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Abstract— A homotopy method for obtaining DC solutions of
nonlinear circuits is proposed. The homotopy method is called
double-bounded homotopy and it is used to find multiple DC
solutions. This method presents a novel stop criterion which is
based on the property of tracing a double bounded trajectory.
The main properties of the homotopy are explained by using the
Lambert-W function.

I. INTRODUCTION

The problem of finding the DC operating point is important
because it constitutes the starting point for other kinds of
analyses such as the ac small-signal and transient analyses [1].
It consists in finding the roots of the nonlinear algebraic equa-
tions (NAEs) emanating from nonlinear resistive networks,
NAEs that have the general form given by:

�f(�x) = �0 (1)

where �x are the unknowns accordingly to the circuit analysis
method used to set-up the equilibrium equation of the circuit.

As it is well-known, equation (1) may posses a single
solution, no solution at all, or multiple solutions. In this paper,
the attention is focused on the last case, where most of the
Newton-Raphson (NR) methods fail to converge. Homotopy
methods have been considered as a good choice of methods
that overcome the shortcomings of the NR-like methods [2],
[3], [4].

Homotopy methods are based on stablishing an auxiliary
equation in order to convert the problem of finding the roots
of a NAE (a static problem) into a problem of finding the
solution of an associated ordinary differential equation (a
dynamic problem) [1], [5]. This auxiliary equation, also called
the homotopy equation, is formed by adding a parameter to
the original equation:

�H(�f(�x), λ) = �0 (2)

where �H(·) is the homotopy relationship, �f(�x) is the original
equilibrium equation of the circuit, and λ is the homotopy
parameter. The solution is found by following a numeric
integration procedure, where λ is used as the integration
parameter that varies from an initial value λ0 to a value λ∗

where a solution �x∗, to the original system (1) is found. From
this point, the integration procedure continues in order to
search for another solution. The whole procedure results in
tracing a path where the solutions lie.

Although, homotopy methods are able to find more than one
solution to (1), they still exhibit several lacks. Among them,
it is worthy to mention:

• No global convergence. The capability of finding all so-
lutions cannot be always guaranteed. In fact, this depends
on a series of issues, such as the initial point where the
homotopy starts to trace the solution, the trace method
and the type of nonlinear equation.

• Stop criterion. There are two types of paths of solutions,
open and closed paths, and spite the type of path the main
problem is when to stop searching for more solutions. For
closed paths, this can be solved by testing whether a new
solution has previously been found. For open paths, this
is a serious drawback, because there is no reasonable and
reliable criterion to decide when to stop seeking for more
solutions.

Figure 1 shows an open path of solutions for the one-
dimensional case. The path starts at λ = 0 and the homotopy
starts tracing the path of solutions. A first solution, x∗

1, is found
at λ = 1. The path continues searching for solutions for λ > 1,
and returns to λ = 1, where a second solution, x∗

2, is found.
This procedure is repeated for the next solutions x∗

3 and x∗
4.

However, it is not possible to asses if all solutions have been
found or if the procedure needs to be stopped. Most of the
homotopy formulations stop seeking for more solutions after
a certain number of iterations has been completed.
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Fig. 1. Example of a solution curve

In [6], a method was proposed to limit the homotopy
trajectory whithin the interval λ ∈ [0, 2]. This method is
applied under two conditions: first, it is necessary to know
a priori one DC solution in order to be used as initial point
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in the method, and second, the circuit needs to be passive in
the rank λ ∈ [0, 2]. The main goal of our work is to introduce
a method for creating a stop criterion for a homotopy that can
be applied to general nonlinear circuits.

II. THE DOBLE-BOUNDED HOMOTOPY

In order to have a criterion to stop seeking for solutions, it
is important to understand how to manipulate the homotopy
trajectory. Usually, the homotopy finds the solutions when λ
reaches the value of 1, but, this is merely a convention. In fact,
it is possible to consider any positive value of λ as the value
where the solution is found (λ∗). This allows us to introduce
the concept of solution line:

Definition 1: The solution line is defined by

λ − a = 0

where λ is the homotopy parameter and a is the value of λ
where the homotopy function becomes equal to the original
system equation. Figure 2 show this concept.
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Fig. 2. The solution line

However, this scheme still shows the problems explained
for Figure 1.

If the concept of one solution line is extended to two-
solution lines, what will happen? There are two cases de-
pending of number of solutions of the nonlinear system.
Figure 3 depicts the case of an odd number of solutions. This
figure shows an open homotopy trajectory that crosses the two
solution lines (λ = a and λ = b) starting at λi = (a + b)/2.
The trajectory is half-bounded in the x-axis.
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Fig. 3. Trajectory of an odd number of solutions
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Fig. 4. A trajectory for an even number of solutions

Figure 4 depicts the behaviour of the homotopy trajectory
for a case of an even number of solutions. This figure
shows a closed homotopy trajectory that crosses both solution
lines. These lines have the effect of modifying the homotopy
trajectory. It is necessary to introduce the definition of this
useful term as follows:

Definition 2: The double solution lines are defined by

λ − a = 0 and λ − b = 0

where λ is the homotopy parameter, a and b are the values of
λ where the homotopy function becomes equal to the original
system equation.

When both lines are applied to the homotopy, the result is
that the trajectory is forced to cross the double solution lines.
The resulting trajectory shows an interesting property, it has
a symmetry axis, which splits the trajectory in two mirrored
branches. The symmetry axis is defined as:

Definition 3: The symmetry axis is defined by

λ − (a + b)/2 = 0

where λ is the homotopy parameter.
Unfortunately, it is not possible to asses a priori the number

of crossings on each solution line, i.e the number of solutions.
Hence, a generalized stop criterion can not be established. For
the case of an even number of solutions, the mirrored branches
form a closed path. However, for the case of an odd number
of solutions, the mirrored branches form still an open path that
shows the same lacks regarding the stop criterion.

In order to circumvent this problem instead of using the
original system f(x), we use f2(x), which has the effect
of converting the original f(x) into an even function that is
symmetric to the symmetry axis defined above, and it causes
that the mirrored branches form a closed path. The results is
that the number of solutions is duplicated. Figures 5(a)-(b)
depict this effect with a function with two and three solutions
respectively. These figures show two important properties:

1) The trajectory is closed for even and odd number of
solutions.

2) The trajectory never crosses the solution lines. The
solutions occur when the trajectory touches the solution
lines.
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Fig. 5. (a) even number of solutions (b) odd number of solutions

This allows us to convert the concept of double-solution line
into a pair of lines that bound the excursion of the mirrored
branches. This leads to the definition of double-bounding line:

Definition 4: The double-bounding line is a special case
of double-solution line and is defined by

λ − a = 0 and λ − b = 0

where λ is the homotopy parameter, a and b are the values of
λ where the homotopy function becomes equal to the square
of the original equation. Besides, the homotopy trajectory is
restricted to a � λ � b

Under this scheme, we guarantee, that the bounding in the
λ-direction has been achieved. However, there is still an issue
regarding the values that the branches may reach in the x-
direction. In order to have small ranges of the values in the
x-direction, and to damp the nonlinear behavior of f(x), a
logarithmic term is applied to the square function.

Finally, the designed homotopy is called double-bounded
homotopy and is defined as

Definition 5: The double-bounded homotopy is defined
by

H(f(x), λ) = CQ + eQ ln(Df2(x) + 1) (3)

where f(x) is the function to solve, λ is the homotopy
parameter, a and b are the values of the double bounding lines,
C and D are positive constants of the homotopy, and Q is
given by:

(λ − a)(λ − b)

The term (Df2(x) + 1) must be used in order to assure that
the argument of the log-function never becomes negative.

The symmetry axis of the double-bounded homotopy gives
an important advantage over the traditional homotopies, be-
cause it can be used to shorten the lenght of the trajectory
by tracing only one symmetrical branch. Figure 6 depicts the
tracing strategy by shading the half side to be traced, where

the initial and final points (xi and xf respectively) of the
homotopy trajectory are located at:

(xi, λi) = (xi, (a + b)/2)
(xf , λf ) = (xf , (a + b)/2)
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Fig. 6. Homotopy tracing based on symetrical properties

A. Properties

Herein, some properties of the double bounded homotopy
are introduced.

On one side, the qualitative properties of the new homotopy
are analyzed by examining the terms contained in the formula-
tion from Equation 3. The double solution lines are contained
in the next terms of the homotopy:

C(λ − a)(λ − b) + e(λ−a)(λ−b)(.)

The double bounding effect of the new homotopy is given
in the square of f(x). The damping in the x-direction is given
by the term ln(Df2(x) + 1).

On the other side, the properties above are explained as a
result of the algebraic analysis of the homotopy formulation
by resorting to the Lambert-W function. The main property
of the Lambert-W function is given by [7], [8]:

W(z)eW(z) = z (4)

Firstly, Equation 3 can be reordered in the following form:

−Qe−Q = ln(Df2(x)+1)
C

Now, after substituting −Q = W(z), we obtain:

W(z)eW(z) = ln(Df2(x)+1)
C

Therefore, after solving for z, it yields:

z = ln(Df2(x)+1)
C

Therefore, Q becomes:

Q = −W(
ln(Df2(x) + 1)

C
) (5)

However, Q represents the double boundings from Defini-
tion 5. After substituting in the equation above we obtain the
expression:

(λ − a)(λ − b) = −W(
ln(Df2(x) + 1)

C
)
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that can be solved for λ, resulting in two solutions:

λ1 = 0.5(a + b) + 0.5
p

(b − a)2 − 4W(ln(Df2(x) + 1)/C)

λ2 = 0.5(a + b) − 0.5
p

(b − a)2 − 4W(ln(Df2(x) + 1)/C)

In fact, λ1 and λ2 represent the mirrored branches of the
homotopy trajectory. Analysis of these expressions allows us
to determine the range of values for the functions λ1 and λ2:

0.5(a + b) � λ1 � b

a � λ2 � 0.5(a + b)

as shown in Figure 6.
The range of the branches in the x-direction is defined by

the function f(x), when f(x) satisfies:

|f(x)| � (1/D)
√

D(e(C/4)(b−a)2e(a−b)2/4 − 1)

III. CASE EXAMPLE

Figure 8-a depicts the Chua’s benchmark circuit having nine
solutions. This circuit has 4 bipolar transistors modeled by the
half-sided Ebers-Moll model (Figure 8-b).

The equilibrium equation is the same of [9] which is based
on the voltages v1, v2, v3, v4. Figure 7 depicts the homotopy
trajectory and the six solutions found versus the branch voltage
v1. The values of the found solutiones are:




v1

v2

v3

v4


 =




−.5136
.3775

−.9682
.3775




︸ ︷︷ ︸
Solution ①

,




.3242

.3703
−1.039

.3775




︸ ︷︷ ︸
Solution ②

,




.3869
−4.632
−.8002

.3775




︸ ︷︷ ︸
Solution ③

,




.3857
−4.273

.3322

.3669




︸ ︷︷ ︸
Solution ④

,




.3300

.3680

.3367

.3642




︸ ︷︷ ︸
Solution ⑤

,




−.7119
.3775
.3350
.3653




︸ ︷︷ ︸
Solution ⑥
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Fig. 7. Solution of the Chua’s circuit
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Fig. 8. Chua’s circuit with nine solutions

IV. CONCLUSIONS

A new homotopy to obtain multiple operating points of
nonlinear circuits is presented. This homotopy method is
called the double bounded homotopy and it overcomes the
shortcomings of traditional homotopy schemes regarding the
stop criterion. The geometrical properties of the method have
been analyzed by using the Lambert-W function.
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