× 3] features are extracted for each patient.

Univariate Analysis
Table 4 lists the results of univariate analysis. The most
significant predictors of the three sets of factors/features are the
MLD (MLDI), NTCPPS (NTCP

I
PS) and GLCM (GLCMI) contrast

of ipsilateral lung, respectively. The GLCM contrast measures
local variation of dose distribution. It is interesting to notice
that the most significant predictors are all derived from the
dose distribution within ipsilateral lung. The median and 10–
90th% odds ratio (OR) of the most significant factor/feature and
constant term are listed in Table 4. The OR can be interpreted as:
increasing the corresponding factor by one unit the probability
of RP incidence increases by OR times. Increasing MLDI,
NTCPIPS and GLCMI contrast by one unit will increase the
probability of RP incidence by 1.667, 2.041 and 2.010 times.
The range of 10–90th% OR measures the repeatability of the
derived predictive model. The 10–90th% OR range of GLCMI

contrast is greater than MLDI but lower than NTCPIPS. The

TABLE 2 | NTCP model parameters.

TD50 a or k m

Lyman 30.8 0.99 0.37

PS 34.0 0.06 0.90

The 3rd column lists the value of a for Lyman model and k or PS models.
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OR of constant term is the ratio of RP probability over non-
RP probability of the dataset without using any predictor.
For the three LR models, the median and 10–90th% ORs of
constant term are almost identical. The AUC values of NTCP
and dosiomics factor/feature are approximate, but higher than
dosimetric factors.

TABLE 3 | Clinical factors.

Characteristic Value

STAGE

I 4 (5.7%)

II 5 (7.1%)

III 53 (75.7%)

IV 8 (11.4%)

SEX

Male 61 (87.1%)

Female 9 (12.9%)

AGE

Range 35-84

Mean ± Std. 61 ± 10

TUMOR LOCATION

Left 33 (47.1%)

Right 37 (52.9%)

KPS

≤80 41 (58.6%)

>80 29 (41.4%)

CONCURRENT CHEMOTHERAPY

Yes 38 (54.3%)

No 32 (45.7%)

SMOKING HISTORY

Yes 60 (85.7%)

No 10 (14.3%)

PRESCRIPTION DOSE (Gy)

Single fraction 2.27 ± 0.85

Total 59.10 ± 5.67

RP GRADE

≥2 15 (21.4%)

<2 55 (78.6%)

KPS, Karnofsky performance status.

Multivariate Analysis
Table 5 lists the results of multivariate analysis. The optimal
combinations all contain the most significant single predictors.
The second significant predictors are V5 of contralateral lung
(VC

5 ), EUDPS (EUDC
PS) of contralateral lung and GLRLM

(GLRLMT) low gray level run emphasis of total lungs,
respectively. VC

5 represents the lower dose within contralateral
lung. EUDC

PS by definition is the uniform dose that has the
same complication probability with the original heterogeneous
dose distribution. The GLRLMI low gray level run emphasis
measures the region of low dose, with a higher value indicating
a greater concentration of low dose distribution. The most
significant single factors/features are all extracted from ipsilateral
lung, while the second from either contralateral or total lungs.
As shown in Figure 2, the factors/features extracted from same
dose distributions are more correlated, while the factors/features
extracted from different dose distributions are less correlated,
especially the factors/features of ipsilateral and contralateral
lungs. In order to prevent overfitting, the strongly correlated
factors/features are excluded. This explains why the second
predictors are derived from either contralateral or total lungs.

The mean Spearman correlation between the two selected
factors/features of 1,000 bootstrap samples and its standard
deviation are also listed in Table 5. MLDI and VC

5 is positive
correlated. This is because increasing the MLD of ipsilateral
lung would increase the scatter dose delivered to contralateral
lung thus increase the value of V5. For NTCP and dosiomics
factors/features, the Spearman correlation is negative and of

TABLE 4 | Univariate analysis results.

Feature/factor Median OR 10th−90th% OR AUC

Dosimetric MLDI 1.667 1.037–2.842 0.665

Constant 0.256 0.210–0.275

NTCP NTCPI
PS

2.041 1.332–4.119 0.710

Constant 0.246 0.206–0.271

Dosiomics GLCMI contrast 2.010 1.383–3.772 0.709

Constant 0.255 0.219–0.282

The superscript “I” in the second column indicates the feature is extracted from the dose

distribution of ipsilateral lung.

FIGURE 1 | Intermediate results of dosiomics method. (A) 3D dose distribution, (B) GLCM, and (C) GLRLM of total lung.
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TABLE 5 | Multivariate analysis results.

Feature/factor Median OR 10th−90th% OR Spearman correlation AUC

Dosimetric MLDI 1.530 0.879–2.599 0.378 ± 0.110 0.676

VC5 1.360 0.860–2.264

Constant 0.241 0.184–0.272

NTCP NTCPI
PS

1.996 1.311–4.938 −0.176 ± 0.129 0.744

EUDC
PS

1.183 0.772–1.931

Constant 0.240 0.195–0.268

Dosiomics GLCMI contrast 1.843 1.276–3.519 −0.168 ± 0.087 0.782

GLRLMT low GL run emphasis 1.232 1.028–1.601

Constant 0.211 0.114–0.261

The superscript “I” in the second column indicates the feature is extracted from the dose distribution of ipsilateral lung, “C” and “T” for contralateral and total lung, respectively.

FIGURE 2 | Mean Spearman correlation of 1,000 bootstrap samples. (A–C) mean Spearman correlation of dosimetric factors, NTCP factors, and dosiomics features.

(D) zoomed correlation of the features extracted from ipsilateral and total lungs. All the 4 figures are diagonal symmetric. For (A–C), the features are sorted in the order

of ipsilateral, contralateral, and total lungs from left to right and from top to down. In (D), the features are sorted the order of GLCM and GLRLM. The correlation of the

features of the optimal combination are denoted with red circle. Cor, correlation; Emp, emphasis; GL, gray level; Homo, homogeneity; LRun, long run; SRun, short

run; N-uni, non-uniformity; RL, run length.

lower magnitude, indicating that the selected predictors are
weakly negative correlated.

For dosiomics features, the increase of AUC is obvious when

switching from univariate LR to multivariate LR. On the other
hand, the increase of AUC for dosimetric and NTCP factors is

limited. This is because either the dosimetric or NTCP factors

describe the dose distribution from the similar perspective.
Adding another predictor will not significantly improve the

predictive ability. On the contrary, the dosiomics features display

a rich diversity, which is benefit for revealing the hidden
correlation with RP incidence.

DISCUSSION

We investigated the published studies on the correlation between
dosimetric factors and RP incidence, and found the conclusions
differ from individual institution or dataset. The quantitative
analysis of normal tissue effects in the clinic (QUANTEC)
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summarized available published data and performed a logistic
regression between MLD and RP (9). Despite the differences in
patient selection and RP grade of published data, an obvious
trend could be observed: the probability of RP incidence increases
with MLD. This conclusion supports our finding: MLDI is the
most significant dosimetric predictor. Most published studies on
the correlation of NTCP factors and RP incidence focus on fitting
the parameters of NTCPmodels to better predict RP incidence. In
this study, we directly used the optimized parameters presented
in (22), and found that NTCPIPS is the most significant predictor.
Tsougos et al. (7) also reported that PS model outperforms
the rest NTCP models for RP (grade 2) prediction of breast
cancer radiotherapy. Both studies demonstrate that RP occurs if
significant sub-volumes are damaged. This conclusion is further
validated by the study reported in (3), which found RP incidence
significantly increases if the sparing lung volume (dose ≤ 40Gy)
is less than 1852cc.

The results of multivariate LR demonstrate that the prediction
ability of dosiomics features outperform dosimetric and NTCP
factors. Meanwhile the NTCP factors has better performance
than the dosimetric factors. The results validate the hypothesis
that the predictive ability improves with more information of
the dose distribution are used by the prediction model. The
application of dosiomics method is not limited to RP prediction.
It is suitable for any radiotherapy outcome, either positive
(like survival, control rate) or negative (like normal tissue
damage, complication).

We have to admit that the patient dataset of this study is
limited. In order to address this issue, the bootstrap approach
is adopted. The coefficients of univariate and multivariate LR is
determined as the median of the fitting results using bootstrap
samples. The predictor number of multivariate LR is set to 2 to
avoid overfitting. For dosiomics features, the improvement on
predictive ability is significant when switching from univariate
LR to multivariate LR. With the diverse dosiomics features,
it is reasonable to assume that the predictive ability could be
further improved when the patient dataset is enlarged with more
positive cases, in which case more predictors could be included
in multivariate LR.

Except for enlarging the patient dataset, another promising
direction to further improve the predictive ability is to dig deeper
of the patient dataset. Dose distribution, even strongly correlated

with RP incidence, is not the unique factor. Other clinical factors,
such as the age, smoking history, chemotherapy, are also found
to be associated with RP incidence. In addition, other “omics”
features, such as the features extracted from radiomics, genome
and proteomics, also provide insightful information. All these
factors/features could be integrated into the model to improve
its prediction ability and robustness.

Although the dosiomics features demonstrate good prediction
ability, the understanding of these features is still qualitative.
The main reason is the process of transform dose distribution
into GLCM and GLRLM cannot be accurately described with
analytic function. Therefore the features based on GLCM and
GLRLM are not as simple and straightforward as dosimetric
factors. Based on the finding of this study, we qualitatively
conclude that the higher local dose variation within ipsilateral
lung and the greater low dose region of total lungs, the greater
probability of RP incidence. Furthermore, how to utilize the
features for treatment plan design is not quite clear. In other
words, currently the dosiomics method is limited to RP incidence
prediction. How to use the dosiomics method to prevent
RP incidence during treatment planning is one goal of our
future study.
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