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Abstract—To achieve high availability in the face of network
partitions, many distributed databases adopt eventual consis-
tency, allow temporary conflicts due to concurrent writes, and
use some form of per-key logical clock to detect and resolve
such conflicts. Furthermore, nodes synchronize periodically to
ensure replica convergence in a process called anti-entropy,
normally using Merkle Trees. We present the design of Dot-
tedDB, a Dynamo-like key-value store, which uses a novel node-
wide logical clock framework, overcoming three fundamental
limitations of the state of the art: (1) minimize the metadata
per key necessary to track causality, avoiding its growth even
in the face of node churn; (2) correctly and durably delete
keys, with no need for tombstones; (3) offer a lightweight anti-
entropy mechanism to converge replicated data, avoiding the need
for Merkle Trees. We evaluate DottedDB against MerkleDB, an
otherwise identical database, but using per-key logical clocks and
Merkle Trees for anti-entropy, to precisely measure the impact
of the novel approach. Results show that: causality metadata
per object always converges rapidly to only one id-counter
pair; distributed deletes are correctly achieved without global
coordination and with constant metadata; divergent nodes are
synchronized faster, with less memory-footprint and with less
communication overhead than using Merkle Trees.
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I. INTRODUCTION

Internet-scale distributed systems are typically put together
as a mix of different applications and sub-systems [1], often
combining different trade-offs with respect to choices of
consistency and availability in the face of partitions [2], [3].
In the last decade, since the advent of Amazon’s Dynamo
architecture [4], a growing niche of applications have been
formed around eventually consistency solutions [5] supported
by designs derived from Dynamo. These put together a key-
value store supporting data divergence and reconciliation, with
background anti-entropy repair supported by Merkle trees.
Some of these eventually consistent (EC) databases, such as
Apache Cassandra [6] and Basho’s Riak [7], are now important
components in the systems run by Comcast, Uber, Best Buy,
Netflix and the UK National Health Service, among many
others [8], [9].

These EC databases depart from the stronger consistency
guarantees that can be provided in relational databases; in-
stead, they offer scalable solutions and choose to stay available
rather than consistent, accepting the impact of data divergence,

when partitions occur. Moreover, they allow low latency
responses even when nodes are geographically spread. These
properties were a strong motivation in the industry to migrate
some applications that had lower consistency requirements
compounded by higher availability and timing concerns, while
leaving others in classic relational solutions or enlisting ser-
vices that provided stronger coordination [10].

While Cassandra and Riak have in common a client API
with simple get/put/delete operations, they differ significantly
from the Dynamo design on conflicting writes to the same key.
Dynamo detected and tagged concurrent versions with version
vectors [11]; Cassandra simplified the design by using wall-
clock timestamps; Riak made it more precise by using dotted
version vectors [12], allowing a more efficient handling of
large numbers of concurrent writes.

Recent developments in eventually consistent designs have
tried to solve known limitations of these early approaches:
addressing causal consistency [13], [14], [15], [16], [17];
transactional support [16], [18], [14]; consistency tuning [19],
[20]; and automating data reconciliation [21].

In this paper we only consider per-object causal consistency,
not whole system cross-object causal consistency. We focus
on a different set of problems that have so far received less
attention. We will show that they have a significant impact on
the efficiency and correctness of Dynamo-like system designs.

A. Challenges

It’s recognized that “despite their simple interface and data
model, distributed key-value storage systems are complex
internally” [22]. Some of the challenges that arise from this
complexity include: accurate and scalable conflict detection;
reducing metadata pollution due to frequent node churn;
correct and efficient handling of distributed deletes; and cost
efficient support of anti-entropy repair of data. Next, we cover
them in detail.

Conflict Detection: There are two main approaches: wall-
clock timestamps and logical clocks. Timestamps are easier to
implement, but rely on globally synchronized physical clocks.
Even with perfect physical clocks, which cannot be achieved in
practice [23], they would still fail to capture the causality [24]
between updates. Two clients can read the same object, with
a given key, and each write an updated version to some
server node. A totally ordered timestamp cannot express this



concurrent update pattern. With timestamps, a last-writer-wins
policy is typically used, causing an arbitrary loss of all but one
of the concurrent updates.

Logical clocks capture causality between object versions.
We use term logical clock to denote any non-physical clock
(not only Lamport scalar clocks, but also, e.g., vector clocks).
Version Vectors [11] would detect the update conflict above,
since updates originated from the same object and diverged
independently. Logical clocks can either have node-based ids
or client- based ids. The latter are prohibitive (with many
clients), while node-ids have a space complexity linear with
the number of active nodes over an object’s lifetime. There-
fore, logical clocks may induce significant metadata costs and
require further optimization in order to compete with the space
efficiency of wall-clock timestamps.

Node Churn: When a node is retired or crashes perma-
nently, its node-id remains present in logical clocks for object
replicas in other live-nodes. It is also propagated to replicas in
the new replacement nodes, which themselves will introduce a
new node-id. Over time, the size of version-vector-like logical
clocks will increase with the total number of nodes ever used.
In Dynamo and early versions of Riak there is a limit to the
size of the vector, that when reached induced a removal of
entries via a LRU policy. However, removing entries is not
safe, as a general solution, and can lead to false conflicts:
wrongly identifying two versions as causally concurrent, when
one happened-before [24] the other, making the latter obsolete.

Distributed Deletes: Given a delete request, completely re-
moving an object and corresponding logical clock information
from storage is normally not possible without losing causality
information, which may lead to that object resurfacing via
delayed replication messages or synchronization with outdated
nodes. In current schemes, the payload of the key can be
removed, but the key must continue to map to the current
logical clock paired with a tombstone, to ensure that causality
is respected across replica nodes. The extra metadata required
per deleted key results in a linear growth in space consump-
tion, which over time leads to significant waste. It would be
desirable to have an alternative that is not linear with the
number of deleted keys, in particular for small payloads where
the relative cost of keeping tombstones is higher.

Anti-Entropy Repair: The network is unreliable [25] and
often replication messages are lost or nodes are simply parti-
tioned and cannot communicate. This precludes write opera-
tions from disseminating the written data (and metadata) to all
replicas. Over time, for any given pair of nodes, the replicas
corresponding to the subset of keys in common diverge and
must be repaired towards convergence. This is typically done
periodically, in bulk, by Anti-Entropy protocols [26] running
as a background task.

The most used anti-entropy protocol in distributed databases
involves hashing objects into a Merkle Tree [27] and then
comparing trees to detect differences. This approach makes a
tradeoff between tree size (branching factor and tree depth)
and false positives in objects that must be repaired. Commu-
nication costs can be high in both cases: with a large tree,

we exchange a lot of metadata to learn which objects must be
repaired; with a small tree, we exchange a large amount of
key-object hashes, even with a few updates. The impact is so
significant that anti-entropy is turned off by default in some
systems, with convergence limited to read-repair: relevant
replicas are updated when nodes detect inconsistencies while
serving a client read.

B. Contributions

To address the challenges above, in this paper we present
the Node-wide Dot-based Clocks (NDC) Framework, involving
several logical clocks, distributed algorithms, and correspond-
ing data-structures. It establishes and exploits a close relation-
ship between a node logical clock and every object logical
clock. The key idea of NDC is to summarize (and migrate-to
over time), information from every object logical clock into the
node logical clock, leading to a much lower metadata footprint
per object.

The NDC algorithms that we present in this paper can
now automatically remove all unnecessary causal information
from all objects. They also synchronize the partial shared
state between nodes via anti-entropy, with no need for Merkle
Trees. This leads to much better efficiency and behavior under
failures than current approaches.

We developed DottedDB, a Dynamo-like distributed key-
value store implementing the NDC framework. We evalu-
ated its performance against MerkleDB, our implementation
of a distributed database otherwise identical to DottedDB,
but using the previous state of the art solutions to conflict
detection (per-key Dotted Version Vectors) and anti-entropy
repair (Merkle Trees). To summarize, the main contributions
of this paper are as follows:

e A general NDC framework that enables: (a) efficient
causality tracking and conflict detection; (b) distributed
deletes without tombstones; (c) an lightweight anti-
entropy protocol;

¢ DottedDB: an open-source distributed database based on
the NDC framework;

« Extensive evaluation in a precisely controlled experiment
to measure the impact of the novel approach (in Dot-
tedDB), under a fair comparison with previous state of
the art techniques (in MerkleDB).

II. SYSTEM OVERVIEW
A. System Model

The database is composed by a set of nodes, each with
its own storage. Each node has a unique id and can only
communicate with other nodes via asynchronous message
passing. Messages can be lost and reordered. Nodes can crash
and restart with stable storage, or can fail entirely and be
replaced by a new node with a new id and an empty storage.

B. Partial Replication

Objects are replicated across a set of nodes. The number
of replicas can be customized across the entire server or on
a per-object basis. It is typically much smaller (e.g., 3) than



the number of nodes (e.g., 100). Nodes that share replicas of
some object are called peer nodes. In general, the common set
of objects replicated by two peer nodes is only a small subset
of the objects stored at either one.

C. Client API

The database is a key-value store, where objects are ac-
cessed through their key. A client can issue requests to any
node in the server. If the contacted node does not hold a replica
of the requested key, it forwards the request to one of the
replica nodes for that key. These operations are available:

(values, context) < get  (key)
bool <— put (key, value, context)
bool < delete (key, context)

When the client fetches an object by key, a list of objects
is returned, reflecting possible concurrent updates, together
with an opaque causal context. This causal context plays a
role in maintaining the causal history of individual objects
by allowing the client to link a get to a subsequent update
operation, either put or delete, which takes the causal context
as an extra parameter.

Typically, a client wanting to perform a read-modify-update
operation will perform a get, modify the value(s) returned and
issue a put, passing the new value together with the causal
context from the get.

III. BACKGROUND AND RELATED WORK
A. Anti-Entropy Protocols

The normal client request handling workflow may leave sev-
eral replicas with different versions, either because of message
loss or network partitions. There must be a further mechanism
by which the system can self-heal and achieve consistency,
even if no more client requests arrive: outdated objects should
be replaced by newer ones, new objects should be present in all
relevant nodes and deletes should remove the corresponding
replicas in all relevant nodes. Such a mechanism is called
an anti-entropy protocol [26], typically being run periodically
between pairs of nodes. The two most common data structures
used to repair replicated data are Bloom Filters [28] and
Merkle Trees [27]. Most Dynamo-like systems today use a
protocol based on Merkle trees to compute the differences
between nodes, since bloom filters are not as efficient for large
data-sets [29].

1) Merkle Trees: A Merkle tree is tree data structure where:
each inner node stores the hash of its children hashes; the
leaf nodes store a list of key-hash pairs and the hash of that
list. Since peers may not replicate the same set of keys, due
to partial replication, each server node maintains one Merkle
tree per replica group: a set of peers that replicates a common
subset of keys. Each new object is hashed and inserted in the
appropriate leaf node, according to its key-hash. The hash of
the leaf node is then updated, as are all parent nodes until the
root.

To compare the state of two nodes, they exchange the
corresponding Merkle trees by levels, only descending further
down the tree if the corresponding hashes are different. If two
corresponding leaf nodes have different hashes, then there are
objects which must be repaired. The list of (key,hash) pairs is
then exchanged and the final list of objects in need of repair
is computed.

Accuracy versus Metadata: There is a fundamental trade-
off in Merkle trees, between the tree size and the accuracy
of the detection of outdated keys. The size of the tree, given
by the number of children per node (branching factor) and
number of levels (height of the tree) should not be considered
in absolute terms but relative to the number of keys that are
stored. An appropriate metric to evaluate accuracy-versus-size
is the number of keys per leaf node.

The optimal setting for accuracy would be a key/leaf ratio
around 1, where ideally all leaf nodes would be used, storing
the hash of only one object, and therefore being always
accurate. However, this is impractical for large datasets, as it
would imply a large tree size, even with a dynamically sized
tree [29].

B. Managing Multiple Versions

Replicated objects may diverge when multiple clients con-
currently update the same key. When a node receives an object
to store and it already has another version, it must decide how
it will choose between them or if it will keep both.

1) Physical Timestamps: Some systems like Cassandra [6]
tag each version of an object with a physical timestamp and
use a last-writer-wins policy. This is simple to implement,
but even perfect timestamps cannot capture the true nature
of concurrent client updates, leading to lost updates without
the client noticing.

2) Per-Object Logical Clocks: Others use the notion of
causality [24] to tag versions with some logical clock, which
does not rely on real time, and allows detecting when two
updates are concurrent; this enables preserving both versions
to be reconciled later. Dynamo [4] uses the classic Version
Vectors [11], a map from node ids to counters, incremented
by the corresponding server node when coordinating an update
request. Riak [7] uses an improved logical clock, Dotted
Version Vectors [12], which allow accurate representation of
client-originated concurrency.

A drawback is that each per-object logical clock has a size
linear with the replication factor (ignoring logarithmic factors).
While this may not seem problematic with the usual small
replication factors (e.g., 3 replicas), node churn is a natural
occurrence in distributed systems, with new nodes replacing
failed nodes over time. This in turn will pollute the VV with
more and more entries over time. The normal approach to
overcome this problem is to prune older entries in the VV, but
this breaks causality and introduces false concurrency into the
system [12].

3) Node-Wide Logical Clocks: While the basic usage of
logical clocks involves treating each object independently, to
overcome the per-object metadata size overhead, a powerful



idea is to factor out knowledge common to the whole node
into a Node Logical Clock to supplement each object logical
clock, making the per-object clock smaller.

Ladin et al. [30] developed Lazy Replication with node
logical clocks and a Lamport clock [24] per write, but the
metadata compaction depends on loosely-synchronized clocks
and the availability of client replicas.

Bayou [31] attaches writes with a Lamport clock and stores
them in 3 different logs, each with its own logical clock: the
tentative writes, the committed writes and the undo writes.
This works because it totally orders writes with a primary
server, in order to store only the maximum counter per replica.

Eiger [14] focus is on causal consistency [32] by using
one Lamport clock per node, to issue globally unique ids to
updates, but it does not support concurrent versions, nor does
it address anti-entropy repair.

Concise Version Vector (CVV) [33] uses a node clock to
repair replicas in a distributed file system, but it does not
address how to deal with distributed deletes, does not provide
a detailed algorithm to identify which keys are missing, their
object logical clock is not bounded by the replication factor,
and it lacks support for concurrent versions.

Vector Sets [34] improve on CVV by placing an upper-
bound on the size of object logical clocks, dividing the objects
in sets that can be represented by a single compact version
vector, instead of a single node logical clock.

Cimbiosys [35] also builds upon CVVs to build a peer-
to-peer partial replication platform, but also fails to support
concurrent values, and its anti-entropy is inefficient since it
sends all potential missing keys to a replica.

Gongalves et al. [36] have the most similar use of node-
based logical clocks, but nodes only exchange locally coordi-
nated objects, which prevents data consistency in the presence
of failures; also, the system does not guarantee complete
object causality removal and node churn is not well supported
because old node ids pollute the node clock.

IV. NODE-WIDE DOT-BASED CLOCKS FRAMEWORK

Node-wide Dot-based Clocks (NDC) is a general framework
for distributed, partitioned and replicated databases. It assumes
a master-less collection of nodes, any of which can handle
client requests, without distributed locking or global coordi-
nation. It aims to: (a) reduce to a minimum the amount of
causality metadata stored per object, even with node churn;
(b) provide a causally-safe way to delete objects with no need
for tombstones; (c) provide a lightweight anti-entropy protocol
exploiting the logical clocks. To achieve this, it makes use of
some key ideas:

1) Every update has a globally unique identifier (Dot):
Every time a node coordinates a client request that updates
a local object (including deletes), it generates a new globally
unique identifier, by pairing the node id with a node-wide
monotonically increasing counter; we call this pair a dot'.

IThe term dot comes from [12], denoting an isolated event “over” a version
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vector, as a diacritic dot is placed over an “1” to form an “i”.

Since every version of an object in the system has a unique dot,
nodes can summarize their knowledge of updates in a single
data structure: the node clock. It contains all dots generated
locally or received from peer nodes via replication or anti-
entropy.

2) Object metadata migrates to the node clock: Since the
node clock summarizes the local storage history, causality
metadata for each object version (i.e., dots representing its
causal past) can eventually be omitted when saving to storage
or when sending to another node, using the strip operation.
When an object is fetched from storage, its causal past can be
recovered through the node clock, using the fill operation.

3) Churn rate does not affect object metadata size: This
fill-strip mechanism allows metadata in objects to remain ef-
fectively constant in size, even when new nodes keep entering
the system to replace old nodes over time. This is because the
dots from retired nodes are eventually included in the node
clock and therefore stripped from objects.

4) The node clock is the delete tombstone: In distributed
data stores without coordination, client deletes only remove
the payload of an object, leaving the causal metadata as a
tombstone. This is done to avoid anomalies, such as receiving
an older version of a deleted object via replication or anti-
entropy, which will make the object reappear or even supersede
recent writes.

However, the node clock can act as the tombstone for all
deleted objects, since it eventually summarizes all metadata.
Thus, deleted objects can be safely removed from storage,
since they will be restored (i.e. filled) to the corresponding
tombstone when read.

5) Nodes can synchronize by comparing node clocks: The
anti-entropy protocol responsible for detecting and repairing
obsolete data, can now simply compare node clocks, to learn
which dots from one node are missing from another node.

A. Notation

We use mostly standard notation for sets and maps, in-
cluding set comprehension of the form {f(z) | = € S} or
{x € S| Pred(z)}. A map is a set of (k,v) pairs, where
each k is associated with a single v. Given a map m, m[k]
returns the value associated with key k, while m[k] = v
updates the value associated with k& with v. We use < for
domain subtraction; s <m is the map obtained by removing
from m all pairs (k,v) with k € s. The domain and range of a
map m is denoted by dom(m) and ran(m), respectively, i.e.,
dom(m) = {k | (k,v) € m} and ran(m) = {v | (k,v) € m}.

We use IN for natural numbers, and also I, IK and V for
some set of node identifiers, keys and values, respectively. We
also use P(s) for the power set of some set s. For convenience,
when k ¢ dom(m), then m/[k] returns the bortom value for that
type; e.g., for some m = I < IN, then m(k) returns O for any
unmapped key k.

B. The Node Clock

The node clock represents which update events this node
has seen, directly (coordinated by itself) or transitively (re-



ceived from others). In abstract, it represents the set of dots
corresponding to those updates.

Concretely, the node clock groups dots per peer node,
factoring out the node id part from the dots. Also, each set of
counters associated with a node id, can be greatly compacted
by exploiting the fact that dots are generated with consecutive
counters. For each node, the node clock represents the set
of counters in two parts: an base counter representing the
contiguous sequence starting from 1 (as in Version Vectors),
and a set of non-contiguous counters.

Since the latter typically represents a small range of dots
(the gaps in non-contiguous sets are filled in anti-entropy
runs), it can be efficiently encoded as a bitmap, as in our
implementation in DottedDB.

C. Per-Object Clock

An object internally encodes a logical clock by tagging
every value (there can be multiple concurrent values) with a
dot and storing all current and past versions also as dots. We
call the former versions and the latter causal context. Dots are
removed (stripped) from the causal context if they are included
in the node clock. The dot in a version is never removed, since
it is used to test if another object obsoletes that version.

Because dot generation is per-node instead of per-key, it is
unlikely that dots in the causal context are contiguous. But
all gaps can be totally filled with extra dots, producing the
extrinsic [36] set of the original. Those extra dots are from
versions of other keys, since an object containing a version
with a dot (n, ¢), must have seen all prior versions coordinated
by node n with a dot smaller than (n,c). Thus, the context
can be represented only by the biggest dot per node id, like a
Version Vector, without sacrificing correctness.

D. Node State

The NDC framework requires each node to maintain five
data-structures:

1) Node Clock (NC): all dots from current and past versions
seen by this node;

2) Dot-Key Map (DKM): maps dots of locally stored
versions to keys. This is required by the anti-entropy
protocol to know which key corresponds to a missing
dot that needs to be sent to another node. Entries are
removed when dots are known by every peer node;

3) Watermark (WM): a cache of node clocks from every
peer (including itself). It is used to know when a dot
is present in all peers, enabling the removal of that
entry in the DKM. It is updated in every anti-entropy
round, taking advantage of the node clock exchange. In
practice, only the base counter of every node clock entry
is saved, resulting in a more compact representation as a
matrix, although slightly delaying the garbage collection
of DKM;

4) Non-Stripped Keys (NSK): the keys of local objects with
a non-empty causal context. When an object is saved to
storage, it may have entries in the causal context that
are bigger than the node clock. To guarantee that every

object is eventually stripped of its causal context, this
list is periodically iterated to check if the causal context
can be completely removed;

5) Storage (ST): maps keys to objects.

The definition of these data-structures is as follows:

NC =T< P(N)

DKM = (I x N) — K

WM =I—I1—N

NSK = P(K)

ST =K<= (IxN)—=V)x(I<=N)

E. Serving Client Requests

Algorithm 1 describes the three operations are available to
a client: GET, PUT, and DELETE.

Algorithm 1: Client API at Node 3.
procedure GET(Key k, Int quorum|[= 1]):
O0:=10

for p € replica_nodes(k) do
remote fetch(k)@p upon o => O := O U {0}
await size(O) > quorum
(vers, cc) := reduce(O, merge)
return (ran(vers), cc)

procedure PUT (Key k, Value v, CausalContext cc):
c:=max(NGC;[i]) + 1
ver := ((3,¢),v)
ccli] :==c¢
o := update(k, ({ver}, cc))
for p € replica_nodes(k) do
remote update(k,0)@p

procedure DELETE(Key k, CausalContext cc):
PUT (k, null, cc)

Get: To read an object, the client specifies the key and
optionally the quorum size for the number of replicas to fetch.
Any node can coordinate a read; it first requests replica nodes
for that key; when it obtains a sufficient number of replicas,
it merges them; the resulting causal context is returned, along
with all concurrent values.

Put: The coordinator node generates a new dot that together
with the new value, forms the new version of this object. That
version, together with the client context (with the new dot)
forms a temporary object that is used to update the local object,
merging them. Finally, the object is sent to other nodes that
replicate that key.

Delete: The DELETE API is exactly like a write, but
without a new value. The new dot is associated with a null
value and the PUT operation is called. It is important to
note that if the client context does not include the dot of
some locally stored version, such version will not be deleted.
This is the desired behavior because such version is causally
concurrent with the delete. This respects causality and avoids
anomalies, like clients unknowingly deleting a concurrent
update from another client, or a slowly propagated delete
removing future object updates.



Algorithm 2: Auxiliary Operations at Node <.

Algorithm 3: Background Tasks at Node <.

function fetch(Key k):
return fill(k,ST;[k], NC;)

procedure store(Key k, Object 0):

(vers, cc) := strip(o, NC;)

// remove object if no values and cc is empty

if {val € ran(vers) | val Znull} =@ A cc = 0 then
Sj} = {k} < 51)

else ST;[k] := (vers,cc)

for (n,c) € dom(vers) do
NC;[n] := NC;[n] U {c}
DKM;[(n,c)] ==k

if cc = () then NSK; := NSK; \ {k}

else NSK; := NSK; U {k}

function merge(Object (v1, cc1), Object (v2,cc)):
v = v1 Nv2
vy := { (dot,val) € v1 | dot & cca }
vg 1= { (dot,val) € vz | dot & cc1 }
return (v U vy Uwg, cer U cez)

function update(Key k, Object o0):
o' := fetch(k)
o0 := merge(o,0")
store(k, 0)
return o

function strip(Object (vers, cc), NodeClock NC):
for n € dom(cc) do
// function base returns the biggest counter b in
some collection C, where Vi€ [1,bl.i € C
if cc[n] < base(NC[n]) then cc:= {n}<cc
return (vers, cc)

function fill(Key k, Object (vers, cc), NodeClock NC):
for n € replica_nodes(k) do
cc[n] := max(cc[n], base(NC[n]))
return (vers, cc)

F. Auxiliary Operations

In addition to the fill and strip operations already discussed,
there are four other operations defined in Algorithm 2: fetch,
store, update, merge.

Reading an object with fetch fills the context with the
current node clock base, restoring causality information. The
restored context can be bigger than the original one without
affecting correctness, because all new causal information is
either from older versions of this key or from dots of others
keys.

The store operation first strips the object. Then, if the causal
context is empty and there are only null values, the object
is removed from storage; otherwise, the object is saved to
storage. In addition, it: (a) adds all version dots to the node
clock and to the dot-key map, (b) adds the key to the non-
stripped key set if the causal context is not empty, or removes
the key from the set otherwise.

The merge function takes two objects, and returns a new
object with the causal contexts merged (taking the maximum
counter for common node ids) and the versions of each object
not obsolete by the other. An object version (dot,val) is

process strip_causality():
loop forever
for k € NSK; do store(k,ST;[k])
sleep(strip_interval)

process anti_entropy():
loop forever
// peers(i) returns all peers of ¢ and ¢ itself

remote sync_clock(i, NC;)@ random(peers(i) \ {i})
sleep(sync_interval)

procedure sync_clock(Nodeld p, NodeClock NC,):

// get all keys from dots missing in the node p
K:=0
for n € peers(i) N peers(p) do

K := KU{DKM;[(n,c)] | ¢ € NC;[n] A ¢ € NCp[n] }
// get the missing objects from keys replicated by p
O :={(k,ST;[k]) | k € K A p € replica_nodes(k) }
remote sync_repair(i, NC;, O)Qp

procedure sync_repair(Nodeld p, NodeClock NC,,
KeyObject's O):
// update local objects with the missing objects
for (k,0) € O do update(k,fill(k, 0, NC,))
// merge p’s node clock entry to close gaps
NCi[p] := NCi[p] UNGC,[p]
// update the WM with new % and p clocks
for n € dom(NC,,) N peers(i) do
WM;[p][n] := max(WM;[p][n], base(NCy[n]))
for n € dom(NC;) do
WM;[é][n] := max(WM;[i][n], base(NC;[n]))
// remove entries known by all peers
for (n,c) € dom(DKM;) do
if min({ WM;[m][n] | m € peers(n) }) > ¢ then
DKM, := {(n, ¢)} < DKM;

obsoleted by another object (vers,cc), if (dot,val) & vers
and dot € cc. Finally, the update operation merges the
receiving object with the local object and then stores and
returns the result.

G. Background Tasks

Algorithm 3 describes two background processes running at
every node: the anti-entropy and the causality stripping.

1) Anti-Entropy: Periodically, the anti-entropy process in a
node A chooses a random peer B to sync with, and sends its
node clock. Node B computes the differences between A’s
clock and its own, resulting in a set of dots missing from A
that B can provide. The dot-key map is queried by B to find
which keys correspond to those missing dots. B then sends
to A only those objects that are also replicated by A. Every
object is read directly from storage without being filled, to
save bandwidth; they are later filled at node A.

Upon receiving the missing objects, A updates all local
objects with the received information. Additionally, it: (a)
merges B’s node clock entry into A’s node clock, closing
any gap from dots of B not replicated by A; (b) updates
the watermark with the base of A’s and B’s node clock; (¢)
removes any entry in the dot-key map, if the dot is known by
all peers (the entry is not necessary anymore for anti-entropy).



2) Causality Strip: Periodically, the node iterates the non-
stripped keys, reading each one directly from storage and
storing them back. The store operation already takes care of
the stripping and updates the NSK accordingly.

V. EXPERIMENTAL EVALUATION

To evaluate NDC against the state of the art, we imple-
mented two distributed databases: DottedDB and MerkleDB.
They share the exact same codebase, but diverge in the
way they handle anti-entropy, object causality and distributed
deletes.

A. DottedDB

We implemented a distributed database named DottedDB?,
using the NDC framework both for anti-entropy and per-object
causality. DottedDB was implemented in Erlang, using the
distributed systems framework Riak Core [7]. It runs on a
cluster of physical machines, each having multiple instances
of an abstraction called a virtual node (vnode). Each vnode
is completely independent and isolated, with its own storage
and memory, much like our definition of nodes in the system
model. They only communicate via message passing and
handle client requests sequentially. Vnodes are totally ordered
in a ring and assigned to physical machines sequentially. Data
is replicated with consistent hashing [37]: the hash of a key
maps to a specific ring position, and then the key/object is
replicated to the next n vnodes in the ring, where n is the
desired replication factor.

B. MerkleDB

To establish a baseline, we implemented MerkleDB? as an
optimized version of the key features from the state of art
distributed key-value store design in Riak 2.0 and later ver-
sions. For fair comparison, MerkleDB is a clone of DottedDB
in every way, except that it uses Merkle Trees for its anti-
entropy mechanism, and Dotted Version Vectors as the logical
clock to track each object causality.

C. Configuration

We ran both DottedDB and MerkleDB in 64 independent
vnodes, spread over a cluster of 5 physical machines. An
additional machine was used to run YCSB [38], a benchmark
tool for NoSQL distributed databases. Every run is made after
a loading phase of the entire key-set. All machines used for
these experiments have an Intel i3 CPU at 3.1GHz, 8GB of
main memory, a 7200 RPM SATA disk, and are interconnected
by a switched Gigabit network.

D. Object Logical Clock

Both systems use a logical clock to track object causality:
MerkleDB uses a Dotted Version Vector, while DottedDB uses
the NDC framework. We evaluate the scalability of the logical
clock per object, how fast DottedDB can strip the clock and
how that translates to actual distributed deletes, which directly
depend on stripping.

Zhttps://github.com/ricardobcl/DottedDB
3https://github.com/ricardobcl/MerkleDB
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Fig. 1: Average number of entries in object clocks written to storage,
for two different replication factors, with node churn.
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Fig. 2: CDF (Cumulative Distribution Function) of time needed to
strip the causal past in an object’s clock, after the update at the
coordinating node.

1) Object Clock Scalability: Figure 1 shows the average
number of entries in object clocks written to store over time.
To simulate node churn, one node is replaced every 4 seconds.
(This aggressive churn rate allows a short run to depict what
would normally happen over a longer period.) Update requests
are issued 150 times per second for 5000 keys, and we take a
measurement every time we write objects to storage.

MerkleDB never removes entries from the object clock;
therefore, this number is proportional to the number of nodes
that have ever been replica nodes for the key. Figure 1 clearly
shows that the average size of the object clock keeps growing
under node churn, as new updates add new node ids to the
clock.

In DottedDB, even under an aggressive churn rate and
continuous updates over the key range, we can see that with
a replication factor of 3 we have between 1 and 2 entries
per clock written to storage on average. This figure grows to
an average of 3 entries per object for a replication factor of
6. Importantly, these numbers do not grow over time. New
node ids from node churn do not pose a problem; entries are
summarized by the node clock shortly after.

2) Strip Latency: Figure 2 shows the cumulative distribu-
tion of the time it takes for an object to have its entire context
stripped in DottedDB, for a sync interval (time between anti-
entropy runs) of 100 ms. We use different strip intervals (the
time between each attempt to strip objects), either identical
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Fig. 3: Number of objects in storage over time. Initially 50000
objects, serving 100 ops/s, 50% writes and 50% deletes.

(0.1 sec) or slower (1 and 10 sec) than the sync interval;
and two failure rates of replication messages when serving
client requests, either 10% to simulate natural message loss,
or 100% to simulate the extreme policy in which replica
propagation is exclusively by anti-entropy. Even with a strip
interval of 10sec, after 20 sec almost all objects are stripped.
Strip intervals of 100 ms or 1 sec give identical results: 90% of
objects are stripped in less than 5 sec. Replication message loss
when serving client requests did not have significant effect.

3) Distributed Deletes: MerkleDB does not remove the
logical clock associated with an object that was deleted,
keeping it stored as a tombstone. In DottedDB, as soon as
we strip the object clock and no value remains, the entry
can be safely removed from storage; i.e., remaining causally
correct (due to the node clock) without the overhead of storing
tombstones. Figure 3 shows the total number of objects stored
in a system pre-populated with 50 000 objects and serving 100
requests per second, 50% updates and 50% deletes. DottedDB
correctly removes entries, without global coordination, in very
little time. There is only a small delay between DottedDB and
the Ideal scenario (immediate removal from storage). We have
observed this delay to be proportional to the strip interval used,
which in this run was 2.5 seconds. Figure 2 also represents
the delay between a delete request and actual removal from
storage.

E. Anti-Entropy

We compare the anti-entropy used by MerkleDB and Dot-
tedDB in three aspects: (1) node metadata used by each
mechanism; (2) network usage while performing anti-entropy;
(3) replication latency: the delay between an object being
written by the coordinator and the object being stored in
another replica.

We evaluated 20 minute runs in a database with 500000
keys, doing 2500 updates/s (each client update includes
reading an object before writing back an updated version),
in different scenarios according to a combination of three
parameters, each being either High or Low, with the values
in Table I: objects per Leaf (applying only to MerkleDB),
either 1000 or one; percentage of objects updated between
anti-entropy runs, either 10% or 1%; and replication message

TABLE I: Parameter choices used when evaluating Anti-Entropy.
Objects per Leaf applies only to MerkleDB.

Objects per Leaf  State Changed

High 1000 10%
Low 1 1%

Message Loss

100%
10%

mxx Object Data

Object Metadata m=E Sync Metadata

Fig. 4: Average network traffic used by the anti-entropy protocol.

loss, either 100% (making anti-entropy do all the work) or
10%. We evaluated 8 configurations for MerkleDB and 4 for
DottedDB, each denoted with a sequence of letters, H or
L, corresponding to each parameter choice, in the order they
appear on the table. For example, MerkleDB HHL uses 1000
objects per Leaf, performs anti-entropy when 10% of local
storage has changed and loses 10% of replication messages
when serving updates.

1) Metadata Size: MerkleDB uses one Merkle tree per
replica group, due to partial replication, as explained in
Section III-Al. For example, using consistent hashing and a
replication factor of 3, each node has 3 Merkle trees. The space
used per tree is linear with the number of keys (key-hash lists
in leaf nodes), plus the size of the tree itself, which is fixed
upon bootstrap.

In DottedDB, metadata consists of the node clock, the
dot-key map, the watermark and the non-stripped keys. In a
quiescent state, the dot-key map and the non-stripped keys are
both empty, and the node clock and watermark are simply a
version vector.

DottedDB metadata was very small (<10KB) when anti-
entropy was frequent (LH and LL); even with infrequent syncs,
metadata was still small (<2MB). In comparison, MerkleDB
used at best 4.2MB. While metadata in DottedDB depends
mostly on data divergence, which can be kept small by
frequent syncs, in MerkleDB it depends on the number of
keys per node, which grows with the database size.

2) Network Usage: MerkleDB sends each tree level in
rounds, as necessary. If a leaf node is reached, all key-hashes
in that leaf are sent, to compare hashes and see which objects
are missing. DottedDB sends the node id, the node clock and
missing objects (not filled).

Figure 4 shows the average network usage in runs for
all configurations as before, segmented by object data (the
key-value(s)), object metadata (object logical clock) and sync
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Fig. 5: CDFs of the replication latency: the time from the moment a node coordinates an update, until the object is stored at another replica.

TABLE II: The average, the 95" and the 99" latencies for client Update requests. The best result per line is in bold.

DottedDB MerkleDB
HH HL LH LL HHH HHL HLH HLL LHH LHL LLH LLL
Average 198 164 48 51 7.0 9.3 6.7 8.1 6.4 8.9 7.0 8.0
95th 64 39 8 7 8 11 8 10 8 11 8 10
ggth 460 394 66 79 137 173 128 155 123 163 143 149

metadata (whatever was transferred by the protocol, excluding
the object data and metadata). It can be seen that DottedDB
is considerably more efficient in terms of network usage
for all configurations. It is much more efficient in the most
realistic *L scenarios, where network usage is much less than
when all replication is through anti-entropy; comparatively,
MerkleDB does not show such a decrease for **L scenarios
when compared with **H ones, and sometimes the usage even
increases, as from HLH to HLL.

3) Replication Latency: Replication latency is the time
between the initial write of a value in the coordinating node
and the time the object is stored at another replica node. For
3 replicas per object each update request gives 2 different
times (the coordinator, always a replica node for the object, is
excluded as its time would be 0). Figure 5 shows the CDFs
for replication latency, where DottedDB is much faster at
propagating data in every scenario. When replication message
loss is 100% (replication exclusively by anti-entropy) and the
sync interval is low (Figure 5c), DottedDB replicates 99% of
updates in less than 20 seconds, while MerkleDB takes 20
times more.

F. Client Request Latency

Although neither system was particularly optimized for raw
performance, we compared both in terms of client-perceived
latency, using the same tests in the previous section. Table II
confirms the results by showing the average, the 95" and the
99" percentile for the same tests. The fast synchronization
version of DottedDB (L*) is 33% faster on average than the
fastest version of MerkleDB, and 86% faster on the 99'"
percentile.

VI. CONCLUSIONS

Merkle Trees are very efficient digests when the changes
they track exhibit spatial locality, such as when used for a

hierarchical file-system. Not surprisingly, but apparently unno-
ticed, this efficiency goes away in systems that use consistent
hashing to spread key allocation across nodes, as this destroys
any locality patterns in the key space. Surprisingly, modern
distributed key-value stores still adhere to this odd combina-
tion of techniques — maybe for the lack of an alternative. In
this paper we show that consistent hashing and Merkle trees
should not be used together; provide an alternative, based on
tracking node-wide causality metadata; and demonstrate that it
significantly improves the performance of currently used anti-
entropy protocols.

An interesting outcome from the evaluation is the observa-
tion that, contrary to Merkle Trees, where there is a tradeoff
between bandwidth overhead and repair latency, with the NDC
framework using very frequent synchronizations is a win-win
situation both in terms of bandwidth and latency. This opens
up the possibility of discarding the traditional replication when
serving client requests and leaving all replication to the anti-
entropy mechanism.

In modern distributed key-value stores there has always
been a tension among timestamp-based approaches, using last-
writer-wins policies (e.g., Cassandra), and approaches that
capture causality and represent concurrent updates for recon-
ciliation (e.g., Riak). The former approach is often chosen
due to its speed, simplicity and low metadata footprint, but
this comes at the cost of arbitrary loss of updates under
concurrency, given the lack of read-update-write transactions.
The latter is more complex and incurs a much higher metadata
cost. In this paper we significantly reduce this cost, presenting
a framework that minimizes the per-object metadata, without
compromising accurate detection of concurrent updates. Our
approach exhibits other two important benefits: allows correct
distributed deletes with no need for permanent tombstones;
works under node churn, while maintaining low metadata cost.
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