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Abstract

Background: Double-adjustment can be used to remove confounding if imbalance exists after propensity score
(PS) matching. However, it is not always possible to include all covariates in adjustment. We aimed to find the
optimal imbalance threshold for entering covariates into regression.

Methods: We conducted a series of Monte Carlo simulations on virtual populations of 5,000 subjects. We performed PS
1:1 nearest-neighbor matching on each sample. We calculated standardized mean differences across groups to detect
any remaining imbalance in the matched samples. We examined 25 thresholds (from 0.01 to 0.25, stepwise 0.01)
for considering residual imbalance. The treatment effect was estimated using logistic regression that contained
only those covariates considered to be unbalanced by these thresholds.

Results: We showed that regression adjustment could dramatically remove residual confounding bias when it
included all of the covariates with a standardized difference greater than 0.10. The additional benefit was negligible
when we also adjusted for covariates with less imbalance. We found that the mean squared error of the estimates was
minimized under the same conditions.

Conclusion: If covariate balance is not achieved, we recommend reiterating PS modeling until standardized differences
below 0.10 are achieved on most covariates. In case of remaining imbalance, a double adjustment might be
worth considering.
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Background
Propensity score (PS) matching analysis is a popular
method for estimating the treatment effect in observa-
tional studies [1–3]. Defined as the conditional probabil-
ity of receiving the treatment of interest given a set of
confounders, the PS aims to balance confounding covar-
iates across treatment groups [4]. Under the assumption
of no unmeasured confounders, treated and control

units with the same PS are matched, removing con-
founding and allowing an unbiased estimation of the
treatment effect [4].
Approximating completely randomized experiment, a

fundamental step in PS matching analysis is to ensure
that the covariate balance across the treatment groups is
achieved, by using diagnostics that have been described
in the literature [5, 6]. However, King and Nielsen
showed that PS matching was likely to be concerned by
covariates imbalance [7]. If balance is achieved across all
of the confounders, the treatment effect can be esti-
mated without bias. If balance is not possible, PS models
can be re-specified until a correct balance is achieved. In
a next step, any unbalanced covariates can be adjusted
within the PS-matched sample [8].
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Although arbitrary thresholds for standardized dif-
ferences have been proposed for detecting residual
imbalance across groups in matched samples [9],
there is no consensus on which threshold value
should be used to choose the covariates for regression
adjustment. If a sample is large enough to contain
sufficient outcomes [10–12], all of the covariates can
be adjusted. However, small samples, which are more
likely to suffer imbalance, limit the number of
covariates that can be included, and specifying criter-
ion strict enough to remove sufficient residual
confounding is problematic. We hypothesize that a
threshold would have to be respected to ensure un-
biased estimate of treated effect.
As not all covariates can be adjusted, we aimed to

determine the optimal imbalance threshold for
choosing the covariates for regression adjustment to
remove residual confounding. The threshold should
be the highest tolerable standardized difference that
does not compromise treatment effect estimation.

Methods
Data generation
We conducted a series of Monte Carlo experiments
based on simulated data sets that mimicked real clin-
ical settings in the perioperative field [13, 14], by
using an approach similar to Setoguchi’s method [15].
We designed 15 explanatory variables (W1 to W15) by
generating a set of 14 normal random variables
correlated by different degrees (Additional file 1:
Figure S1) and adjusting and dichotomizing them to
obtain distributions similar to real perioperative vari-
ables, (Additional file 1: Table S1). Of these, some
were defined as continuous variables with distribu-
tions approximating biological markers, while others
were binary variables, the prevalence of which
approximated comorbidities reported in perioperative
studies (Additional file 1: Table S1). One of the covar-
iates (W14) did not follow this generation process, but
was defined as a combination of the others, mimick-
ing the revised cardiac risk index of Lee et al. [16].
We generated a binary treatment variable Z (Z = 1
denotes treated units, Z = 0 denotes control units)
and a binary outcome variable Y (Y = 1 denotes the
occurrence, Y = 0 denotes the non-occurrence). Logis-
tic models were used for treatment assignment (i.e.
the true PS models) and generating the outcome.
Two scenarios were designed:
Scenario A – linearity and additivity:

logit p Zð Þ½ � ¼ β0 þ β1W 1 þ β2W 2 þ β6W 6 þ β7W 7

þ β11W 11 þ β13W 13

logit½pðY Þ� ¼ α0 þ α1W 1 þ α2W 2 þ α3W 3 þ α4W 4

þ α5W 5 þ α7W 7 þ α9W 9 þ α10W 10

þ α11W 11 þ α12W 12 þ α13W 13

þ α15W 15 þ γZZ

Scenario B – non-linearity and non-additivity:

logit p Zð Þ½ � ¼ β0 þ β1W 1 þ β2W 2 þ β6W 6 þ β7W 7

þ β11 W 11
1=2 þ 0:01W 11

2
� �

þ β13 W 13ð Þ1=2 þ β1 0:4ð ÞW 1W 2

þ β7 0:5ð ÞW 7W 1 þ β2 0:7ð ÞW 7W 2

þ β11 0:7ð Þ W 11ð Þ1=2 W 13=10ð Þ

logit p Yð Þ½ � ¼ α0 þ α1W 1 þ α2W 2 þ α3W 3 þ α4W 4

þ α5W 5 þ α7W 7 þ α9W 9 þ α10W 10

þ α11Log W 11ð Þ þ α12 W 12ð Þ1=2

þ α13 W 13ð Þ1=3 þ α15W 15 þ γZZ

þ α10 0:2ð ÞW 10W 7 þ α4 0:7ð ÞW 4W 2

þ α1 0:6ð ÞW 1W 3W 7

We set the treatment exposure at 40% of the popula-
tion and the outcome prevalence at 8%. Treatment
assignment (outcome occurrence) was assigned if p(Z)
(p(Y)) was greater than a randomly U(0,1) generated
number. We report the βi and αi coefficients used for
this simulation in Additional file 1: Table S1. According
to the equations, we considered two noise-variables (W8

and W14) which were nonetheless correlated to the
others (Additional file 1: Figure S1) and as such, at risk
of imbalance.
The treatment effect was defined to be protective

(coefficient γT = −0.51, conditional odds ratio = 0.60),
in alignment with published perioperative studies
[17–19]. As PS analysis allows a marginal effect to be
calculated, conditional and marginal effects were to
differentiate. Conditional effect refers to the mean of
every subject-specific effects, while marginal effect re-
fers to the average effect that would be observed if
the overall population were to be treated (versus if it
were to be untreated). This marginal effect can be
measured, as said in the overall population (i.e. the
average treatment effect, ATE), or in the subpopula-
tion in which the treatment was intended (i.e. the
average treatment effect in the treated, ATT). This
ATT is the estimand of PS matching analysis. In our
simulations, the true ATT was −0.04 on the absolute
risk difference scale. We simulated N = 1,000 samples,
comprising 5,000 units each. This sample size pro-
vided sufficient outcomes for performing reliable

Nguyen et al. BMC Medical Research Methodology  (2017) 17:78 Page 2 of 8



regression adjustments after matching [10, 11], as de-
scribed in the following subsection.

Propensity score matching analysis
We derived a PS model for each sample from a logistic
regression that included all of the Wi covariates. No
interaction terms were used. It has been recognized
that including instrumental variables inflates the bias
[20–22], so this model is believed to be realistic [1, 3]
rather than optimal. Treated and control units were
then matched according to their estimated PS using a
1:1 ratio without replacement [23, 24]. Though using a
caliper in PS matching is common, this practice might
lead to incomplete matching by discarding subjects for
whom no matches are found within the distance im-
posed by the caliper. Doing so removes confounding, at
the expense of reducing the matched sample. For this
reason, we used a nearest-neighbor matching algorithm
without a caliper. We evaluated the balance of each co-
variate Wi across the treatment groups in each matched
sample by calculating the standardized absolute mean
difference [5, 6]:

SMD ¼ W ι1−W ι0

�� ��ffiffiffiffiffiffiffiffiffiffiffi
S2i1þS2i0

2

q

W ι1 and W ι0 denote the means (proportions for discrete
variables), and si1

2 and si0
2 denote the variances in the

treated and control groups, respectively. We entered the
unbalanced covariates into second logistic models to
remove residual confounding before estimating the
treatment effect, a process called the double-robust esti-
mator. As there is as yet no consensus on the SMD
threshold, we tested a set of SMD values for choosing
the covariates for use in logistic regression. We defined
25 SMD thresholds from 0.01 to 0.25, increasing step-
wise by 0.01. We computed 25 double-robust estimates
of the ATT per matched sample, one with each thresh-
old. To this end, we performed regressions in a way akin
to Abadie and Imbens [8]. As noted by Austin P.C. [25],
it is important to distinguish between traditional adjust-
ment that estimates conditional effect and this method
of double-adjustment that estimates marginal effect. To
perform double-adjustment, we fitted two logistic
models within each arm of each matched sample. The
models included the outcome Y as the dependent
variable and all of the unbalanced covariates as explana-
tory variables, chosen using the SMD threshold value.
From those to regressions, let p̂ Y 1 ¼ 1jZ ¼ 1ð Þ denote

the predicted outcome probability in the treated group ac-
cording to the model derived on the treated arm (i.e. the
potential outcome with treatment). Let p̂ Y 0 ¼ 1jZ ¼ 1ð Þ
denote the predicted outcome probability in the treated

group according to the model derived on the control
arm (i.e. the potential outcome without treatment). Let
j index the treated matched unit (the pair, in case of 1:1
matching). The double-robust ATT estimator can be
calculated as:

dATTDR ¼ 1
J
Σ
J

j¼1
bpJ Y 1 ¼ 1jZ ¼ 1ð Þ‐ 1

J
Σ
J

j¼1
bpJ Y 0 ¼ 1jZ ¼ 1ð Þ

¼ 1
J
Σ
J

j¼1
bpJ Y 1 ¼ 1jZ ¼ 1ð Þ− bpJ Y 0 ¼ 1jZ ¼ 1ð Þ� �

We note that, in case of non-collapsible effect (e.g.
odds ratio), one can still estimate a marginal effect (e.g.
1
JΣ

J
j¼1bpj Y 1¼1jZ¼1ð Þ

h i
= 1−1

JΣ
J
j¼1bpj Y 1¼1jZ¼1ð Þ

h i
1
JΣ

J
j¼1bpj Y 0¼1jZ¼1ð Þ

h i
= 1−1

JΣ
J
j¼1bpj Y 0¼1jZ¼1ð Þ

h i , for estimating an

odds ratio).
We also estimated the ATT on the matched samples

without the double-robust approach, using a crude
estimator:

dATTcrude ¼ 1
J

XJ

j¼1

Y j1−Y j0
� 	

We report the relative bias and mean squared error
for each estimator:

Relative bias %ð Þ ¼ 100�
dATT−ATTtrue

��� ���
ATTtrue

MSE ¼ 1
N

Σ
N

n¼1
dATT−ATTtrue

� �2

Results
Performing 1:1 nearest-neighbor matching resulted in
keeping, on average, 80.0% and 80.2% of the subjects
from the initial samples in scenarios A and B, respect-
ively. The majority of the true confounders in both
scenarios were not consistently well-balanced (Fig. 1).
This situation was expected, as it was required to evalu-
ate the performance of the double-robust approach for
removing residual confounding bias.
Figure 2 shows that the crude estimator was systemat-

ically biased. The correction provided by the double-
robust approach varied with the SMD threshold value
used to choose the unbalanced covariates for regression
adjustment. As expected, bias correction was more
successful with stricter thresholds. The relationship be-
tween the bias reduction and the SMD threshold was
sigmoidal. In both scenarios, very little confounding bias
remained after adjusting for all covariates with
approximately SMD > 0.10. Adjusting for covariates with
SMD > 0.10 resulted in a substantial bias reduction,
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while adjusting for covariates with less imbalance did
not lead to a major improvement in the estimation.
We calculated the relative bias and the percentage of

estimates that differed from the true ATT by 25%, 50%,
75% and 100% (Fig. 3). The double-robust approach
dramatically reduced the percentage of biased estimates.
This percentage was minimized when covariates with an
SMD equal to or greater than 0.10 were adjusted.
Adjusting for unbalanced covariates also improved

the estimator’s performance, as measured by the mean
squared error (Fig. 4). Again, a threshold of SMD ap-
proximately equal to 0.10 minimized the mean
squared error.

Discussion
We showed that treatment effect estimation was com-
promised when an SMD greater than 0.10 remained in a

data set and that performing double-adjustment on PS-
matched samples addressed the issue of residual con-
founding bias. We suggest that at least all covariates
with SMD > 0.10 should be adjusted for to ensure an un-
biased estimate.
We have shown the importance of balance diagnos-

tics after matching. PS matching methods aim to
remove confounding bias by balancing covariates across
treatment groups using a balancing score. Although ar-
bitrary thresholds have been proposed for detecting
residual imbalance, some authors have recommended
removing all imbalance [26, 27], which is of greatest
priority in PS analysis. In case of imbalance, several
strategies are to consider before performing an adjust-
ment, which include re-specifying the PS model until a
correct balance is achieved or using other designs, such
as stratification, weighting or full matching [28–31].

Fig. 1 Covariate balance diagnostics after nearest-neighbor matching in (a) a linear, additive scenario and (b) a non-linear, non-additive scenario.
SMD, standardized absolute mean difference

Fig. 2 Estimated average treatment effect in the treated (ATT) on the absolute risk difference scale (median with 2.5th and 97.5th percentiles), in
(a) the linear, additive scenario and (b) the non-linear, non-additive scenario. The double-robust estimator was adjusted for unbalanced covariates
using standardized absolute mean difference (SMD) thresholds
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When the covariate balance cannot be achieved in spite
of these considerations, adjusting for unbalanced covar-
iates within the matched sample is an attractive
approach. As we showed, the matched sample’s balance
diagnostics can be used as a threshold for performing
double-adjustment on it. The benefit provided by the

correction proposed by Abadie and Imbens [8]
depended on the magnitude of the imbalance in the
covariates we adjusted for. We showed that adjusting
for highly unbalanced covariates substantially reduced
residual confounding, whereas adjusting for weakly
unbalanced covariates did not result in a major

Fig. 3 Percentage of biased estimates according to the estimator in (a and c) the linear, additive scenario and (b and d) the non-linear,
non-additive scenario. The double-robust estimator was adjusted for unbalanced covariates using standardized absolute mean difference
(SMD) thresholds

Fig. 4 Mean squared error according to the estimator in (a) the linear, additive scenario, and (b) the non-linear and non-additive scenario. The
double-robust estimator was adjusted for unbalanced covariates using standardized absolute mean difference (SMD) thresholds
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correction. We minimized the residual confounding
bias in both studied scenarios when we adjusted for all
covariates with SMD > 0.10.
We support previous statements that recommend re-

moving all imbalance [26, 27]. In contrast with coars-
ened exact matching, PS matching is likely to be
concerned by imbalance [7]. However, adjusting for all
covariates may not be possible in small matched
samples, as their few endpoints may limit regression
[10–12], yet small matched-samples are particularly
affected by residual imbalance. We suggest that, at mini-
mum, all covariates with SMD > 0.10 should be adjusted
in a small sample. This threshold corresponds to the limit
of tolerable imbalance that does not compromise treat-
ment effect estimation. If the sample contains sufficient
outcomes, additional covariates can also be adjusted for to
remove the remaining residual confounding.
We assessed imbalance using the SMD. This meas-

ure has previously been proposed for assessing covari-
ate balance across groups [6]. It depicts the balance
property of the sample and does not depend on its
size, as suggested by Imai, King and Stuart [27]. Ac-
cording to recent systematic reviews, this metric is
still poorly implemented in practice, as inferential
tests are wrongly used instead [1, 3]. We support the
evaluation of covariate balance using appropriate
metrics such as the SMD. Recent weighted balance
metrics have been described in the literature [32, 33],
the advantage of which is to weight the SMD by the
strength of the association between each covariate and
the outcome. They hypothesized that residual
confounding bias is more important when strong con-
founders are unbalanced than when other covariates
are unbalanced. In a future study, we will assess
whether these metrics improve the bias-correction
provided by our double-robust approach.
Although it is challenging, a PS model’s specifications

should be improved before a regression adjustment is
systematically conducted on the PS-matched samples.
This step reduces imbalance across groups and thus the
number of covariates that need to be adjusted. It also
improves the overlapping value of the estimated PS be-
tween the treated and control units, which can increase
the number of pairs and the matched sample size if a
caliper is used. In this simulation study, we did not re--
specify PS models, since we sought to explore at which
threshold of imbalance double-adjustment might be
worth considering. We emphasize that achieving covari-
ate balance avoids the need for double-adjustment,
which is a model-dependent approach. As the estimated
effect varies with the model’s specification, the analyst is
likely to be tempted to report the result, which fit its
“favorite hypothesis” [7, 34]. For that reason, King and
Nielsen advocate the use of other matching methods [7].

Our study should be interpreted in light of some limi-
tations. We only used a PS matching algorithm without
caliper, the use of which has been recommended [24].
Though caliper matching reduces imbalance, it can
result in incomplete matching [35]. It only keeps treated
subjects with a PS close enough to a control unit to be
matched, resulting in the exclusion of units. As pointed
out by Austin, double-adjustment should be used to
handle residual bias only after complete matching [25].
Because using caliper reduces imbalance, we hypothesize
that it will diminish the benefit of double-adjustment,
which should be explored in a further study. Although
matching on the PS has been criticized recently [7], we
performed a 1:1 nearest-neighbor algorithm because we
believe that this is reflective of current practices [1, 3]. A
recent study comparing 12 matching algorithms also did
not find substantial differences in balancing by nearest-
neighbor matching and other algorithms such as optimal
matching [24]. Additionally, double-adjustment involves
modeling steps and is thus exposed to the risk of model
dependence. We did not used the double-robust estima-
tor proposed by Austin [25], which adjusts for the
estimated PS rather than for the baseline covariates. We
hypothesize that any misspecification in the PS would
negatively affect this estimator. However, this interesting
method may be useful if the sample size limits the inclu-
sion of covariates into regression adjustment. In a future
study, we will compare the performance of these two
bias-corrected estimators within additional scenarios of
misspecification and apply such approaches to real
clinical data.

Conclusions
We support the reporting of balance diagnostics for
PS-matched samples. Measures like the SMD can be
used as a criterion for choosing the covariates for
double-adjustment. This approach addresses the issue of
residual confounding in treatment effect estimation. If
the sample is large enough, all of the covariates can be
added into a regression and adjusted. In small samples,
we suggest at least adjusting for those covariates with an
SMD equal to or greater than 0.10 to remove imbalance
that can comprise the reliability of the treatment effect
estimation.

Additional file

Additional file 1: ‘Supplementary material: simulation design’. Variable
definitions and coefficients for data generation (Table S1 and Table S2),
and variable relationships and correlations (Figure S1). (DOCX 143 kb)
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