Y. WU AND Y. QI KODAI MATH. J. **39** (2016), 410–424

DOUADY-EARLE EXTENSION OF THE STRONGLY SYMMETRIC HOMEOMORPHISM

Yan Wu and Yi Qi

Abstract

It is shown that the complex dilatation of the Douady-Earle extension of a strongly symmetric homeomorphism induces a vanishing Carleson measure on the unit disk **D**. As application, it is proved that the VMO-Teichmüller space is a subgroup of the universal Teichmüller space.

§1. Introduction

Let $\mathbf{D} = \{z : |z| < 1\}$ be the unit disk of the extended complex plane $\hat{\mathbf{C}}$ and let $\mathbf{D}^* = \hat{\mathbf{C}} \setminus \overline{\mathbf{D}}$ be the exterior of \mathbf{D} and $S^1 = \partial \mathbf{D} = \partial \mathbf{D}^*$ be the unit circle. A sense-preserving homeomorphism $h : S^1 \to S^1$ is said to be quasisymmetric

A sense-preserving homeomorphism $h: S^1 \to S^1$ is said to be quasisymmetric if there exists some constant M > 0 such that

$$\frac{1}{M} \le \frac{|h(I_1)|}{|h(I_2)|} \le M$$

for all pairs of adjacent arcs I_1 and I_2 on S^1 with the same arc-length $|I_1| = |I_2| (\leq \pi)$. It is well known in [4] that a sense-preserving self-homeomorphism h is quasisymmetric if and only if there exists some quasiconformal homeomorphism of **D** onto itself which has boundary values h.

Let $QS(S^1)$ be the set of all quasisymmetric homeomorphisms of the unit circle S^1 . Then $QS(S^1)$ is a group under the composition of homeomorphisms. The universal Teichmüller space T is defined as

$$T = \mathrm{QS}(S^1) / \mathrm{M\ddot{o}b}(S^1),$$

where $M\ddot{o}b(S^1)$ is the group of Möbius transformations of S^1 . It is well known that the universal Teichmüller space plays a significant role in the study of Teichmüller theory. For more details we refer to the books [12, 13, 16, 18].

²⁰¹⁰ Mathematics Subject Classification. Primary 30F60; Secondary 32G15.

Key words and phrases. Douady-Earle extension; strongly symmetric homeomorphism; VMO-Teichmüller space; Carleson measure.

The research is partially supported by the National Natural Science Foundation of China (Grant No. 11371045, 11301248).

Received July 9, 2015; revised October 13, 2015.

For every $h \in QS(S^1)$, it is proved in [9] that there exists a quasiconformal extension of h to the unit disk, called the Douady-Earle extension, which is conformally invariant, that is,

$$E(\alpha \circ h \circ \beta) = \alpha \circ E(h) \circ \beta$$

holds for any $\alpha, \beta \in M\"{o}b(S^1)$. Douady-Earle extension is very important in Teichmüller theory, which provides a great convenience to discuss Teichmüller spaces of Riemann surfaces on the unit disk, for instance.

A quasisymmetric homeomorphism h of S^1 is called integrably asymptotic affine [7] if it admits a quasiconformal extension into **D** such that its complex dilatation μ is square integrable in the Poincaré metric on **D**, that is

$$\iint_{\mathbf{D}} \frac{|\mu(z)|^2}{\left(1-|z|^2\right)^2} \, dx dy < \infty.$$

It is proved in [7] that the complex dilatation of the Douady-Earle extension of an integrably asymptotic affine homeomorphism h is square integrable in the Poincaré metric on **D**.

An asymptotically conformal mapping f of **D** is a quasiconformal homeomorphism of **D** with complex dilatation μ satisfying

$$\lim_{|z| \to 1^{-}} |\mu(z)| = 0.$$

A quasisymmetric homeomorphism h of S^1 is called symmetric if it admits an asymptotically conformal extension on **D**. It is proved in [11] that the Douady-Earle extension of a symmetric homeomorphism is asymptotically conformal.

A quasisymmetric homeomorphism h of S^1 is said to be strongly quasisymmetric if for each $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|E| \le \delta |I| \Rightarrow |h(E)| \le \epsilon |h(I)|$$

where $I \subset S^1$ is an interval and $E \subset I$ is a measurable subset. It is equivalent to that [3] *h* admits a quasiconformal extension into **D** which complex dilatation μ induces a Carleson measure $|\mu(z)|^2/(1-|z|^2) dxdy$ on **D**. It is shown in [8] that the complex dilatation of the Douady-Earle extension of a strongly quasisymmetric homeomorphism induces a Carleson measure. Furthermore, *h* is strongly quasisymmetric if and only if *h* is absolutely continuous and $\log h' \in BMO(S^1)$, the space of integrable functions on S^1 of bounded mean oscillation (see [6, 10, 14, 20]).

A quasisymmetric homeomorphism h of S^1 is called strongly symmetric if h is absolutely continuous and $\log h' \in \text{VMO}(S^1)$, the space of integrable functions on S^1 of vanishing mean oscillation (see [14, 20, 21]). The BMO-Teichmüller space and VMO-Teichmüller space are defined as the following models

$$T_b = SQS(S^1)/M\ddot{o}b(S^1)$$
 and $T_v = SS(S^1)/M\ddot{o}b(S^1)$

where $SQS(S^1)$ and $SS(S^1)$ are the sets of all strongly quasisymmetric and all strongly symmetric homeomorphisms of the unit circle S^1 respectively. The

BMO-Teichmüller space and VMO-Teichmüller space are two important subspaces of the universal Teichmüller space which are fully studied [1, 3, 5, 8, 23].

The purpose of this paper is to study the Douady-Earle extensions of strongly symmetric homeomorphisms. It is obtained that h is a strongly symmetric homeomorphism if and only if h admits a quasiconformal extension into **D** which complex dilatation μ induces a vanishing Carleson measure $|\mu(z)|^2/(1-|z|^2) dxdy$ on **D**. Moreover, it is proved that the complex dilatation of the Douady-Earle extension of h properly induces this vanishing Carleson measure. As application, it is gotten that the VMO-Teichmüller space T_v is a subgroup of the universal Teichmüller space T.

§2. Preliminaries

In this section, we recall some notions and basic results on BMO-functions, A_{∞} weight functions and Carleson measures which will be needed in this paper. For more details we refer to [6, 10, 14].

BMO(S^1) is the space of all integrable functions on S^1 of bounded mean oscillation (see [6, 10, 14, 20]). An integrable function $u \in L^1(S^1)$ is said to be of bounded mean oscillation if

$$\|u\|_{\mathrm{BMO}} = \sup_{I} \frac{1}{|I|} \int_{I} |u - u_{I}| \, d\theta < \infty,$$

where *I* is any arc on S^1 , |I| is the length of *I* and $u_I = \frac{1}{|I|} \int_I u \, d\theta$ is the average of *u* over *I*. VMO(S^1) is the subspace of BMO(S^1) which consists of all vanishing mean oscillation functions. A function $u \in BMO(S^1)$ is said to be of vanishing mean oscillation if

$$\lim_{|I|\to 0}\frac{1}{|I|}\int_{I}|u-u_{I}|\ d\theta=0.$$

Let $\mu = \omega(x) dx$ be a positive Borel measure on **R**, finite on compact sets. $\omega(x)$ is called an A_{∞} weight function [14], denoted by $\omega \in A_{\infty}$, if

$$\mu(E)/\mu(I) \le C(|E|/|I|)^{\alpha}$$

holds for any interval I and any Borel subset E of I, where C > 0 and $\alpha > 0$ are constants independent of E and I. Let $h \in SS(S^1)$, then h is strongly quasisymmetric, and consequently $h' \in A_{\infty}$ (see [14]).

For every $\omega \in A_{\infty}$, it holds the reverse Hölder inequality [6]. So there exists a constant c > 0 and p > 1 such that

(2.1)
$$\frac{1}{|I|} \int_{I} \omega^{p}(x) \, dx \le c \left(\frac{1}{|I|} \int_{I} \omega(x) \, dx\right)^{p}.$$

for every interval I in \mathbf{R} .

The Carleson sector S(I), based on I, is defined by

$$S(I) = \left\{ z = re^{i\theta} : 1 - \frac{|I|}{2\pi} \le r < 1, e^{i\theta} \in I \right\}.$$

A positive Borel measure λ on **D** is called a bounded Carleson measure if there exists a positive constant *C* such that

$$\lambda(S(I)) \le C|I|$$

We say that λ is a vanishing Carleson measure if

$$\lambda(S(I)) = o(|I|), \quad |I| \to 0.$$

For a positive measure λ on **D**^{*}, replacing S(I) in the above definition by the following Carleson sector:

$$S^*(I) = \left\{ z = re^{i\theta} : 1 < r \le 1 + \frac{|I|}{2\pi}, e^{i\theta} \in I \right\},$$

We similarly obtain the definition of a bounded or vanishing Carleson measure on \mathbf{D}^* . Denote by $CM(\Omega)$ and $CM_0(\Omega)$ the set of all bounded Carleson measures and vanishing Carleson measures on Ω , respectively.

We need a lemma in [23] for Carleson measure.

LEMMA 2.1. For a positive measure λ on **D**, set

$$\tilde{\lambda}(z) = \iint_{\mathbf{D}} \frac{(1 - |z|^2)(1 - |w|^2)}{|1 - \overline{w}z|^4} \lambda(w) \ du dv$$

Then $\hat{\lambda}$ is a bounded or vanishing Carleson measure if λ is a bounded or vanishing Carleson measure on **D**.

The Douady-Earle extension w = E(h)(z) is defined by the equation

$$F(z,w) = \frac{1}{2\pi} \int_{S^1} \frac{h(t) - w}{1 - \overline{w}h(t)} \frac{1 - |z|^2}{|z - t|^2} |dt| = 0.$$

For $h \in QS(S^1)$, let v(h) denote the Beltrami coefficient of the inverse mapping of the Douady-Earle extension E(h), and v denote the Beltrami coefficient of a quasiconformal extension of h^{-1} . Then we have the following result (for details, see [15]).

LEMMA 2.2. There exists a constant C(h) such that $\forall w \in \mathbf{D}$

$$\frac{|v(h)(w)|^2}{1-|v(h)(w)|^2} \le C(h) \iint_{\mathbf{D}} \frac{|v(\zeta)|^2}{1-|v(\zeta)|^2} \frac{(1-|w|^2)^2}{|1-\bar{\zeta}w|^4} d\zeta d\eta$$

YAN WU AND YI QI

§3. Douady-Earle extension of a strongly symmetric homeomorphism

Recall that for any $h \in QS(S^1)$, there exists a unique pair of conformal mappings $f: \mathbf{D} \to f(\mathbf{D})$ and $g: \mathbf{D}^* \to \hat{\mathbf{C}} \setminus \overline{f(\mathbf{D})}$, called the normalized decomposition of h, satisfying f(0) = f'(0) - 1 = 0, $g(\infty) = \infty$ and $h = f^{-1} \circ g$ on S^1 , respectively. Furthermore, f can be extended to a quasiconformal mapping in the whole plane with Beltami coefficient μ_f . At the same time, h is called the normalized conformal welding mapping of f. It is known that $h \in QS(S^1)$ if and only if $h^{-1} \in QS(S^1)$. For $h \in SS(S^1)$, we have

PROPOSITION 3.1. For any $h \in QS(S^1)$, f, g are the above normalized decomposition of h. The following conditions are equivalent:

(1) $h \in SS(S^1);$

(2) $h^{-1} \in SS(S^1);$

(3) There exists a quasiconformal extension $\psi(z) : \mathbf{D} \to \mathbf{D}$ of h^{-1} whose Beltrami coefficient μ induces a vanishing Carleson measure $|\mu(z)|^2/(1-|z|^2) dxdy$ on \mathbf{D} .

Proof. It should be pointed out that $(1) \Leftrightarrow (2)$ is implied in [23]. For completeness, we give the proof here.

Suppose that $h \in SS(S^1)$ and $h = f^{-1} \circ g$, where f, g are the normalized decomposition of h. Then $\log f' \in VMOA(\mathbf{D})$, the space of analytic functions in \mathbf{D} of vanishing mean oscillation (see Theorem 4.1 in [23]). It is known that $\log f' \in VMOA(\mathbf{D})$ if and only if the quasicircle $\Gamma = f(S^1) = g(S^1)$ is asymptotically smooth (see Section 7.5 in [20]). Furthermore, we have $h^{-1} = g^{-1} \circ f = (rj \circ g \circ j)^{-1} \circ (rj \circ f \circ j)$, where $j(z) = \overline{z}^{-1}$ is the standard reflection of the unit circle S^1 and r is a constant such that $r(j \circ g \circ j)'(0) = 1$. So $rj \circ g \circ j$, $rj \circ f \circ j$ are the normalized decomposition of h^{-1} . Since Γ is asymptotically smooth, then $rj \circ g \circ j(S^1) = rj(\Gamma)$ is also asymptotically smooth. This means $h^{-1} \in SS(S^1)$ and $(1) \Rightarrow (2)$. With similar discussion, $(2) \Rightarrow (1)$.

Now we show that $(1) \Leftrightarrow (3)$. It is known that $h \in SS(S^1)$ if and only if f can be extended to a quasiconformal mapping to the whole plane, denoted also by f, whose complex dilatation μ_f satisfying $|\mu_f(z)|^2/(|z|^2 - 1) dxdy \in CM_0(\mathbf{D}^*)$ [23]. Defining $\varphi(z) = g^{-1} \circ f(z), z \in \mathbf{D}^*$, then $\varphi(z)$ is the quasiconformal extension of h^{-1} to \mathbf{D}^* with Beltrami coefficient $v(z) = \mu_f(z)$ and $|v(z)|^2/(|z|^2 - 1) dxdy \in CM_0(\mathbf{D}^*)$. By reflection, h^{-1} may be extended to a quasiconformal mapping $\psi(z)$ to \mathbf{D} whose Beltrami coefficient $\mu(z)$ satisfies

$$\mu(z) = \overline{\nu\left(\frac{1}{\overline{z}}\right)} \frac{z^2}{\overline{z}^2}, \quad z \in \mathbf{D}.$$

For any subarc $I \in S^1(|I| \le \pi)$, let 2*I* be the subarc of S^1 with the same center of I, |2I| = 2|I| and $z \in S(I)$. Then, by simple calculation, we get

$$\iint_{S(I)} \frac{|\mu(z)|^2}{1-|z|^2} \, dx \, dy = \iint_{S'(I)} \frac{|v(w)|^2}{|w|^2-1} \frac{1}{|w|^2} \, du \, dv \le \iint_{S^*(2I)} \frac{|v(w)|^2}{|w|^2-1} \, du \, dv$$

where S'(I) is the reflection sector of S(I), $S^*(2I) \subset \mathbf{D}^*$ is the Carleson sector over 2I on \mathbf{D}^* and $S'(I) \subset S^*(2I)$.

For any given $\varepsilon > 0$, since $|v(w)|^2/(|w|^2 - 1)$ dudv $\in CM_0(\mathbf{D}^*)$, there exists a $\delta > 0$ such that

$$\iint_{S^*(2I)} \frac{|v(w)|^2}{|w|^2 - 1} \, du dv < 2\varepsilon |I|$$

holds for every subarc $I \subset S^1$ with $|I| \leq \delta$. So $|\mu(z)|^2/(1-|z|^2) dxdy \in CM_0(\mathbf{D})$ and $(1) \Rightarrow (3)$.

Conversely, if condition (3) holds, by quasiconformal reflection, there exists a quasiconformal extension $\phi(z) : \mathbf{D}^* \to \mathbf{D}^*$ of h^{-1} with Beltrami coefficient $\mu_{\phi}(z)$ satisfying $|\mu_{\phi}(z)|^2/(|z|^2-1) dxdy \in CM_0(\mathbf{D}^*)$. Let $\tilde{f} = g \circ \phi$, it is easy to see that \tilde{f} is the quasiconformal extension of f and $|\mu_{\tilde{f}}(z)|^2/(|z|^2-1) dxdy \in CM_0(\mathbf{D}^*)$. Thus (3) \Rightarrow (1).

Now we prove that the complex dilatation of the Douady-Earle extension of a strongly symmetric homeomorphism induces a vanishing Carleson measure on **D**.

THEOREM 3.1. If $h \in SS(S^1)$, that is, h is a strongly symmetric homeomorphism on S^1 . Let μ be the complex dilatation of the Douady-Earle extension $\Phi = E(h)$. Then it holds that $|\mu(z)|^2/(1-|z|^2) dxdy \in CM_0(\mathbf{D})$.

In order to prove Theorem 3.1, we need some preparations.

Set $\zeta_k = e^{2k\pi i/3}$ (k = 1, 2, 3). For every $w \in \mathbf{D}$, let τ be the Möbius transformation of \mathbf{D} onto itself with $\tau(0) = w$ and $\tau(\zeta_2) = w/|w|$. Denote $w_k = \tau(\zeta_k)$ (k = 1, 2, 3) and let J_w be the subarc of S^1 with endpoints w_1 and w_3 and containing w_2 . Then we have the following lemma.

LEMMA 3.1. Let h be a symmetric homeomorphism of S^1 and Φ be the Douady-Earle extension of h, then there exist positive constants C_1 and C_2 depending only on h, such that

(3.1)
$$2(1-|w|) \le |J_w| \le 2\pi(1-|w|),$$

(3.2)
$$\frac{1}{C_1} \frac{|h^{-1}(J_w)|}{|J_w|} \le \frac{1 - |\Phi^{-1}(w)|^2}{1 - |w|^2} \le C_1 \frac{|h^{-1}(J_w)|}{|J_w|}$$

and

(3.3)
$$\frac{(1-|w|^2)^2}{(1-|\Phi^{-1}(w)|^2)^2}J_{\Phi^{-1}}(w) \le C_2.$$

Proof. Since Φ is the Douady-Earle extension of h, it is bi-Lipschitz with respect to the Poincaré metric and the Lipschitz constant C = C(K) depends only on the maximal dilatation $K = K_{\Phi}$ of Φ [9]. Hence, Φ^{-1} is also bi-Lipschitz

with respect to the Poincaré metric with the same Lipschitz constant C = C(K). So,

$$\frac{1}{C(K)}\rho(w)|dw| \le \rho(\Phi^{-1}(w))|d\Phi^{-1}(w)| \le C(K)\rho(w)|dw|,$$

which implies (3.3) with $C_2 = C(K)^2$ directly. Let $z_k = h^{-1}(w_k)$ (k = 1, 2, 3) and σ be the Möbius transformation of **D** onto itself with $\sigma(\zeta_k) = z_k$ (k = 1, 2, 3). Set $\Phi^* = \tau^{-1} \circ \Phi \circ \sigma$. Then Φ^* is the Douady-Earle extension of the sense-preserving quasisymmetric $\Phi^*|_{S^1} = \tau^{-1} \circ$ $h \circ \sigma$ and can be extended to a $K = K_{\Phi}$ -quasiconformal mapping of **C** onto itself by reflection. Thus, $\Phi^*|_{S^1}$ is η_K -quasisymmetric by Corollary 3.10.4 in [2], where

$$\eta_K(t) = \lambda(K)^{2K} \max\{t^K, t^{1/K}\}, \quad t \in [0, +\infty)$$

and

(3.4)
$$\lambda(K) = \sup\{|f(e^{i\theta})| : f : \mathbf{C} \to \mathbf{C} \text{ is } K\text{-q.c. and fixes } 0, 1, 0 \le \theta \le 2\pi\}.$$

Therefore, by Proposition 5.21 in [20], there exists a constant $r' \in (0, 1)$ which depends only on K but not on w, such that $|\Phi^*(0)| \le r' < 1$.

As Φ^* is the Douady-Earle extension of the sense-preserving quasisymmetric $\Phi^*|_{S^1} = \tau^{-1} \circ h \circ \sigma$, it is bi-Lipschitz with respect to the Poincaré metric, where the Lipschitz constant $C(K) \ge 1$ depends only on K [9]. Thus,

$$\log \frac{1 + |\Phi^{*-1}(0)|}{1 - |\Phi^{*-1}(0)|} \le C(K) \log \frac{1 + |\Phi^{*}(0)|}{1 - |\Phi^{*}(0)|}$$

This implies that

$$(3.5) |\Phi^{*-1}(0)| \le r_0 < 1,$$

where r_0 is a constant depending only on K but not on the choice of w.

It is easy to see that $\tau(\zeta) = (\zeta + e^{i\alpha}w)/(e^{i\alpha} + \zeta \overline{w})$, where $\alpha = \frac{4\pi}{3} - \theta$ and θ is the argument of w. By a simple computation, we have

$$|w_1 - w_2| = \frac{\sqrt{3}(1 - |w|)}{|\zeta_1 + |w||}, \quad |w_2 - w_3| = \frac{\sqrt{3}(1 - |w|)}{|\zeta_2 + |w||},$$

and

$$|w_1 - w_3| = \frac{\sqrt{3}(1 + |w|)(1 - |w|)}{|\zeta_2 + |w| |\zeta_1 + |w||}.$$

Consequently, it is gotten that $|w_1 - w_2| = |w_2 - w_3|$ and

$$1 - |w| \le |w_1 - w_2| \le 2(1 - |w|).$$

So, $|w_1 - w_2|$, $|w_2 - w_3|$, $|w_1 - w_3|$ are all comparable with 1 - |w| and the constants appeared in the comparisons are universal, and

$$|J_w| \ge |w_1 - w_2| + |w_2 - w_3| \ge 2(1 - |w|).$$

By Jordan inequality,

 $|J_w| = 2|\widehat{w_1w_2}| \le \pi |w_1 - w_2| \le 2\pi (1 - |w|).$

Thus, (3.1) is true.

We now prove that $|z_1 - z_2|$, $|z_2 - z_3|$ and $|z_3 - z_1|$ are all comparable with $1 - |\Phi^{-1}(w)|$ and the constants appeared in the comparisons depend only on $K = K_{\phi}$. Let $z = \Phi^{-1}(w)$ and let $\zeta' \in S^1$ such that $\sigma(\zeta') = z/|z|$. Set

$$\sigma(\zeta) = e^{i\beta} \frac{\zeta - a}{1 - \bar{a}\zeta}, \quad \zeta \in \mathbf{D},$$

where $a \in \mathbf{D}$ and $\beta \in \mathbf{R}$ are constants determined by σ . Then

$$(3.6) \quad \frac{|z_i - z_j|}{1 - |z|} = \frac{|\sigma(\zeta_i) - \sigma(\zeta_j)|}{|\sigma(\zeta') - \sigma(\Phi^{*-1}(0))|} = \frac{|\zeta_i - \zeta_j|}{|\zeta' - \Phi^{*-1}(0)|} \frac{|1 - \bar{a}\zeta'| |1 - \bar{a}\Phi^{*-1}(0)|}{|1 - \bar{a}\zeta_i| |1 - \bar{a}\zeta_j|}$$

for $1 \le i < j \le 3$. If arg $a \in [-\pi/3, \pi/3)$, then

$$|1 - \bar{a}\zeta_1| \ge \sqrt{3}/2$$
 and $|1 - \bar{a}\zeta_2| \ge \sqrt{3}/2$.

Thus, by (3.5) and (3.6),

(3.7)
$$\frac{|z_1 - z_2|}{1 - |z|} \le \frac{\sqrt{3}}{1 - r_0} \cdot \frac{16}{3}.$$

Similarly, if arg $a \in [\pi/3, \pi)$ or $[\pi, 5\pi/3)$, (3.7) is also true for replacing $|z_1 - z_2|$ by $|z_1 - z_3|$ or $|z_2 - z_3|$, respectively.

On the other hand,

$$\frac{1-|z|}{|z_i-z_j|} \le \frac{|z_i-z|}{|z_i-z_j|} = \frac{|\zeta_i - \Phi^{*-1}(0)|}{|\zeta_i - \zeta_j|} \frac{|1 - \bar{a}\zeta_j|}{|1 - \bar{a}\Phi^{*-1}(0)|} \le \frac{4}{\sqrt{3}} \frac{1}{1-r_0}$$

for $1 \le i < j \le 3$. Since h is a symmetric homeomorphism and $|w_1 - w_2| =$ $|w_2 - w_3|$, then $|z_1 - z_2|$, $|z_2 - z_3|$ and $|z_3 - z_1|$ can be compared with each other and the constants in the comparisons depend only on K. Thus, all these three quantities are all comparable with 1 - |z| and constants in the comparisons depend only on $r_0 = r_0(K)$ but independent on w.

Therefore, there exists a constant $C \ge 1$ depending only on K such that

$$\frac{1}{C}\frac{|h^{-1}(w_1) - h^{-1}(w_3)|}{|w_1 - w_3|} \le \frac{1 - |z|}{1 - |w|} \le C\frac{|h^{-1}(w_1) - h^{-1}(w_3)|}{|w_1 - w_3|},$$

which implies (3.2) directly. The proof of Lemma 3.1 is completed. \square

Now we prove the Theorem 3.1.

Proof. For every $h \in SS(S^1)$, by proposition 3.1, there exists a quasiconformal extension g of h^{-1} satisfying $|\mu_g(z)|^2/(1-|z|^2) dxdy \in CM_0(\mathbf{D})$. Let v

denote the Beltrami coefficient of the inverse mapping Φ^{-1} of the Douady-Earle extension Φ . By Lemma 2.2, there exists a constant C(h) such that $\forall w \in \mathbf{D}$

$$\frac{|v(w)|^2}{1-|v(w)|^2} \le C(h) \iint_{\mathcal{D}} \frac{|\mu_g(\zeta)|^2}{1-|\mu_g(\zeta)|^2} \frac{(1-|w|^2)^2}{|1-\overline{\zeta}w|^4} \, d\zeta d\eta$$

Furthermore,

$$\begin{aligned} \frac{|v(w)|^2}{1-|w|^2} &\leq C(h) \iint_{\mathbf{D}} \frac{1-|v(w)|^2}{1-|\mu_g(\zeta)|^2} \frac{|\mu_g(\zeta)|^2}{1-|\zeta|^2} \frac{(1-|w|^2)(1-|\zeta|^2)}{|1-\bar{\zeta}w|^4} \, d\xi d\eta \\ &\leq \frac{C(h)}{1-||\mu_g||_{\infty}^2} \iint_{\mathbf{D}} \frac{|\mu_g(\zeta)|^2}{1-|\zeta|^2} \frac{(1-|w|^2)(1-|\zeta|^2)}{|1-\bar{\zeta}w|^4} \, d\xi d\eta \end{aligned}$$

It follows from Lemma 2.1 that $|v(w)|^2/(1-|w|^2) dudv \in CM_0(\mathbf{D})$. In what follows we prove that $|v(w)|^2/(1-|w|^2) dudv \in CM_0(\mathbf{D})$ implies $|\mu(z)|^2/(1-|z|^2) dxdy \in CM_0(\mathbf{D})$.

Since $h \in SS(S^1)$, h is a symmetric homeomorphism [22], namely,

$$\frac{|h(I_1)|}{|h(I_2)|} = 1 + o(1)$$

holds for every pair of adjacent subarcs I_1 and I_2 in $[0, 2\pi]$ with $|I_1| = |I_2| \rightarrow 0_+$.

For every $I \subset S^1$, set $I = I_1 + I'_1$ and $2I = I_2 + I_1 + I'_1 + I'_2$, where I_2 , I_1 , I'_1 , I'_2 are adjacent subarcs with $|I_1| = |I'_1| = |I_2| = |I'_2|$. Then we have

$$|h(I_1 + I_2)| = 2|h(I_1)| + o(1) = |h(I)| + o(1)$$

and

$$|h(I'_1 + I'_2)| = 2|h(I'_1)| + o(1) = |h(I)| + o(1)$$

as $|I| \rightarrow 0_+$. Thus,

$$\frac{|h(2I)|}{|h(I)|} = 2 + o(1), \quad |I| \to 0_+.$$

Furthermore, for a positive integer N > 1, it is not hard to verify that

(3.8)
$$\frac{|h(NI)|}{|h(I)|} = N + o(1), \quad |I| \to 0_+,$$

where *I* and *NI* are the subarcs of S^1 with the same center and |NI| = N|I|. Let z_0 be the center of *I* and let D(2I) be the disk centered at z_0 and $D(2I) \cap \partial \mathbf{D} = 2I$. It is easy to verify that the Carleson sector $S(I) \subset D(2I)$ for every *I* with $|I| < \pi$. By reflections and pre-compositing a Teichmüller shift [24] (A Teichmüller shift mapping on the unit disk **D** is the uniquely extremal

mapping $T[w_1, w_2]$ which sends w_1 to w_2 and is equal to the identity on $\partial \mathbf{D}$), Φ can be extended to a K'-quasiconformal mapping $\tilde{\Phi}$ of **C** onto itself with $\tilde{\Phi}|_{\bar{\mathbf{D}}} = \Phi$, where K' depends only on Φ . Since it is clear that

$$\max_{w \in \partial \Phi(S(I)) \setminus \partial \mathbf{D}} |w - h(z_0)| \le \max_{z \in \partial D(2I)} |\tilde{\Phi}(z) - h(z_0)|$$

and

$$\min_{z \in \partial D(2I)} |\tilde{\Phi}(z) - h(z_0)| \le |h(2I)|,$$

so, by Teichmüller distortion theorem [17] and (3.8), we have

$$\max_{w \in \partial \Phi(S(I))} |w - h(z_0)| \le \lambda(K')|h(2I)| \le 3\lambda(K')|h(I)|$$

for sufficient small arc *I*, where $\lambda(K')$ is defined in (3.4) depending only on the maximal dilatation K'. Choose an integer N' depending only on K' with $N' \ge 6\pi\lambda(K')$. Then by the definition of the Carleson sector, we have

$$\Phi(S(I)) \subset S(N'h(I)).$$

Denote $d\lambda = |\mu(z)|^2/(1-|z|^2) dxdy$ and $d\lambda' = |\nu(w)|^2/(1-|w|^2) dudv$. For any given $\varepsilon > 0$, as we have just proved that λ' is a vanishing Carleson measure, there exists a $\delta' > 0$ such that

$$\lambda'(S(J)) < \frac{\varepsilon}{4}|J|$$

for every subarc $J \subset S^1$ with $|J| \leq \delta'/2$.

Let J = N'h(I) be the open subarc of the same center point with h(I) and |J| = N'|h(I)|. Then there is a $\delta_1 > 0$ such that $|J| \le \delta'/2$ and $\Phi(S(I)) \subset S(J)$ holds for every subarc I on S^1 with $|I| < \delta_1$.

By the properties of integral,

$$\begin{split} \lambda(S(I)) &= \iint_{S(I)} \frac{|\mu(z)|^2}{1 - |z|^2} \, dx dy = \iint_{\Phi(S(I))} \frac{1 - |w|^2}{1 - |\Phi^{-1}(w)|^2} J_{\Phi^{-1}}(w) \, d\lambda' \\ &\leq \iint_{S(J)} \frac{1 - |w|^2}{1 - |\Phi^{-1}(w)|^2} J_{\Phi^{-1}}(w) \, d\lambda'. \end{split}$$

Then, from (3.2) and (3.3) in Lemma 3.1, we have

(3.9)
$$\lambda(S(I)) \le C \iint_{S(J)} \frac{|h^{-1}(J_w)|}{|J_w|} \, d\lambda',$$

where $C = C_1 C_2$ is a constant depending only on K.

Let ψ be a lift of h^{-1} to the real line **R** over the obvious covering mapping. Then ψ is strictly increasing, continuous and $\psi(\theta + 2\pi) - \psi(\theta) = 2\pi$.

As $h^{-1} \in SS(S^1)$, ψ is differentiable almost everywhere in **R** and

$$(h^{-1})'(e^{i\theta}) = e^{i(\psi(\theta)-\theta)}\psi'(\theta)$$

Let 2J be the arc on S^1 with the same center as J and of length 2|J|. Choose a component of the lift of 2J, which is an open interval, and denoted by 2J. Denote also by J the component lift of J contained in the component 2J and I the component lift of I contained in $\psi(J)$. Let

$$\phi(\theta) = \psi'(\theta)\chi_{2J}(\theta),$$

where χ_{2J} is the characteristic function of 2J on **R**. Let

$$M\phi(\theta) = \sup_{\theta \in J'} \frac{1}{|J'|} \int_{J'} |\phi(t)| dt$$

be the Hardy-Littlewood maximal function of ϕ , where the supremum is taken over all intervals J' containing θ . Then

$$(3.10) M\phi(\theta) \ge |h^{-1}(J')|/|J'|$$

holds for all subarc $J' \subset 2J$ containing θ .

By a property of Hardy-Littlewood maximal functions, $\{\theta \in \mathbf{R} : M\phi(\theta) > k\}$ is an open set for every k > 0. Thus,

$$\{\theta\in 2J: M\phi(\theta)>k\}=2J\cap\{\theta\in\mathbf{R}: M\phi(\theta)>k\}$$

is open and consequently,

(3.11)
$$\{\theta \in 2J : M\phi(\theta) > k\} = \bigcup J_l,$$

where $\{J_l\}$ is a finite or infinite sequence of disjoint intervals contained in J.

We may assume that $|J| < \frac{\pi}{4}$. Let

$$T(J_l) = \left\{ w = re^{i\theta} : 1 - \frac{2|J_l|}{\pi} \le r < 1, e^{i\theta} \in J_l \right\}.$$

Then,

(3.12)
$$\left\{ w \in S(J) : \frac{|h^{-1}(J_w)|}{|J_w|} > k \right\} \subset \bigcup T(J_l)$$

Indeed, if $w \in S(J)$ and

(3.13)
$$\frac{|h^{-1}(J_w)|}{|J_w|} > k.$$

then by the definition of Carleson sector, $1 - |w| < |J|/2\pi$. So by (3.1) in Lemma 3.1, we have $|J_w| < |J|$ and consequently, $J_w \subset 2J$. Thus, by (3.10)

and (3.13), $e^{i\theta} := w/|w| \in \bigcup J_l$. If $w \notin \bigcup T(J_l)$, then $|J_l| < \frac{\pi}{2}(1-|w|)$ for J_l containing w/|w|. Thus, by (3.1), $|J_w| > |J_l|$. So, there exists a $e^{i\theta'} \in J_w \setminus \bigcup J_l$ such that $M\phi(\theta') > k$. This contradicts to (3.11). Therefore, (3.12) holds. Since $|J_l| \le 2|J| \le \delta'$, then for the above $\varepsilon > 0$,

$$\begin{split} \lambda' \bigg(\bigg\{ w \in S(J) : \frac{|h^{-1}(J_w)|}{|J_w|} > k \bigg\} \bigg) &\leq \sum_j \lambda'(T(J_l)) \leq \varepsilon \sum_l |J_l| \\ &= \varepsilon |\{\theta \in 2J : M\phi(\theta) > k\}|. \end{split}$$

So, we have

(3.14)
$$\iint_{S(J)} \frac{|h^{-1}(J_w)|}{|J_w|} d\lambda' \le \varepsilon \int_{2J} M\phi \, d\theta.$$

Since $\psi'(\theta)$ belongs to the class of weights A_{∞} , it holds the inverse hölder inequality (2.1) for some p > 1 and c > 0, that is,

(3.15)
$$\frac{1}{2|J|} \int_{2J} \psi'^p \, d\theta \le c \left(\frac{1}{2|J|} \int_{2J} \psi' \, d\theta\right)^p.$$

By Hölder inequality, for q > 1, 1/p + 1/q = 1, we have

(3.16)
$$\int_{2J} M\phi \, d\theta \le (2|J|)^{1/q} \left(\int_{2J} (M\phi)^p \, d\theta \right)^{1/p}.$$

Furthermore, by Muckenhoupt theory (see §VI.6 of [14]), there exists a constant C_p for p > 1, independent of ϕ , such that

(3.17)
$$\int_{2J} (M\phi)^p \, d\theta \leq \int_{\mathbf{R}} (M\phi)^p \, d\theta \leq C_p \int_{\mathbf{R}} \phi^p \, d\theta = C_p \int_{2J} \psi'^p \, d\theta.$$

From (3.15)-(3.17), we have

(3.18)
$$\int_{2J} M\phi(\theta) \ d\theta \le (cC_p)^{1/p} \int_{2J} \psi'(\theta) \ d\theta$$

Combining (3.9), (3.14) and (3.18), we get

$$\lambda(S(I)) \le C' \varepsilon \int_{2J} \psi'(\theta) \ d\theta \le C' \varepsilon |h^{-1}(2J)|$$

for $|I| < \delta_1$, where $C' = C(cC_p)^{1/p}$ and 2J = 2N'h(I). By (3.8),

$$\frac{|h^{-1}(2J)|}{|I|} = 2N' + o(1), \quad |I| \to 0_+.$$

So for the above $\varepsilon > 0$, there exists a positive number δ with $\delta < \delta_1$ such that

$$\lambda(S(I)) \le C'(2N'+1)\varepsilon|I|.$$

holds for every subarc I on S^1 with $|I| < \delta$. Hence $|\mu(z)|^2/(1-|z|^2) dxdy \in CM_0(\mathbf{D})$. The proof of this Theorem is completed.

An application of Theorem 3.1

As an application of Theorem 3.1, we prove the following theorem.

THEOREM 4.1. T_v is a subgroup of T.

Proof. It is clear that the universal Teichmüller space T and the VMO-Teichmüller space T_v can be identified as the spaces of all normalized quasisymmetric and all strongly symmetric homeomorphisms of S^1 respectively. Here, a homeomorphism of S^1 is called normalized if it fixes ± 1 and *i*.

Let $h_1, h_2 \in T_v$ be the normalized strongly symmetric homeomorphisms and $\Phi = E(h_1)$ be the Douady-Earle extension of h_1 with the Beltrami differential μ_1 . By Theorem 3.1, $|\mu_1(z)|^2/(1-|z|^2) dxdy \in CM_0(\mathbf{D})$. Furthermore, by Proposition 3.1, there exists a quasiconformal extension f of h_2 with Beltrami differential μ_2 satisfying $|\mu_2(z)|^2/(1-|z|^2) dxdy \in CM_0(\mathbf{D})$. Let ρ be the Beltrami differen-tial of $f \circ \Phi^{-1}$, then for any $z \in \mathbf{D}$,

$$|\rho(\Phi(z))|^{2} = \left|\frac{\mu_{2}(z) - \mu_{1}(z)}{1 - \mu_{2}(z)\overline{\mu_{1}(z)}}\right|^{2} \le \frac{2(|\mu_{1}(z)|^{2} + |\mu_{2}(z)|^{2})}{(1 - ||\mu_{1}||_{\infty} ||\mu_{2}||_{\infty})^{2}}.$$

Thus,

$$\begin{split} \iint_{S(I)} \frac{|\rho(w)|^2}{1 - |w|^2} \, du dv &= \iint_{\Phi^{-1}(S(I))} \frac{|\rho(\Phi(z))|^2}{1 - |\Phi(z)|^2} J_{\Phi}(z) \, dx dy \\ &\leq C \iint_{S(NJ)} \frac{|\mu_1(z)|^2 + |\mu_2(z)|^2}{1 - |z|^2} \frac{1 - |z|^2}{1 - |\Phi(z)|^2} J_{\Phi}(z) \, dx dy \\ &= C \iint_{S(NJ)} \frac{1 - |z|^2}{1 - |\Phi(z)|^2} J_{\Phi}(z) \cdot \frac{|\mu_1(z)|^2}{1 - |z|^2} \, dx dy \\ &+ C \iint_{S(NJ)} \frac{1 - |z|^2}{1 - |\Phi(z)|^2} J_{\Phi}(z) \cdot \frac{|\mu_2(z)|^2}{1 - |z|^2} \, dx dy, \end{split}$$

where S(NJ) is a carleson cantor containing $\Phi^{-1}(S(I))$ and $J = \Phi^{-1}(I)$. Since $|\mu_1(z)|^2/(1-|z|^2) dxdy$ and $|\mu_2(z)|^2/(1-|z|^2) dxdy$ are vanishing Carleson measures on **D**, similar to proof of Theorem 3.1, we have

$$\iint_{S(I)} \frac{|\eta(w)|^2}{1-|w|^2} \, du \, dv = o(|I|), \quad |I| \to 0.$$

42.2

So $|\eta(w)|^2/(1-|w|^2) dxdy \in CM_0(\mathbf{D})$. It is obvious that $f \circ \Phi^{-1}$ is the quasiconformal extension of the normalized homeomorphism $h_2 \circ (h_1)^{-1}$. Therefore, $h_2 \circ (h_1)^{-1} \in T_v$ from Proposition 3.1 and T_v is a subgroup of T.

REFERENCES

- K. ASTALA AND F. W. GEHRING, Injectivity, the BMO norm and the universal Teichmüller space, J. Anal. Math. 46 (1986), 16–57.
- [2] K. ASTALA, T. IWANIEC AND G. MARTIN, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton Uinv. Press, New Jersey, USA, 2009.
- [3] K. ASTALA AND M. ZINSMEISTER, Teichmüller space and BMOA, Math. Ann. 289 (1991), 613–625.
- [4] A. BEURLING AND L. V. AHLFORS, The boundary correspondence under quasiconformal mappings, Acta. Math. 96 (1956), 125–142.
- [5] C. BISHOP AND P. JONES, Harmonic measure, L² estimates and the Schwarzian derivative, J. Anal. Math. 62 (1994), 77–113.
- [6] M. D. CHEN, D. G. DENG AND R. L. LONG, Real analysis, 2nd ed., Higher Education Press, Beijing, 2008 (in Chinese).
- [7] G. CUI, Integrably asymptotic affine homeomorphisms of the circle and Teichmüller spaces, Sci. China, Ser. A. 43 (2000), 267–279.
- [8] G. CUI AND M. ZINSMEISTER, BMO Teichmüller space, Illinois J. Math. 48 (2004), 1223-1233.
- [9] A. DOUADY AND C. J. EARLE, Conformally nature extension of homeomorphisms of the circle, Acta. Math. 157 (1986), 23–48.
- [10] P. L. DUREN, Theory of H^p spaces, Academic Press, New York and London, 1970.
- [11] C. J. EARLE, V. MARKOVIC AND D. SARIC, Barycentric extension and the Bers embedding for asymptotic Teichmüller space, Contemporary Math. 311 (2002), 87–105.
- [12] F. P. GARDINER, Teichmüller theory and quadratic differentials, Wiley-Interscience, New York, 1987.
- [13] F. P. GARDINER AND N. LAKIC, Quasiconformal Teichmüller theory, American Mathematical Society, New York, 2000.
- [14] J. B. GARNETT, Bounded analytic functions, Academic Press, New York, 1981.
- [15] Y. HU AND Y. SHEN, On quasisymmetric homeomorphisms, Israel J. Math. 191 (2012), 209–226.
- [16] O. LEHTO, Univalent functions and Teichmüller space, Springer-Verlag, New York, 1986.
- [17] Z. Li, Quasiconformal mappings and Teichmüller space, Peking University Press, Beijing, 2013 (in Chinese).
- [18] S. NAG, The complex analytic theory of Teichmüller space, Wiley-Interscience, 1988.
- [19] Ch. POMMERENKE, On univalent functions, Bloch functions and VMOA, Math. Ann. 123 (1978), 199–208.
- [20] Ch. POMMERENKE, Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992.
- [21] D. SARASON, Functions of vanishing mean oscillation, Trans. Amer. Math. Soc. 207 (1975), 391–405.
- [22] Y. SHEN, Weil-Petersson Teichmüller space, arXiv:1304.3197v3.
- [23] Y. SHEN AND H. WEI, Universal Teichmüller space and BMO, Adv. Math. 234 (2013), 129–148.
- [24] K. STREBEL, Point shift differentials extremal quasiconformal mappings, Ann. Acad. Sci. Fenn. A. I. Math. 23 (1998), 475–494.

YAN WU AND YI QI

Yan Wu LMIB AND SCHOOL OF MATHEMATICS AND SYSTEMS SCIENCE BEIHANG UNIVERSITY BEIJING, 100191 P.R. CHINA SCHOOL OF SCIENCE LINYI UNIVERSITY SHANDONG, 276005 P.R. CHINA E-mail: BY1209113@buaa.edu.cn wuyan@lyu.edu.cn

Yi Qi

LMIB AND SCHOOL OF MATHEMATICS AND SYSTEMS SCIENCE BEIHANG UNIVERSITY BEIJING, 100191 P.R. CHINA E-mail: yiqi@buaa.edu.cn