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Abstract

We give a lower bound for the minimum distance of double circulant binary
quadratic residue codes for primes p ≡ ±3 (mod 8). This bound improves
on the square root bound obtained by Calderbank, using a completely dif-
ferent technique. The key to our estimates is to apply a result by Helleseth,
to which we give a new and shorter proof. Combining this result with the
Weil bound leads to the improvement of Calderbank’s bound. For large
primes p, the bound due to Calderbank is of order

√
2p while our new

improved bound is of order 2
√

p.

1 Introduction

In this note we give a lower bound for the minimum distance of the double

circulant binary quadratic residue codes defined by Karlin [3] for primes p ≡
±3 (mod 8). This bound is comparable to the square root bound for the usual

quadratic residue codes and improves on the square root bound obtained by

Calderbank [1] using a completely different technique. The key to our estimates
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is a result in Helleseth [2] to which we give a new and shorter proof. This result

relates the weight of codewords of a quadratic residue code to the number of

points of hyperelliptic curves over Fp to which the Weil bound can be applied to

obtain the improvement of Calderbank’s bound.

A double circulant code is a code with generator matrix [I|W ] where I is the n×n

identity matrix and W is an n × n circulant matrix. We work throughout with

codes over the binary field F2. We take n = p, a prime, and let W be the p× p

matrix whose (j, t) entry (j, t = 0, 1, . . . , p−1) is 1 if and only if t−j is a nonzero

quadratic residue modulo p. We denote the corresponding binary [2p, p] code by

Cp. Our convention differs slightly from those of Karlin [3], but the results can

be readily translated. When p ≡ ±1(mod 8), the codes with W as a generator

matrix or parity check matrix are quadratic residue codes in the usual sense and

the minimum distance of Cp can be readily related to the minimum distance of the

usual quadratic residue codes. If we view F2p
2 as F2[x]/(xp− 1)⊕F2[x]/(xp− 1),

then Cp = {(a(x), ω(x)a(x)) | a(x) ∈ F2[x]/(xp− 1)}, where ω(x) =
∑

q∈Q xq and

Q ⊂ {1, . . . , p− 1} is the set of nonzero quadratic residues modulo p.

A standard calculation gives the following well known result, that is needed later.

Lemma 1 Let ω(x) =
∑

q∈Q xq. If p ≡ 3 (mod 8) then ω(x)3 ≡ 1 (mod xp − 1).

If p ≡ −3 (mod 8) then ω(x)3 ≡ 1 + xp−1
x−1

(mod xp − 1).

2 Main results

In this section we will first give a shorter and simpler proof of the result originally

proved in Helleseth [[2], Theorem 1.1]. Thereafter we will combine this result with

the Weil bound to improve the previous best bound due to Calderbank [1] on the

minimum distance of some double circulant codes.

Lemma 2 If a(x) =
∑r

i=1 xji ∈ F2[x]/(xp−1), define f(t) =
∏r

i=1(t−ji) ∈ Fp[t],

then the weight w(c) of ω(x)a(x) is

w(c) =
1

2


p + (−1)r−1


 ∑

t∈Fp

χ(f(t))−
r∑

i=1

χ(f ′(ji))







where χ denotes the quadratic character (Legendre symbol) mod p.
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Proof. Let c(x) = ω(x)a(x) =
∑p−1

i=0 cix
i. From the definition of c(x) it is

immediate to describe the positions where ct = 1. Let J = {j1, j2, . . . , jr}. In the

case t 6∈ J , then ct = 1 if and only if an odd number of elements among the r

elements t− j, j ∈ J belong to Q. In the case t ∈ J , then ct = 1 if and only if an

odd number of elements among the r − 1 nonzero elements t − j, j ∈ J belong

to Q.

This description immediately gives that in the case t 6∈ J then ct = 1 if and only

if (−χ(t− j1))(−χ(t− j2)) · · · (−χ(t− jr)) = −1. Similarly in the case t ∈ J , say

t = j1 then ct = 1 if and only if (−χ(j1 − j2))(−χ(j1 − j3)) · · · (−χ(j1 − jr)) =

−1. Note that f ′(ji) =
∏r

a=1,a6=i(ji − ja). Therefore, the codeword c(x) can

be described most simply as follows: (−1)ct = (−1)rχ(f(t)) when t 6∈ J and

(−1)ct = (−1)r−1χ(f ′(t)) when t ∈ J .

Let w(c) denote the Hamming weight of c = (c1, c2, . . . , cp−1), then we obtain,

p− 2w(c) =
p−1∑

i=0

(−1)ct = (−1)r


 ∑

t∈Fp

χ(f(t))−∑

t∈J

χ(f ′(t))


 .

This completes the proof of the lemma.

Remark Let ω∗(x) =
∑

n∈N xn where N is the set of quadratic nonresidues

modulo p. The proof of Lemma 2 is easily modified and leads to the following

weight w(c) of w∗(x)a(x):

p− 2w(c) =
p−1∑

i=0

(−1)ct =
∑

t∈Fp

χ(f(t)) +
∑

t∈J

χ(f ′(t)).

The Weil bound, in the notation of the above lemma, implies that

| ∑

t∈Fp

χ(f(t))| ≤ (r − 1)
√

p.

Combining the Weil bound with Lemma 2 and the remark above we obtain:

Corollary 1 Let ω(x) =
∑

q∈Q xq or ω∗(x) =
∑

n∈N xn, where Q (resp. N) is the

set of quadratic residues (resp. nonresidues) modulo p. The weight w(c) of any

codeword ω(x)a(x) or ω∗(x)a(x) is bounded by

1

2
(p− (r − 1)

√
p− r) ≤ w(c) ≤ 1

2
(p + (r − 1)

√
p + r).
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Theorem 1 The minimum distance d of Cp when p ≡ ±3 (mod 8) is bounded

by,

d ≥ 2(p +
√

p)√
p + 3

.

Proof. Let d be the minimum distance of Cp. The codewords are represented

by (a(x), w(x)a(x)) where the polynomials are computed modulo xp − 1. Given

a codeword of weight d, let r be the weight of the vector formed by the first p

coordinates of this codeword (corresponding to a(x)) and d− r the weight of the

last p coordinates (corresponding to b(x) = w(x)a(x)).

Assume first that r ≤ d/2. By Corollary 1 we obtain,

d ≥ r +
1

2
(p− (r − 1)

√
p− r)

=
1

2
(p +

√
p− r(

√
p− 1))

≥ 1

2
(p +

√
p− d(

√
p− 1)/2)

which implies

d ≥ 2(p +
√

p)/(
√

p + 3).

Assume next that r > d/2. From Lemma 1 we obtain ω(x)3 = 1+δ(xp−1)/(x−1)

where δ ∈ {0, 1}. Let b(x) = w(x)a(x), then w(x)2b(x) = w(x)3a(x) = a(x) +

rδ(xp−1)/(x−1). Interchanging the coordinates of the first and last p coordinates

in the codeword (a(x), w(x)a(x)) gives (b(x), ω(x)2b(x)+rδ(xp−1)/(x−1)). Note

that since 2 is a quadratic nonresidue mod p, then ω(x)2 =
∑

q∈Q x2q =
∑

n∈N xn =

w∗(x), where N is the set of quadratic non-residues mod p.

In the case δr = 0 (mod 2) the codeword is (b(x), w∗(x)b(x). Since the weight

of b(x) is d − r ≤ d/2, interchanging the role of a(x) and b(x) and applying

Corollary 1, reduces the proof of this case to the previous case where r ≤ d/2.

Finally, when δr = 1 (mod 2), the codeword becomes (b(x), ω(x)∗b(x) + (xp −
1)/(x− 1)), and Corollary 1 implies,

d ≥ d− r + (p− (p + (d− r − 1)
√

p + d− r − 1)/2)

= d− r + (p +
√

p + 1)/2 + r(
√

p + 1)/2− d(
√

p + 1)/2).
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Hence,

d(
√

p + 1)/2 ≥ (p +
√

p + 1)/2 + r(
√

p− 1)/2

and since r > d/2, we conclude

d > 2(p +
√

p + 1)/(
√

p + 3) ≥ 2(p +
√

p)/(
√

p + 3)

which completes the proof.

Using the results of Stark [4] one can push the lower bound on d to 2.13
√

p for

large p.

3 Conclusions

A new direct and simple proof of the connection between Legendre sum and

quadratic residue code has been given. In combination with the Weil bound this

result has been applied to improve Calderbank’s bound on the minimum distance

of double circulant codes. For large primes p, the lower bound due to Calderbank

is of order
√

2p while this correspondence provides an improved lower bound of

order 2
√

p.
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