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Abstract

Triple arrays are a class of designs introduced by Agrawal in 1966
for two-way elimination of heterogeneity in experiments. In this paper
we investigate their existence and their connection to other classes of
designs, including balanced incomplete block designs and balanced
grids.



1 Combinatorial designs in general

We shall follow the standard notations for combinatorial designs, as for ex-
ample are laid down by Preece in the survey [11]. For convenience we restate
the definitions that will be most important in this paper.

A balanced incomplete block design with parameters v, b, 7, k, A, denoted
a (v,b,7,k,\)-BIBD, is a way of selecting b subsets of size k, or blocks,
from some v-set V' = {tq,to,...,t,} of treatments, in such a way that every
treatment appears in exactly r blocks (the design is equireplicate) and any
two treatments appear together in exactly A blocks (the design is balanced).
The set V is called the support of the design. Since the blocks are defined
as sets, these designs are necessarily binary (that is, there are no repeated
members in blocks). The parameters of balanced incomplete block designs
satisfy the two conditions

bk = or, (1)
AMv—=1) = r(k—1), (2)

(see, for example, [19]). Without loss of generality, we usually write V' =
{1,2,...,v}. The complement of a (v,b,r, k,\)-BIBD is the (v,b,b—1r,v—
k,b — 2r + \)-BIBD formed by replacing each block B by its complement
inV, V\B.

A balanced incomplete block design is called symmetric if v = b (or,
equivalently, » = k); in such a design, any two blocks intersect in A elements.
A symmetric balanced incomplete block design with parameters (v, k, ) is of-
ten called a (v, k, \)-SBIBD. Among symmetric balanced incomplete block
designs are the finite projective planes, the symmetric designs with A = 1,
which exist if (and, it has been conjectured, only if) k£ — 1 is a prime power.
Given a (v, k, \)-SBIBD, its residual design modulo a given block B is con-
structed by deleting B from the list of blocks and deleting every member of
B from the remaining blocks. The derived design modulo B is formed by
deleting B and, in the remaining blocks, retaining only the members of B.
The residual and derived designs are a (v — k,v — 1, k, k — A\, \)-BIBD and
a (k,v—1,k—1,\,A—1)-BIBD respectively. Stanton [17] pointed out that
the complement of the derived design of a symmetric balanced incomplete
block design B equals the residual of the complement of B.



The usual definition of a balanced incomplete block design requires that
k < v (“the blocks are incomplete”), but we shall find it convenient to allow
the trivial case where k = v.

A binary row-column design is a rectangular array whose entries are mem-
bers of some set of treatments, with no repetitions in any row or column. If
such a design has r rows, ¢ columns, and v treatments which form a v-set V,
then it is an r x ¢ binary row-column design based on V. We normally use
the same notational conventions for V' as above.

A binary row-column design is called equireplicate if every member of V
appears the same number of times in the array. This common number is
then called the replication number of the design.

Among binary row-column designs, perhaps the best-known is the Latin
square, the designs with » = ¢ = v, which are easily seen to exist for all
values of v. Another important class are Youden squares. A Youden square
is a k x v array based on a (v,k,A\)-SBIBD. Each column contains the
elements of one block, ordered so that each element appears exactly once in
each row. It was shown in [16] that such an ordering is always possible; that
is, every symmetric balanced incomplete block design gives rise to a Youden
square. (In fact, it is common for many non-isomorphic Youden squares to
arise from the same SBIBD.)

When discussing binary row-column designs, we shall often need to refer
to the set of all elements of a row, ignoring the arrangement of the elements
into columns. It will be convenient to extend the usage in design theory and
refer to this set as the support of the row; and similarly for columns.



2 Double arrays

We wish to investigate a class of binary row-column designs that were defined
by Agrawal [], although a small example was discussed earlier by Potthoft [9]
and another was published by Preece [10] independently of Agrawal’s paper.
We shall introduce these designs below under the name of triple arrays. It
will be convenient to begin by introducing a more general class, double arrays.

Suppose A is an equireplicate r X ¢ binary row-column design based on
V', with replication number k, having the following properties:

(P1) any two distinct rows have the same number, \,,., of common elements;

(P2) any two distinct columns have the same number, .., of common ele-
ments.

Then A is a double array with parameters v, k, A, Ace, OF

DA(v, k, Ay Aee 2 7 X C).

Associated with any double array are two balanced incomplete block de-
signs. To construct them, suppose the rows of a DA(v, k, A\pr, Aee = T X €)
are labeled Ry, Rs, ..., R, and the columns are labeled C,Cs, ..., C.. Then
the row design or BIBDpg has v blocks By, Bs, ..., B,, corresponding to
the v elements of V: if element = appears in rows R,, Rp,..., R, then
B, = {a,b,...,z}. Similarly the column design or BIBD¢ is defined us-
ing the incidence of elements in columns.

Lemma 2.1 Suppose A is a DA(v,k, Ay, A : 7 X ¢). Then

(i) the row design of A is a balanced incomplete block design with param-
eters
(ryv, ¢, k, App).

(ii) the column design of A is a balanced incomplete block design with pa-
rameters
(c,v,7m, K, Aee).



Theorem 2.2 Any DA(v,k, \pr, Aee : 7 X €) satisfies

vk = re, (3)
Ar(r—1) = ¢(k—1), (4)
Aeelc—1) = r(k—1), (5)

Apr(r—1) = Aecle—1). (6)

Proof. Equation (3) follows from applying (1) to either of the designs as-
sociated with A. Equations (4) and (5) are just (2), for the BIBDpg and
BIBDg¢ respectively. Equation (6) is obtained by combining (4) and (5). O

Example. Here is a DA(10,3,3,2 : 5 x 6):

Cy Cy C3 Cy Cs5 Cg
Ry 2 3 4 5 6
Ryl 4 7 1 3 8 9 (7)
Ryl 2 5 10 8 9 3
Ryl10 8 7 6 1 2
Rs| 9 4 5 10 6 7

The BIBDpg has parameters (5, 10,6, 3, 3), with blocks
124,134,123, 125, 135, 145, 245, 234, 235, 345,

while the BI BD¢ has parameters (6, 10,5, 3, 2) and blocks
135, 126, 346, 124, 235, 456, 236, 245, 156, 134.

Clearly any double array must satisfy 1 < k < rand 1 < k < c¢. The
extreme cases of double arrays need to be discussed. Both extreme cases will
be called trivial.

If £ =1, so that no entry of the array is repeated, then A\, = A.. = 0,
and the array is a DA(re, 1,0,0 : r x ¢). This design exists for every r and c.

If k=7, (3) yields ¢ = v, so every row is a permutation of the set V. So
the array is a Latin rectangle. The BIBRp is trivial, and the BIBD¢ is a
(v,7, A\ee)-SBIBD. As we said previously, such a design is called a Youden
square and it is well-known that such a design exists if and only if there is
a (v,7,A\ee)-SBIBD. (Many Youden squares may correspond to the same
SBIBD.) The case k = c yields the transpose of a Youden square.

bt



3 'Triple arrays

Suppose A is a double array with parameters (v, k, Ay, Aee @ 7 X ¢). Suppose
further that A satisfies the following condition:

(P3) any row and any column have the same number, ., of common ele-
ments.

Then A is called a triple array with parameters v, k, Ay, Ace, Are, OF

TA(v, ky Ay Acey Are 2 7 X C).

Not every double array is a triple array. The smallest example is

1
3
6

B = O
RO O QO
Tl O

which isa DA(6,2,2,1 : 3x4) but is not a triple array. In fact, an exhaustive
search shows that there is no 3 x4 triple array. In Section 7 we shall describe a
DA(24,6,10,3 : 9x16) which is not a triple array, and cannot be transformed
into a triple array by any sequence of permutations within its columns.

Theorem 3.1 In any TA(v, k, Ay Aeey Are : T X €),

e = k. (8)

Proof. Write [;; for the intersection of row ¢ with column j. If z is any
particular entry in A, the binary property means that x belongs to k of the
rows and k of the columns, so it is in k? of the sets I;;. As there are v different
entries, the total number of entries in the I;; is k%v. But each I;; is a \..-set
and there are rc of them. So k*v = rcA.. But vk = rc from (3), and the
result follows. O

It is easy to see that any trivial double array is also a triple array (in
both cases A\.. = k), and these will be called trivial triple arrays. More
interestingly, the example (7) is a triple array, a T'A(10,3,3,2,3 : 5 X 6).

6



Theorem 3.2 Any triple array with k # r and k # ¢ satisfies

v>r+c— 1 9)

Proof. Suppose A is a TA(v,k, Ay, Ace, k : 7 X ¢) where k # r. Let R and
C denote the incidence matrices of the corresponding BIBDg and BIBD¢
respectively. The r x v matrix R satisfies RRT = (¢ — \..)I + A\ J,r and the
¢ x v matrix C satisfies CCT = (r — A\oe)I + AeeJee, where J,, denotes the

p X q matrix with every entry 1. From the definition of A,. it follows that
ROT = \edve = kJpe and CRT = N\ oo = kiJer.

The (r + ¢) x v matrix A is defined by

R
A= .
<l
Then AAT is (r + ¢) x (r + ¢), and satisfies
'R
AAT = T ot
| e
_ [RR" RCT
~ |CRTCCT
_ [ (C - )\7"7")] + )\TTJTT‘ kt]rc (10)
N L kt]cr (T - )\CC)I ‘I’ )\cct]cc ’

We show that AAT has rank r + ¢ — 1. Then
r+c—1=rank(AAT) < rank(A) < v.

To find the rank we use row and column reduction.

AP, Y R Vi I Y A A
) P D W I A R
T _ A Apr c k k
AAT = kEk k| r e Ace
k k k )\cc T )\cc
kEk E | Aee Aee r




Subtracting column 1 from columns 2, 3, ..., r, and column r + 1 from
the later columns, we obtain

[ ¢ ANy —C Ap—C ... Np—c| k 0 0 0 7
Aer € — Ay 0 . 0 k 0 0 0
Arr 0 C— A . 0 k 0 0 0
Arr 0 0 0 k 0 0 0
Arr 0 0 c— My | K 0 0 0
k 0 0 0 T Ae—T Aee—T Aec — T
k 0 0 0 Aee T — Aee 0 0
k 0 0 0 Aee 0 r — Aee 0
k 0 0 0 Aee 0 0 0
|k 0 0 0 Aee 0 0 r— Aee |

Now add rows 2, 3, ..., rtorow 1, and rows r+1,r+2,r4+3,...,7r+cto
row r. The (1, 1) entry becomes c+ (r — 1)\.; by (4) this equals ¢+ c(k—1),
which equals ck. Similarly, the (r + 1,7 + 1) entry equals rk.

[ ck 0 0 o 0 rk 0 0 o 0
Aer € — Ay 0 . 0 k 0 0 0
Arr 0 C— App - 0 k 0 0 0
Arr 0 0 0 k 0 0 0
Arr 0 0 c— Ay | K 0 0 0
ck 0 0 0 rk 0 0 0
k 0 0 0 Aee T — Aee 0 0
k 0 0 0 Aee 0 r — Aee 0
k 0 0 e 0 Aee 0 0 . 0
|k 0 0 0 Aee 0 0 T

If row 7 + 1 and column r 4 1 are deleted from this matrix, the resulting
(r+c—1) x (r + ¢ — 1) matrix has determinant ck(c — A\.,)" "1 (r — Aee)7 L
If ¢ — A\, = 0 then (4) gives k = r, which is not allowed, and similarly
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7 — Aee = 0 gives k = c. So the determinant is non-zero, and the matrix AA”
has rank at least 7 +c— 1. But rows 1 and r + 1 are identical, so AAT cannot
have rank r + c. So it has rank r + ¢ — 1, as required. U

Question: can we ever get v < r +c¢— 1 in a double array?

4 Balanced grids

We now introduce another type of binary row-column design. Its relevance
will be seen in Section 6.

Suppose G is any binary row-column design. We shall define p,, to be
the number of times that elements x and y occur in the same row or column
of G. In other words, if there are r; rows that contain both z and y, and ¢,
columns that contain them both, then p,, = r; + ¢;. A binary row-column
design will be called a balanced grid if there is a constant p such that p,, = p
for every x and y.

Theorem 4.1 An r x ¢ balanced grid based on v symbols satisfies

_rc(r—l—c—Q).

viv—1) (11)

moreover, it will be equireplicate, with replication number

k= (12)

Proof. Suppose G is an r x ¢ balanced grid based on the v-set V. Each
of the (g) pairs of elements of V' occur p times amongst the r rows and c
columns of G. Each row covers (;) pairs, and each column (g) pairs. Hence

(o)r=re) +)

and the first result follows.

Now select an arbitrary fixed element x of V'; suppose = occurs k[z] times
in G. Consider the pairs of the form {z,y} where y € V\{z}. If x appears in

9



the (4, 7) cell, r—1 such pairs arise in column 7 and ¢—1 in row i, for a total of
r+c—2 pairs. So there are (r+c—2)k[z] such pairs in total. But clearly there
are v — 1 pairs of the form {x,y} for a given z, so k[z](r +¢—2) = u(v—1).
Therefore k[z] is constant, & say, independent of z, and k = =% from (3). O

In view of the above result, we shall denote such a balanced grid by

BG(v,k,p:r xc).

The trivial cases of balanced grids are similar to those we have seen before.
In the case ¢ = v, a balanced grid is a Youden square. It will have r = k; a
BG(v,k, p: k x v) exists if and only if there is a (v, k, u — k)-SBIBD. The
case ¢ = r = v is a Latin square, and has k = v, u = 2wv.

Theorem 4.2 Any balanced grid BG(v,k,u: r X ¢) satisfies v < r+c — 1.

Proof. Suppose G is a BG(v,k,u: r x ¢). We define two (0, 1)-matrices: R
is the r X v matrix with r;; = 1 if j occurs in row ¢ of G and 0 otherwise.
Each row of R has c entries 1 and each column has k 1’s. Similarly, C'is the
¢ X v matrix with ¢;; = 1 if j occurs in column ¢ of G and 0 otherwise. Each
row of C' has r entries 1 and each column has & 1’s.

Now consider the matrix (r + ¢) x v matrix A, defined by

R
A= .
|
AT = [RT C7] and ATA = [RTR + CTC]. Since G is a balanced grid we
have

[ 2%k opoop p]

w2k opwoopoo..p

ATA=| » p 2k p ... p
T TR TR 2k

This v X v matrix has determinant

(2k — )" (op — pu + 2K).

10



Suppose the determinant is zero. If (2k — ) = 0, then from Theorem 4.1

we know that p = k™22 so =2 = 2 and v = T;’C <r+c—1, and the

Theorem is true in thls case On the other hand, if vy — p + 2k = 0, then
== < 0, which is impossible.

Hence we need only consider the case where A is non-singular. So
v =rank(ATA) < rank(A4) <7 +ec.
We need to eliminate the possibility v = r + c.
If v =7+ ¢ then from (11) and (12),

_re(r+c—2) n _ e
S (r+o)(r+c—1) dk (r+c¢)

Y

and both these quantities are integers.

Now the greatest common divisor of (r+c¢—1) and (r +c¢—2) is 1, so
the first equality tells us that (r + ¢ — 1) must divide re. As (r+c¢—1) and
(r 4+ ¢) are coprime, and each divides rc, so their product divides rc. But

P+ >r+c = P+ —r—c>0

= 4+ —r—c+2re>2rc
= (r+c)(r+c—1)>2rc>re,

a contradiction. O

(The above proof fails in the trivial case r = ¢ = 1, but even there the
Theorem is true.)

5 'Triple arrays with v=r-+c — 1.

In the case v = r + ¢ — 1, all parameters of a triple array can be determined
from v, r and A, using Theorems 2.2 and 3.1. Agrawal [1] gave a method that
started from a (v + 1,7, Ae.)-SBIBD and constructed a T A(v, k, Ay, Ace, k
r X ¢). He could not prove that it always worked, but found it to provide the
required array in every case he tried, provided r — .. > 2.
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Agrawal’s construction can be expressed as follows. Suppose the blocks
of a (v+ 1,7, A\ee)-SBIBD are By, By, ..., B,, and suppose the elements of
By are labeled ey, eq, . . ., e,.. Denote the elements of the complement of By by
fi, fa, ..., fe (this is the correct number of elements, because v = r + ¢ — 1.)
Construct an array whose (4,7) entry is the (r — As.)-set S;; = {h : e; ¢
By, f; € Bp}. Then the (7, j) entry of the triple array A is an element of S, ;,
and the rows and the columns of A contain no repetitions.

Subsequently Raghavarao and Nageswarerao [12] claimed to prove that
the method always works, but we have pointed out [20] that their proof is
faulty. So we have

Conjecture [1, 12] If thereisa (v+ 1,7, Aec)-SBIBD with r — \.. > 2 then
there is a TA(v, k, A\pry Aec, k27 X ¢) withv =7+ ¢— 1.

We shall now prove the converse of this Conjecture: the existence of the
triple array implies the existence of the symmetric balanced incomplete block
design.

Lemma 5.1 Suppose A is a TA(v, ky Ay Acey Are 2 7 X ¢) withv =r+c¢—1.
Then
Ae =T — Mo =0 —2¢+ A\pp + 1. (13)

Proof. From the data and (3) we have
rc=vk=(r+c—Dk=rk+(c—1)k,
SO
rlc—=1)=r(k—1)+ (c— 1)k,
and, using (5),
—1
r= M%—k‘:)\cc%—)\m
c—1
giving the first equality.

For the second equality, notice that

clk—1)

r —

Aee = Arp = (1= Ape) — (from (4))

12



clk—1)

= r=k)- r—1

_ (r—Fk)(r—1) —clk—-1)
r—1

_ r(r—=1)—k(r+c—1)+c
r—1

_or(r=1)—kv+te

B r—1

_ r(r—i)_—lrc—l—c (from (3))

= r—c=7r4+c—1—-—2c+1=v—2c+ 1.
]

Notice that the first equality can be written as k = r — A, in view of the
fact that \.. = k.

Theorem 5.2 Suppose A is a TA(v, k, Ary Aeey Ave = T X ¢) with v = r +
¢ — 1. Then there exists a symmetric balanced incomplete block design with

parameters
(v+ 1,7, Aee)- (14)

Proof. Label the rows and columns of A as Ry, Rs, ..., R, and Cy,Cs, ..., C.
respectively. Let P denote the set {Ry, Ra,..., R,,C1,Cs,...,C.}. Then
|P| =1+ c=v+ 1. We construct a design with treatment set P.

The i-th block of the BIBD¢, B; say, consists of those C; that contain
entry ¢. We extend B; to a block B; as follows:

BZZFZU{RjZ¢Rj}

Since 7 belongs to k rows, it is missing from r — k rows, so |B;| = k +
(r — k) = r. So we have v blocks of size r. We add one further block,
By ={Ry,Ra,...,R,}.

The pair C;C; occurs A, times among the blocks B; s0 it occurs A times
among the blocks B;. The pair C; R, occurs in B; if and only if 7 is in column
7 and not in row t. Since column j intersects row t in \,. elements, it follows
that C;R; occurs v — A, times; by Lemma 5.1, that is A.. times. The pair
R;R; occurs in B; if and only if ¢ does not occur in row j and does not occur

13



in row ¢. Since those rows intersect in A, places, we see that R;R; occurs in
v—2c+ M\, of the B;. It also occurs in By. So it occurs in Aee = v—2¢+ A\, +1
blocks (using Lemma 5.1 again). So the design is balanced, with the required
parameters. [

6 Relations between the arrays

It will be convenient to denote the symmetric design (14) by B, and to let
A be a triple array with v = r + ¢ — 1 that gives rise to B as described in
Theorem 5.2.

Working back through the proof of Theorem 5.2, we observe that the
BIBDc¢ of the triple array is the residual design of B modulo the block By,
and the BIBDp is the complement of the derived design modulo Bj.

Two symbols x and y both occur in column j of A if and only if blocks
B, and B, of the BIBD¢ contain the common element j. So z and y will
occur together in | B, N B,| columns. Now B, N B, consists of those elements
of B, N B, that do not belong to By, so

|B.NB,| = |B.NB,|—|B.NB,N DB
= Aee — |B: N By N Byl (15)
Symbols z and y both occur in row ¢ of A if and only if blocks x and y of

the BIBDp contain the common element i. Those blocks are By\B, and
By\B,, and

[(Bo\Bz) N (Bo\By)| = [Bo|l = [BoN Bx| = [Bo N By| +[B. N B, N By
= 1 —2\¢+|B, N By, N Byl (16)

Combining (15) and (16), we see that x and y occur together r — A\, = k
times in the rows and columns of 4. We have proven:

Theorem 6.1 Any TA(r+c—1,k, A\pry, Aee, k27X ) is a BG(r+c—1,k, k :
r X c).

The converse is certainly not true; we have found (computationally) large
numbers of balanced grids with v = r + ¢ — 1 that are not triple arrays, even

14



at size 5 x 6. However, we have not found a case where the balanced grid is
a double array but not a triple array. So we ask:

If A is a double array and a balanced grid, is it necessarily a triple array? Is
this true in the particular case v=r+c—1¢

If a balanced grid satisfies v = r + ¢ — 1, then (11) and (12) give p = k.

7 The existence of balanced incomplete block
designs

Although many constructions for balanced incomplete block designs are known,
the existence of a design with given parameters is nearly always undecided.
Apart from the necessary conditions (1) and (2), the only general nonexis-
tence result is the Bruck-Ryser-Chowla Theorem:

Theorem 7.1 [4, 5, 13] If there exists a symmetric balanced incomplete
block design with parameters (v, k, \), then:

(i) if v is even, k — \ must be a perfect square;

(ii) if v is odd, there must exist integers x, y, and z, not all zero, such that

2% = (k= Ny + (=1)=D/2)\22,
There is an extension to some residual designs:

Theorem 7.2 [6, 14, 15] Suppose D is a balanced incomplete block design
with parameters (v — k,v — 1,k k — A\ \).

(i) If X\ =1 or A =2, there is a (v, k, \)-design of which D is the residual.

(ii) There is a number f(\), depending only on A, such that if k > f()\),
there is a (v, k, \)-design of which D is the residual.

15



(The number f(\) grows rapidly with A. The original bound for f(\), found
in [14, 15], has been improved (see [8, 7]), but the best known bound is still
quartic.)

A balanced incomplete block design is called quasi-residual if its parame-
ters are the parameters of a residual design but the design is not the residual
of any symmetric balanced incomplete block design. So Theorem 7.2 gives a
restriction on the existence of quasi-residual designs.

Theorems 5.2 and 7.1 combine to show that certain triple arrays are im-
possible. For example, there is no (22,7,2)-SBIBD, so there can be no
TA(21,5,10, 2,5 : 7 x 15). Theorem 7.2 can also be used to show that
some double arrays are impossible. For example, the nonexistence of a sym-
metric (22,7,2)-SBIBD implies that there is no (15,21,7,5,2)-BIBD; so a
DA(21,5,10,2 : 7 x 15) is impossible (the impossible parameters are those
required for its BIBD¢).

We were interested in parameters such that a BIBDg and a BI BD¢ are
feasible, but the corresponding symmetric balanced incomplete block design
does not exist. Such parameters may well be numerous, but few are known.
Most known quasi-residual designs have the same parameters as known resid-
ual designs. For example, the first reported quasi-residual design, found by
Bhattacharya [3], has parameters (16,24, 9,6, 3). Although it cannot be em-
bedded in a (25,9, 3)-SBIBD, such SBIBDs exist. Among quasi-residual
designs, many have the parameters of the residual of the complement of a
non-existent projective plane, and consequently the corresponding BIBDg
is impossible.

One possible candidate was discovered by van Lint, Tonchev and Landgev
[18]. It has parameters (28, 42,15, 10,5), the residual parameters of the im-
possible (43,15,5)-SBIBD. 1f it is the BI BD¢ of a double array, then the
BIBDpg would be a (15,42,28,10,18)-BIBD, which also exists. We very
quickly found a DA(42,10,18,5 : 15 x 28), which is exhibited in Appendix
A.

Another interesting question is this: does there exist a double array that
cannot be transformed into a triple array by any permutations of the elements
within its columns, even though a triple array with the desired parameters
exists? The answer is in the affirmative. We have discovered a double array
DA(24,6,10,3 : 9 x 16) whose BIBD¢ is the (16,24,9,6,3)-BIBD given
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by Bhattacharya [3], who proved that this design could not be embedded in
any (25,9,3)-SBIBD. The double array is also shown in Appendix A. (In
fact, many double arrays can be constructed from Bhattacharya’s design).
The non-embeddability of the BI BD¢ means that this cannot be made into
a triple array by any permutations of the elements within the columns, but
a TA(24,6,10,3,6 : 9 x 16) is exhibited by Agrawal [1].

8 'Triple arrays balanced for intersection

In any triple array, the rc sets formed by intersecting the supports of rows
with columns are all sets of size k, and each element occurs in k% of them.
One might ask whether these sets might ever form a balanced incomplete
block design. The triple array T A(r, k, Apr, Ace, k 2 7 % ¢) (7) actually has this
property, and its intersections form a (10, 30,9, 3,2)-BIBD. But this is the
only case so far discovered.

If there is a triple array whose row-column intersections are balanced,
then those intersections form a (v, rec, k%, k, N')-BI BD, where from (2)

N = k(k —1)/(v - 1).

The requirement that A be an integer turns out to be very restrictive. A
search up to r = 100 found only 16 sets of parameters satisfying (1) and
(1) for which X was integral, and in 11 of these cases the existence of the
corresponding symmetric balanced incomplete block design, guaranteed by
Theorem 5.2, is impossible because of Theorem 7.1. (For example, the param-
eters work for a T'A(21,5,10,2,5 : 7 x 15), but there is no (22,7,2)-SBIBD,
so no such triple array exists.)

The smallest symmetric designs that could give row-column intersection
balanced triple arrays are (11,5,2), which gives the design (7), (56, 11,2)
and (66, 26, 10). In the other two cases with r < 100, namely (149, 37,9) and
(569, 72,9), no symmetric balanced incomplete block design is known. We
have constructed a triple array from a (56, 11,2)-SBIBD, but it does not
have the row-column intersection balance property.
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9 'Trivial cases of triple arrays

In this section we discuss triple arrays whose existence is a direct consequence

of their parameters. These trivial cases include triple arrays with k =1, r =1
and k =r.

If £ = 1, then every element occurs exactly once in the triple array, so
v = rc. Distinct rows or columns will have no common members, and any row
and column have intersection size 1. So the array isa T'A(rc,1,0,0,1: r X ¢).
Such a triple array exists for all  and c.

If r = 1 then the array consists of a single row. Clearly v =c and k = 1;
this case is a subcase of the one discussed in the preceding paragraph.

When k& = r, every symbol in any column must also belong to any row. So
every symbol occurs in every row, and ¢ = v. The array, a TA(v, k, v, \, k :
k x v), will be a Youden square, and as noted previously it will exist if and
only if a (v, k, \)-SBIBD exists.

10 Double and triple arrays withv >r+c—1

Until recently, many researchers thought that there could be no triple array
with v > r+ ¢ — 1. However, we have constructed a T'A(35,3,5,1,3 : 7 x 15)
(the array is presented in Appendix B). This example is very important, as
it fills the gap in Table 1 of [11].

In Table 4, below, we list the parameters of possible small triple arrays
withv >r+c— 1.

In each case, one can of course ask whether a double array exists. In
particular, we found a DA(63,5,6,3 : 15x21) and a DA(99,5,18,1 : 11x45),
which are shown in Appendix A.

11 Small arrays

Double and triple arrays and balanced grids with row or column size 1 are
all trivial. If » = 2, the equireplicate property means that either v = ¢, a
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trivial case, or v = 2¢ and k = 1, again trivial (and similarly, of course, for
¢ =2). It is easy to see that no balanced grid with r» = 2 can exist.

The case r = 3 is interesting. The equation vk = rc and the non-triviality
condition v > ¢ imply k£ < 3, so the only non-trivial case is k = 2. For a
double or triple array, equation (5) yields ¢ = 4, so v = 6. There is a double
array DA(6,2,2,1:3 x 4), for example

1
4
)

W = N
S Ot W
N O &~

but no T'A(6,2,2,1,2 : 3x4) exists. If a non-trivial balanced grid with r = 3

exists, then equations (11) and (12) imply that p = 35; the only solution

is ¢ = 4, p = 2 and it may be shown by exhaustion that no such grid exists.

We now discuss small non-trivial double and triple arrays.

We saw in Theorem 5.2 that a triple array with v = r + ¢ — 1 exists only
if a certain symmetric balanced incomplete block design exists. In Table 1
we list the parameters of triple arrays of this kind with » < 16. The notation
A means that the triple array was constructed by Agrawal and appears in
[1]. However, it should be noted that a T'A(10,3,3,2,3 : 5 x 6) may be
found in [9] and a T'A(14,4,4,3,4 : 7 x 8) is constructed in [10]. We found it
very easy to implement Agrawal’s method by computer, and C means that
a triple array with the required parameters was constructed by us. Many of
these triple arrays can be found in Appendix B; for reasons of space, larger
arrays have been omitted, but they are listed at [21]. Preece [11] points out
that a T'A(22,6,6,5,6 : 11 x 12) can be constructed by omitting a factor
from a design obtainable by Method 2.6 of [2], but our example was found
by computer search.

Table 2 shows the cases (for < 16) where the existence of a symmetric
design is undecided.

Table 3 lists the parameters of double arrays for those cases with v =
r+c¢—1 (r <16) in which a triple array does not exist, the corresponding
symmetric design being impossible. In many cases it is also known (from
Theorem 7.2) that a BIBD¢ does not exist, so no DA is possible; but not
always. There is also the one anomalous case, corresponding to the (unique)
(7,3,1)-SBIBD. Table 4 is a list of parameters with v > r + ¢ — 1, up to
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TA BIBDg BIBD¢ SBIBD
VU, Ky Ny Aces Ape T X € v, c, k, A c, 0,1k, Aee v+ 1,7, Aee
12,3,6,1,3:4x 9 4,12,9,3,6 9,12,4,3,1 13,4,1 A
10,3,3,2,3:5%x 6 5,10,6,3,3 6,10,5,3,2 11,5,2 A
20,4,12,1,4: 5 x 16 5,20, 16, 4, 12 16,20, 5,4, 1 21,5, 1 A
15,4,6,2,4: 6 x 10 6,15,10,4,6 10, 15, 6,4, 2 16, 6, 2 A
30,5,20,1,5:6 x 25 6, 30, 25,5, 20 25,30,6,5,1 31,6,1 A
14,4,4,3,4: 7 x 8 7,14,8,4,4 8,14,7,4,3 15,7,3 A
56,7,42,1,7 : 8 x 49 8,56,49,7,42 49,56,8,7, 1 57,8,1 C
18,5,5,4,5:9 x 10 9,18,10,5,5 10,18,9,5,4 19,9,4 A
24,6,10,3,6 : 9 x 16 9,24,16,6, 10 16,24,9,6,3 25,9,3 A
36,7,21,2,7:9 x 28 9,36,28,7,21 28,36,9,7,2 37,9,2 C
72,8,56,1,8 : 9 x 64 9,72,64, 8,56 64,72,9,8,1 73,9,1 C
30,7,14,3,7 : 10 x 21 10, 30,21,7,14 21,30,10,7,3 31, 10,3 C
90,9,72,1,9 : 10 x 81 10,90, 81,9, 72 81,90,10,9,1 91,10,1 C
22,6,6,5,6: 11 x 12 11,22,12,6,6 12,22,11,6,5 | 23,11,5 C
55,9,36,2,9 : 11 x 45 11,55,45,9, 36 45,55,11,9,2 56, 11,2 C
44,9,24,3,9 : 12 x 33 12,44, 33,9, 24 33,44,12,9,3 | 45,12,3 C
132,11,110, 1,11 : 12 x 121 | 12,132,121, 11,110 | 121,132,12,11,1 | 133,12,1 | C
26,7,7,6,7:13 x 14 13,26,14,7,7 14,26,13,7,6 27,13,6 C
39,9,18,4,9 : 13 x 27 13,39,27,9,18 27,39,13,9,4 40,13,4 C
78,11,55,2,11 : 13 x 66 13, 78,66, 11,55 66, 78,13, 11,2 79,13,2 C
182,13,156, 1,13 : 14 x 169 | 14, 182, 169, 13,156 | 169, 182,14,13,1 | 183,14,1 | C
30,8,8,7,8 : 15 x 16 15,30, 16, 8, 8 16,30, 15,8, 7 31,15,7 C
35,9,12,6,9 : 15 x 21 15,35,21,9,12 21,35,15,9,6 36, 15,6 C
70,12,44,3,12 : 15 x 56 15,70, 56,12, 44 56,70,15,12,3 71,15,3 C
40,10,15,6,10 : 16 x 25 16, 40, 25,10, 15 25,40, 16, 10,6 41,16,6 C
48,11,22,5,11 : 16 x 33 | 16,48,33,11,22 | 33,48,16,11,5 |49,16,5 C
60,12,33,4,12: 16 x 45 | 16,60,45,12,33 | 45,60,16,12,4 |61,16,4 C

Table 1: Parameters for a T'A with v = r+c¢—1 where the SBIBD is known.
2<r<16,r<c,2<k<nr,l1<A.<r.
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r = 16, for a possible double or triple array. In both these tables C again
denotes an array we have constructed, while NE means that the indicated
array is non-existent.

TA BIBDgp BIBD¢ SBIBD

Uk, Ny Aees Ape 2 17 X € r,v, ek, Ay c, 0,1k, Aee v+ 1,7, Aee

156,12,132,1,12 : 13 x 14413, 156, 144, 12, 132 | 144, 156, 13,12, 1 | 157,13, 1
80,13,52,3,13: 16 x 65 | 16,80,65,13,52  |65,80,16,13,3 |81,16,3
120,14,91,2,14 : 16 x 105 |16,120,105,14,91 |105,120,16,14,2 | 121,16, 2
240,15, 210, 1,15 : 16 x 225 | 16, 240, 225, 15, 210 | 225,240, 16, 15, 1 | 241, 16, 1

Table 2: Case v = r +c¢— 1. Possible parameters for a T'A when no SBIBD
is known. 2 <r<16,r <c,2<k<nr1<)A.<r.
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TA BIBDg BIBD¢ SBIBD | DA?
VU, Ky Npry Aces Ape T X € r,v, ¢, k, A c, 0,1,k Aee v+ 1,7, Aee
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Table 3: Case v =1 + ¢ — 1. Parameters for which there is no T'A.
2<r<16,r<c,2<k<nr,l1<A.<r.
TA BIBDg BIBD¢ DA?
VU, Ky Ny Aces Ape T X € v, c, k, A c, 0,1k, Aee TA?
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Table 4: Case v > r 4+ ¢ — 1. Possible parameters for a DA or TA.

2<r<16,r<c,2<k<nr,l1<)A.<r.
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Appendix A: Double arrays

This is a double array DA(6,2,2,1 :3 x 4):

1 2 3 4
4 1 5 6
5 3 6 2

Here is the DA(42,10,18,5 : 15 x 28), mentioned in Section 7:

16312627 721 212133537203930 8 33424 540 9 18 10 32 33 22 23 38
40382221 13253127141134412832 4 9 323 8 6191033362439 17 35
341220 942144139 41526 1361832 510403724283511232233 725
37253612 6 1352410421929 834 538 2111627 33 26 21 15 13 23 41 40
9 6113435292425282713 73041 22226 312381739 36 16 42 14 20 37
3135 714374038 125 31528213930362327 410 8291317 12 18 26 42
1118193915 822162432 11331 437262728413038 92940 5 214 36
2 33119321012 94137401442 1232520 528162733303817 61539
6103941281126131729 4 2 31642 138213332 7401820341524 31
3 7 83221341542391812 5 222354033 4251411172729 30 16 19 41
201742 52231 9233412283529 3 119 430 62616 841 13 1840 36 33
54118 624 72310 214312715 91732423529 36342019 421133730
1819 520102230361125 63114 71628293324 842 137213835 332
1721 4232037 83132263038 62919 2223936 71512 911 12533 34
24 413 8 92311 326 5271617151021 6 722182528 2121419 120

The DA(24,6,10,3 : 9x16) whose column design is the (16, 24,9, 6, 3)-BI BD
due to Bhattacharya [3] (see Section 7):

21 18 11 19 23 12 7 1 3 6 20 14 5 4 9 13
23 3 4 12 2 5 11 13 21 16 24 17 6 8 15 20
17 10 12 9 6 22 1 16 4 14 11 20 8 23 24 19
6 1 3 10 12 18 13 14 9 7 2 4 24 11 17 15

1 12 8 13 4 15 223 21 10 7 19 14 22 24
13 6 2 14 20 11 18 22 10 15 17 5 16 19 1 21
5 17 21 7 19 16 22 11 23 9 10 18 8 3
19 20 17 22 15 8 3 18 23 13 24 2 1 6 7
1214 7 8 9 20 15 5 10 22 16 3 24 21 18

S O N o Ot
W
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A DA(63,5,6,3 : 15 x 21):

24
45
48
o4
14

3

7

6
35
49
56
12
33
27
28

15
28
o7
34
55
29
49
50

7

4

8
46
13
25
36

37
14
29
26
16

5
56
58
ol

8
50

9
47
35
30

36
52
15
27
59

6
30
38

9
17
31
o1
10
48
o7

58
11
16
39
31
32
52

7
37
18
53
10
28
49
60

50
59
12
61
40
17
33
53

8
38
19
32
11
29
o4

13
51
60
30
33
55
18
62
39

9
41
o4
20
34
12

95
56
31
19
35
21
42
34
63
52
10
40
61
13
14

14

53
32
62
15
35
o7
20
36
22
11
41
56
43

44

33
58
o4
63
o7
36
16
23
37
42
12
21
15

16
17

13

34
37
43
58
59
24
38
95
22
45

46
38
44
17
18
56

59
25
60
23
39
14
35

61
15
39
45
47
36

19

60
18
o7
24
40
26

27
37
25

20
19
61
16
48
40
46

58
62
41

42
62
38
49
41
28
20
21
17

47
26
59
63

29
43
18

27
60
22

21
39
63
48
42
50

30

40
28
51
43
23
22
61

19

44
49

31
24

50
41
29
44
45
10
62
20
52

23

51
32
63

w

42
46
30
24
45
11
25
21
53

10
25
52
46

ot

23
47
26
53

4 48

o4
31
26
33
43
12
22

44
95
32
27
34
11
13

25




A DA(99,5,18,1 : 11 x 45):

34 12 86 91

15

1

81 82 83 48 4 61

50 72 91 84
19 7 817
713513 9
91 20 31 14
11 70 66 87
5 116 32
6 46 2 67
899173 3
69 90 47 74

49
18
85
10
75
33
88
68
91

11
39
79
86
92
74
24
10
95

75 71
92 21
62 36

6 92

2 52
25 3
51 76
87 88
12 13
40 7
80 63

53 92 64
37 90 15
77529
89 23 84
8 73 93
64 9 6
4 65 44
22 38 60
7278 1
14 54 76
92 15 66

56

2
93
67

81 93 59
93 79 10
61 82 14
41 4 28

20 5 31 82
99 27 17 57 94 16 50 28

51 60
26 94

76842 58416

85
7
30
45
65
11

8 69 63
26 62 43
78 27 93
o7 9 83
12 58 80

313 70

94 61
86 22
65 52
34 35
21 87
4 85

38

1
62
28
53
56
94
23
81

94
29
63
32
18
o4
89

2
24

3

58
83
90
30
64
19
95
25
33

26 27 36

95 66 6
70 40 78
49 57 46
76 17 58
921 95
89 10 67
39 90 86
56 95 18
25 77 22

47 48 14
87 60 54

7 38 16
99 95 96
95 24 30
19 80 75
37 88 81
23 821
79 20 44
29 69 79
68 30 46

80
71
22
15
96

23
76
18
72
27

47 83

55
82

48
96

17 11

45
26

51
41

42 78
24 13
28 25
12 50
19 29
96 74
73 20
49 85
77 53
84 43
92 96

4 97 16
35 543
80 55 71
74 37 51
41 20 38
o4 42 97
97 31 32

69
72
17
52
97
39
59

60 9 25
70 46 65

3 40 47
73 85 81
18 31 60
53 41 72
40 98 10

66 76 77 44 45 71 98

56 75 68
36 67 1

33
78

97 64 42
34 24 32

19 57 58 2 79 59 36

37 49

6 38
73 83
96 62
82 74
21 98
33 7
43 34
61 22
98 57
48 44

58
98
39
45
75
50
84
63
23
35

45
49
69
61
ol
36
29
99
31
90

70
32
99
30
86
52
15
41
50
62

38 67 89
26 39 68
33 27 44
63 34 48
53 64 40
87 43 65
42 54 99
11 12 55
66 99 28
46 47 13

14 37 99 88 35
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Appendix B: Triple arrays

Here is a T'A(35,3,5,1,3 : 7 x 15); see Section 10:

31
26

1

6
16
21
11

1
32
17
27
12
22

7

18

1
13
33
23
28

8

16
2
9

28

32

24

14

7
29

3
16
34
25
13

10
30

4
13
21
19
32

)
28
21
35
15

7
20

3
20
22
30
33
14

6

4
27

6
15
24
18
34

2
11
35
10
22
29
18

33

)
25

9
11
27
19

14
34

)
26
10
23
17

19

3
24
12

8
26
35

15
8
2

17

25

30

31

12

23
29
20
31

The following arrays were constructed by computer, using Agrawal’s con-
struction. They fill in the holes in Table 1 that are marked C.

A TA(56,7,42,1,7 : 8 x 49)

50 23 31
36 50 3
29 30 45
8 44 17
22 910
43 2 24
15 37 50

116 38

46
39
25
50

4
18
11
32

26
40
12
47

5
50
19
33

20 35 33 34 19
41 49 51 18 44
50 7 9 26 27
13 42 41 51 11
48 50 49 43 51
27 28 110 35
34 21 25 2
6 14 17 42 36

37
20

29
45
51
12
28

38 47 51 39
22 15
46 51
21 14

13

30 31
51 39
5 23

24 1
40 52
32 48
8 28

719
16 30
48 10

49
52
31
40

22
20
11

21
43

12

24

52

23 42

32
52
41

13
33
15

14 52 27 11
34 46 29 37
36 37 38 47
6 7 34
26 47 21
17 52 53

16
52
45

5
25

35 9

1

8 18 24

15

53
35
25
48
38
12

16
26
49
53
39

29
13

40
53
43
30
14

17
27

53

41
18
44

28
31

32
45
42

9
19

6
53
22

36 42
7 16

46 31
53 12
33 54
10 27
20 46

28
32
54
36
17
47
13

54

8 43

48 54 35
33 34 39

31

9 20

18 38 54
14 49 5
22 23 24

37

4 9

21

10
40
29
54

41
30
11
54
15
26

7
45

13
23
35
45

55
18
40

29
55
14

24
46
41
19

30 48 10
25 31 27
855 5
55 4 37
3 36 55
20 9 15
42 26 32
47 21 49

55
33
28
38
16
11

43

12
17
22
39

44
55

44
38
32

20
56
14
26

45 9
56 28
2 56
33 15
27 46
21 34
8 40
39 3

22

10
56
41
16

35

17 18
47 42 6
48 24
5 49
11 56
23 12
56 36
29 30

56
19
13
43
37
25
31

27




A TA(36,7,21,2,7:9 x 28):

1 8 611 3 30 36
33 18 429 12 31 8
15 30 20 33 8 6 32
36 110 7 30 23 14
27 4 1 522 35 31
3525 328 5 7 24
23 26 27 21 6 4 10
22 228 43413 5

16

7
34
33
12
26

9
10

13
10
27
11
34

2
35
17

9 2 733 5
1715 3 9
2 16 18
18 8 4
13 23 20
32 14 17
22 17 34
1 319 15
6 16 4 24

35
11
12
36
18
28
14

53632 229 9 7 1 8 3

21
15
14
31
12

25

10
16
19

18
35
21

17 28
19 22
26 9
20 13
721
22 1
36 8

11 19

23
20
22
25
10

29
14

10
11
23
24
26
21

30
15

27
25

22
24
11
31
16
12

12
13

17
28
23
25
32
26

24
27
14

18
33
29
26
13

15
14
19
28
30
27

25
34

20
26
28
29
16

15
31
35

29
30
36
21
17
16
32

27

18

31
32
29
34
19
11
23

19
32
12
35

30
24
33
20

31
21
13
34

20
33
36
25

A TA(72,8,56,1,8 : 9 x 64): —

A TA(30,7,14,3,7 : 10 x 21):

See [21]

1819 2 29 22 11
19 3 23 15 16 29
25 14 4 24 29 16
29 22 813 6 5
2829 12 310 7
10 11 29 21 24 8
72021 9 15 25
13 28 20 23 25 26
226 27 5 417
27 1 22 28 14 23

1
17
18
26
27

9
29
24

6
12

16
30
21
11

6
27
28
12

3
25

13

4
28
30
15

7
12
17
22
26

16

13

30
14
19
28

23

26
21

19
30

25
10

24 12

219

5 17

10 22
27 10
15 16
11 9

10
11
17

20
13

18
23
4

21

12
18
14

11
19
24

12
13
25
19

15
20

26
13
20
14

16

21

17
14
21

11

18

5 6 3 2

A TA(90,9,72,1,9 : 10 x 81): — See [21]
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A TA(22,6,6,5,6: 11 x 12):

13 21 15 7 19 10 20 4 22 1 3 5

6 16 § 4 17 22 11 13 19 20 1 2
22 4 6 15 10 9 2 21 3 18 17 16
20 9 10 14 16 18 7 8 21 2 19 1
12 5 18 19 13 11 10 14 2 6 21 22
21 20 11 16 6 13 3 1 12 15 9 14
18 17 19 9 12 1 22 15 7 11 14 4
12 14 6 7 16 17 10 15 5 22 20
11 4 13 3 5 14 17 16 21 8 18
19 20 2 18 156 13 12 8§ 17 5 3
10 3 5 1 8 9 2 11 7 6 12

B © ~J 0

A TA(55,9,36,2,9 : 11 x 45): — See [21]
A TA(22,6,6,5,6 : 12 x 33):

3438 644 84129224313322515 412 52617102028193123 9 711 16 37 18 14 40 35
37 26 36 28 27 38 10 11 33 14 30 24 20 1223 43 44 21816211513 934 3 1 7 831174140
22 2 4383519244021151844 114 613 3433011 5 16 17 32 36 27 25 37 33 12 41 29 10
312040 5 9 83634134443 174221 7 1 4152930252632 22422 6381439 31816
283533212922431026271940 939441118 7 6 223 3 831 43616 117384212 5
40 1202443302532422334334419 2 913391428 311271012 515 43835 6 7 8

344 43 41 32 36 123922312328 17 816243725 12729 533 4261435103415 9 42 30

14130 621 7204435291639 1943 14 18 27 26 28 9 13 31 1225 2 34 36 32 5 37 11 33 42
43 29 37 34 24 44 31 21 28 36 17 35 10 342221141 81530 7203319182339 2 632 413
25 32631 7331130383927 162120372342 619 4172422143510341329 940 141

223 5 44025381214 194220 37412439 8272622 732 118173521 36 11 30 28 15 31
1932 23 27 37 942 26 1540 38 18 5 16 22 41 251024 29 1233 621 1320 82839 33634 2

A TA(132,11,110,1,11 : 12 x 121): — See [21]
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A TA(26,7,7,6,7: 13 x 14):

6
25
26
17
12

)
11
15
19
20

W = N

8
1
16
23
)
15
4
20
18
6
22
2
9

23
10
9
21
16
7
6
2
3
17
)
19
24

20
8
6

11

17

18
3

25
7
4

24

10

22

7
)
18
25
19
26
9
4
23
11
12
8
21

26
15
12

24
21

10
11

22
16

12

24
18
26

10
17
13
23

w

22
11

14

10

26
20
21
17
23
13

15
24
23

22
14

12
19
25
13

23
25

14
24
13
16

20
26

14
17
10
15

12
16

13
18
21
25

17
14
11

18
19

13

22
16

26

22
20
16

14
19
10
12
21
25

30




A TA(78,11,55,2,11 : 13 x 66): — See [21]

A TA(182,13,156,1,13 : 14 x 169): — See [21]

A TA(30,8,8,7,8 : 15 x 16)

25 26 20 9 6 14 2 3 24 30 18 27 16 29 1 15
9 5 21 23 19 1 18 27 29 2 30 12 6 28 4 17
28 6 9 22 7 26 10 23 11 24 3 1 2 17 14 4
2 3 4 18 23 8 15 29 12 11 10 5 7T 24 27 25
4 9 3 12 24 11 5 28 19 16 13 26 8 25 30 6
8 10 6 11 21 15 27 14 30 18 1 28 26 5 13 7
7 17 30 29 9 12 13 16 20 3 23 15 28 8§ 10 1
20 19 11 1 12 16 24 13 17 21 5 T 27 14 3 2
14 8 18 13 25 12 17 28 15 20 3 4 21 2 22
16 21 7 5 14 4 9 18 15 23 26 22 29 3 19 13
10 15 16 24 30 23 17 6 14 8 4 19 20 27 22 5
19 29 12 8 25 17 22 10 18 1 24 6 21 7 26 16
18 11 27 20 2 9 26 25 7 19 17 23 13 22 8§ 30
1 20 10 13 15 27 28 19 4 22 21 25 24 9 29 11
5 2 22 14 10 21 16 11 26 28 25 20 23 30 12 29
A TA(35,9,12,6,9 : 15 x 21)
31 8 28 32 23 6 19 34 20 22 9 24 7 4 33 35 30 17 12 25 15
920 7 8 2 11632 10 4 34 13 24 12 5 30 35 33 27 14 31
13 9 8 15 26 16 14 3 24 12 11 7 2 25 19 17 18 23 22 21 28
28 7 27 35 34 29 8 30 25 10 23 5 22 16 26 6 13 20 33 32 3
7 11 21 9 20 5 17 13 34 35 2 12 18 26 1 10 23 19 4 30 16
19 4 17 22 3 32 23 14 16 28 15 33 25 27 21 26 31 29 1 5 11
34 17 31 25 4 10 6 7 1 33 13 35 29 30 27 2 5 3 32 28 19
4 6 14 19 15 2 18 5 17 16 12 20 33 3 9 21 24 22 7 8 26
22 26 9 1 18 13 28 17 32 2 30 15 34 14 25 27 21 24 20 23 33
5 20 2 18 6 35 15 16 12 17 32 14 11 8 29 25 9 10 31 33 24
25 14 24 7 12 21 27 18 11 26 10 3 23 22 16 20 19 15 29 31 9
16 35 11 12 28 3 33 26 30 18 19 25 27 24 34 31 1 4 17 2 6
8 5 1 3 31 27 35 15 18 9 4 11 6 23 14 19 20 21 13 10 29
10 23 34 29 1 24 13 21 6 11 27 28 26 31 20 15 22 &8 30 18 32
6 32 3 2 5 4 1 22 8 21 14 10 13 35 12 7 11 34 28 29 30

A TA(70,12,44,3,12 : 15 x 56): — See [21]
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A TA(40,10,15,6,10 : 16 x 25):

522361840 639 1211319 4123233 93515 824 723173016
244031263336101137 51423 2191318 7223417 8 92520 1
34 1 2323523152516273624181214 6103837 820 3 92119
21 610 225173720 72216 3 42835393133 9381324191511
3129 33938221840 417 5122534201032 7111623 814 621
3628332223142913 910352027 5 21240 63911 321322624

42530 334 1 72414362237163315291312234028312710 6
28 5 737 6 423 82621 23524253836143213343029151117

1 8 924 73738303915 326 5212935113133141218222527

83223 4 9281238 24034151139223121192730251310 126
101632 82739401925 311173614 1151828 735 226 43329
27 92930 411 2362037314033 32117 6 815121828 51634

735173419 9 5 33626301138 118133720321022 4292812
35313810 51819 612 839 11337 426301429 3327162023 2
20 2 1 6 32728393038153132134034192616 9171424 5 7
39 37 21 33 26 38 24 29 40 16 23 32 31 17 34 25 27 36 20 28 35 19 30 18 22

A TA(48,11,22,5,11 : 16 x 33):

37

9
10
45
35
38
41

)
23
18
29
15
32
20
39
25

44
35

)
14

8
25
28
40
46
42
22
10
15
30
43
34

4117 4 339 82511 6 23 38 222 31 14 26 43 28 34 12 21 46
28 840 21 32 15 24 44 212 34 6 20 11 47 45 13 29 16 25 18 48
18 32 38 123 1319 3029 39 8 33 2644 25 2 42 35 12 3 36 17
43 61941 12 1354046 30322115 5 4 83139 20 22 23 13
36 33 46 17 10 7 21 9 13 41 11 31 37 32 15 43 24 20 38 26 30 47
46 27 36 9 31 10 26 41 47 42 39 34 17 40 7 19 48 12 14 23 28 18
2714 326 11139233715 624 3548 18 5 4 40 25 20 44 31
22 46 11 15 36 9 38 31 42 4 47 20 39 37 29 12 34 48 44 21 8 33
236 1547 481711291916 4 5 724 21 34 9 30 45 27 37 22
935322843 63647 51427 2312172429 333 111 38 45
541 7 48 28 16 33 10 17 24 45 8 36 42 40 11 20 4 23 14 35 43
24 48 34 22 21946 16 23 33 28 7 27 12 38 37 35 9 40 29 13 8
45 32244 42 14 6 26 28 37 10 9 43 27 48 38 17 11 2 24 16 23
16 223 521124243 447443234 7 6 3 10 46 33 13 48 25
429413315 5163620 8 122 625 23038 717 10 27 11
1210 133819 18 5 644 3 24 30 47 41 43 48 16 1 36 28 7 39

A TA(60,12,33,4,12 : 16 x 45): — See [21]

32

18
36

24
44

26
31
46

42
20
15
45
29

30
24
17

21
34
10
39
37
18
26
40
41
13
46

29
17
27
26

30
19
16
25
15
34
31
33
18
28
32

42
43
29
14
45

13
44
34
19
41
39
27
21
33

32
39
47
16
28

13
14
40
26
45
35

31

35

40
44
12

33
18
10
31
21

19
45
37
22

16
19

27
25

43
32

21
37
47
46

40
20

22

48
45

36
14

13
32
25
30
26
42
37

42
41
22
38
19
20

27
35
30
47

18
11
31
14
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