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We analyze the flat space limit of 3-point correlators in momentum space for general conformal field

theories in even spacetime dimensions, and show they exhibit a double copy structure similar to that found

in odd dimensions. In even dimensions, the situation is more complicated because correlators contain

branch cuts and divergences which need to be renormalized. We describe the analytic continuation of

momenta required to extract the flat space limit, and show that the flat space limit is encoded in the leading

singularity of a 1-loop triangle integral which serves as a master integral for 3-point correlators in even

dimensions. We then give a detailed analysis of the renormalized correlators in four dimensions where the

flat space limit of stress tensor correlators is controlled by the coefficients in the trace anomaly.
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I. INTRODUCTION

Over the past few decades, the study of scattering ampli-

tudes and conformal correlation functions has revealed

remarkable new insight into the structure of quantum field

theory and quantum gravity. For example, there is now

considerable evidence that scattering amplitudes in quan-

tum gravity can be computed from the correlation functions

of a quantum field theory in one lower dimension. This

holographic correspondence is best understood when the

bulk geometry is anti–de Sitter [1], and conformal field

theory (CFT) correlators in the boundary can be computed

from Witten diagrams in the bulk. In the flat space limit,

these correlators reduce to scattering amplitudes in one

higher dimension [2]. Similar methods can also be applied

to compute cosmological observables [3–5].

Since scattering amplitudes arise from the flat space limit

of correlators, they are far simpler objects and many more

tools are available to compute them. It is therefore of great

interest to understand how to generalize these tools to

correlators, and there has been important progress in this

direction. For example, techniques analogous to Britto-

Cachazo-Feng-Witten recursion [6] and unitarity methods

[7,8] for scattering amplitudes have been proposed for

correlators [9–14]. Another remarkable property of scatter-

ing amplitudes is a set of relations connecting gauge to

gravitational amplitudes known collectively as the double

copy (see [15] for a recent review). Recently, analogous

double copy relations were found for general conformal

correlators in odd spacetime dimensions [16]. In particular,

Euclidean 3-point correlators of stress tensors, conserved

currents andmarginal scalars were shown to reduce to gauge

and gravitational scattering amplitudes in one higher dimen-

sion in the flat space limit. This was achieved by working in

momentum space and taking the energy (defined as the sum

of the magnitudes of the three momenta) to zero. In three

dimensions, certain aspects of this double copy structure

even extend beyond the flat space limit.

In odd dimensions, 3-point CFT correlators are rational

functions of the momentum magnitudes which exhibit

poles in the energy. The scattering amplitudes can then

be read off from the coefficients of the most singular poles.

In even dimensions, the situation is more subtle because the

correlators contain branch cuts and need to be analytically

continued before taking the flat space limit. Our strategy

will be to analyze first the flat space limit of a certain 1-loop

triangle integral. All the correlators we consider can then

be constructed by applying differential operators to this

master integral. (Note these correlators are nonperturbative,

being fixed by conformal symmetry.) If the energy of each

particle is taken to be positive, the master integral is

nonsingular as the total energy tends to zero. To reach

the flat space limit, we must instead analytically continue at

least one of the energies to be negative before sending their
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sum to zero. This continuation involves crossing certain

branch cuts giving rise to a new term with the desired

singular behavior in the flat space limit. Interestingly, this

new term is precisely the leading singularity of the 1-loop

triangle integral computed decades ago by Cutkosky [17].

We present a more modern derivation of this result by first

mapping the triangle integral to a box integral with a

remarkable property known as dual conformal invariance,

and then evaluating the leading singularity of this box

integral by taking the global residue.

The flat space limit of correlators in general even

dimensions can then be deduced by applying the appro-

priate differential operators to the master integral, and we

discover the same double copy structure that we previously

found in odd dimensions. In even dimensions there is one

further complication coming from the fact that correlators

are divergent and need to be renormalized. This renorm-

alization has been worked out explicitly in four dimensions

[18,19], and we carefully verify our general arguments in

this case. We also find that the coefficients of the scattering

amplitudes which arise in the flat space limit of stress

tensor correlators are controlled by conformal anomalies, in

agreement with general holographic expectations [20–22].

The structure of this paper is as follows. In Sec. II, we

review some basic results about scattering amplitudes and

conformal correlators in momentum space that will be

relevant for this paper. In Sec. III we derive the flat space

limit of the master integral after analytic continuation, and

in Sec. IV we use this result to deduce the flat space limit of

correlators of stress tensors, currents and marginal scalars

in general even dimensions by applying certain differential

operators. This reveals double copy structure similar to

that previously found in odd dimensions. In Sec. VI, we

specialize the discussion to four dimensions where the

renormalized correlators have been explicitly computed

and we verify the general arguments of the previous

section. We also show how the anomaly coefficients

parametrize the flat space limit. We present our conclusions

and future directions in Sec. VII. In the Appendix we

compute the leading singularity of the master integral.

II. FROM CORRELATORS TO AMPLITUDES

In this section, we review some results about

momentum-space conformal correlators in d Euclidean

dimensions [18,19,23], and their relation to scattering

amplitudes in (dþ 1)-dimensional Minkowski space,

which for odd d were worked out in [16]. The tensor

structure of correlators is first decomposed into a basis of

transverse traceless tensors, where each component is

multiplied by a scalar form factor.
1
For 3-point correlators,

these form factors are functions purely of the momentum

magnitudes,

pi ¼ þ
ffiffiffiffiffi

p2i

q

; i ∈ f1; 2; 3g; ð1Þ

since momentum conservation allows us to replace p1·

p2 ¼ ðp2

3
− p2

1
− p2

2
Þ=2, etc. For physical kinematics, these

magnitudes also obey the triangle inequalities 0 ≤ pi ≤

pj þ pk.

If desired, the nontransverse traceless parts of correlators

can be recovered from lower-point functions via the trace

and transverse Ward identities. Here, since our interest is in

scattering amplitudes, we will instead contract all indices

with transverse polarization vectors ϵi ¼ ϵðpiÞ satisfying

ϵi · pi ¼ 0; ϵi · ϵi ¼ 0: ð2Þ

Inserting this tensorial decomposition into the conformal

Ward identities, one finds the form factors are given by

specific linear combinations of triple-K integrals [23],

Iαfβ1;β2;β3gðp1; p2; p3Þ ¼
Z

∞

0

dx xα
Y

3

i¼1

p
βi
i Kβi

ðpixÞ; ð3Þ

where Kβi
is a modified Bessel function of the second kind.

The parity of the correlators is encoded in the tensor

structures that multiply the triple-K integrals.

To connect with scattering amplitudes, we first lift to

(dþ 1)-dimensional Minkowski space by introducing the

bulk null momenta and polarization vectors

p
μ
i ¼ ðpi; piÞ; ϵ

μ
i ¼ ð0; ϵiÞ: ð4Þ

For gravitons, we write polarization tensors in terms of

polarization vectors as ϵ
μν
i ¼ ϵ

μ
i ϵ

ν
i . Contractions of polari-

zation vectors can then be lifted to their bulk counterparts

by replacing ϵi · pj → ϵi · pj and ϵi · ϵj → ϵi · ϵj. However,

while d-dimensional momentum is conserved, the bulk

momentum is not since

X

3

i¼1

p
μ
i ¼ ðE; 0Þ; ð5Þ

where the total bulk energy

E ¼ p1 þ p2 þ p3: ð6Þ

We are therefore interested in extracting the leading

behavior of CFT correlators in the limit E → 0 for which

energy conservation is restored.

This limit is naturally regarded as a flat space limit, either

of (dþ 1)-dimensional anti–de Sitter space [2,11,29], or

alternatively of (dþ 1)-dimensional de Sitter space; see

[3,5,16,30] or [31–33]. This follows since the leading

1
We restrict here to the parity even sector; for the parity odd

sector the basis of transverse traceless tensors is much larger due
to the presence of the Levi-Civita tensor; see [23]. Recent work
includes [24,25], and in momentum space, [26–28].
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behavior asE → 0 is governedby the asymptotic behavior of

modes deep in the interior of anti–de Sitter (AdS), or

equivalently at very early times in de Sitter space, where

the effects of spacetime curvature can be neglected.

For CFTs in odd spacetime dimensions, the triple-K
integrals feature half-integer indices and the form factors

are simple rational functions of the momentummagnitudes.

Taking the flat space limit is then simply a matter of

extracting the leading behavior as E → 0. The coefficients

of the leading divergences are (dþ 1)-dimensional flat

space scattering amplitudes which exhibit double copy

structure. In [16], we found that 3-point correlators of stress

tensors and currents reduce to linear combinations of the

following gauge and gravitational amplitudes, which are

related to each other by a double copy:

AEG ¼ ðAYMÞ2; ð7Þ

A222

ϕR2 ¼ AF3AYM; ð8Þ

AW3 ¼ ðAF3Þ2: ð9Þ

Here, AEG is the 3-graviton scattering amplitude for

Einstein gravity, AW3 is that for Weyl-cubed gravity, while

A222

ϕR2 is the 3-graviton amplitude (indicated by the 222

superscript) for the curvature-squared theory of gravity

coupled to scalars constructed in [34].
2
As indicated, these

gravitational amplitudes are double copies of the gauge

theory amplitudes

AYM ¼ ϵ1 · ϵ2ϵ3 · p1 þ cyclic;

AF3 ¼ ϵ1 · p2ϵ2 · p3ϵ3 · p1; ð10Þ

whereAYM is the 3-gluon Yang-Mills amplitude andAF3 is

the corresponding amplitude in a higher-derivative gauge

theory with an F3 interaction constructed in [35]. It is also

natural to consider 3-point CFT correlators involving

marginal scalars. In [16], we found the correlator of two

stress tensors and a marginal scalar reduces in the flat space

limit to the amplitude

A220

ϕR2 ¼ ðAϕF2Þ2; ð11Þ

where

AϕF2 ¼ ϵ1 · p2ϵ2 · p1: ð12Þ

Here,A220

ϕR2 is the scattering amplitude of two gravitons and

a scalar (indicated by the superscript 220) in the ϕR2

theory, which is a double copy of the amplitude AϕF2 for

two gluons and a scalar in a Yang-Mills dilaton theory.

In even spacetime dimensions, a more detailed analysis

is required in order to extract the flat space limit. The two

issues are that, firstly, the form factors for CFTs in even

dimensions diverge introducing the additional complication

of regularization and renormalization; and secondly, the

resulting renormalized form factors have a more compli-

cated analytic structure containing branch cuts. As a result,

the nature of the analytic continuation required to take the

flat space limit E → 0 must be carefully specified. This is

the central question we address in this paper.

III. FLAT SPACE LIMIT OF THE

MASTER INTEGRAL

As we will review later in Sec. IV C, for even-

dimensional correlators all form factors can be obtained

recursively starting from the triple-K integral I1f000g. Our
first task, therefore, is to evaluate the flat space limit of this

master integral. We will discuss this from several points of

view, but our basic strategy will be to analytically continue

the momentum magnitude

p3 ¼ jp3jeiθ; 0 ≤ θ ≤ π; ð13Þ

where the momenta are ordered so that p3 is the largest

magnitude. After continuing from θ ¼ 0 to θ ¼ π, the flat

space limit E ¼ p1 þ p2 þ p3 → 0 then corresponds to

sending

jp3j → p1 þ p2: ð14Þ

Noting that

KνðeiπxÞ ¼ e−iπνKνðxÞ − iπIνðxÞ; x ∈ R
þ; ν ∈ Z;

ð15Þ

where Iν is a modified Bessel function of the first kind, we

immediately obtain the following expression for the ana-

lytic continuation of I1f000g:

I1f000gðp1; p2; p3Þ ¼ I1f000gðp1; p2; jp3jÞ

− iπ

Z

∞

0

dx xK0ðp1xÞ

× K0ðp2xÞI0ðjp3jxÞ: ð16Þ

The first term on the right-hand side is simply the original

triple-K integral and is finite in the flat space limit as we

will see shortly. The second term can be evaluated using the

formula [36]

2
In d ¼ 4, this theory reduces to a certain nonminimally

coupled version of conformal gravity [35].
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Z

∞

0

dx x1þμKνðp1xÞKνðp2xÞIμðjp3jxÞ

¼ 2−2μ−2

ffiffiffi

π

2

r

Γð1þ μþ νÞΓð1þ μ − νÞ jc123j
μ

Δ
2μþ1

× ðsinϕ3Þμþ1=2P
−μ−1=2
ν−1=2 ðcosϕ3Þ; ð17Þ

where

c123 ¼ p1p2p3; ð18Þ

the P
μ
ν are Legendre functions and Δ is the area of the

triangle spanned by the momenta as depicted in Fig. 1.

Moreover, using Heron’s formula, the area can be written as

Δ ¼ 1

2
jpijjpjj sinϕk ¼

ffiffiffiffiffi

J2
p

=4; ð19Þ

where ϕi are the angles of the triangle in Fig. 1 and

J2 ¼ Eðp1 þ p2 − p3Þðp1 − p2 þ p3Þð−p1 þ p2 þ p3Þ:
ð20Þ

Notice the value of J2 is the same at the start and end-point

of our analytic continuation. The formula (17) is valid for

1þ μ − jνj > 0, so choosing μ ¼ ν ¼ 0 we find

I1f000gðp1; p2; p3Þ ¼ I1f000gðp1; p2; jp3jÞ −
iπϕ3

4Δ
: ð21Þ

Hence, after analytic continuation to θ ¼ π, the master

integral I1f000g acquires a new term which is simply the

ratio of the angle ϕ3 (opposite to the side p3) to the area of

the triangle. In the flat space limit, the angle ϕ3 → π and the

area of the triangle vanishes according to

4Δ ¼
ffiffiffiffiffi

J2
p

→

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8jc123jE
p

: ð22Þ

Hence, we find that

lim
E→0

I1f000gðp1; p2; p3Þ → −
iπ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8jc123jE
p ¼ π2

ffiffiffiffiffiffiffiffi

−J2
p ; ð23Þ

where the positive sign is taken in the square roots.

Further insight can be obtained by rederiving this result

from a different point of view. First, we map the momenta

to the complex plane according to

u ¼ p2

1

p2

3

¼ zz̄; v ¼ p2

2

p2

3

¼ ð1 − zÞð1 − z̄Þ: ð24Þ

Choosing ℑðzÞ ≥ 0, we can invert to find

z ¼ 1

2

�

1þ u − vþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u − vÞ2 − 4u

q

�

; ð25Þ

z̄ ¼ 1

2

�

1þ u − v −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1þ u − vÞ2 − 4u

q

�

: ð26Þ

For physical momentum configurations satisfying the

triangle inequalities pi þ pj ≥ pk, the quantity under the

square root is negative (i.e., −J2=p4

3
≤ 0) meaning z and z̄

are complex conjugates. For such momenta, the master

integral I1f000g is equivalent to a 1-loop triangle integral

[23,37]

I1f000gðp1; p2; p3Þ ¼
1

4π2

Z

d4l

l
2ðlþ p1Þ2ðl − p3Þ2

; ð27Þ

which can be evaluated in terms of z and z̄ as

I1f000g ¼
1

2p2

3
ðz − z̄Þ

�

Li2z − Li2z̄þ
1

2
lnðzz̄Þ ln

�

1 − z

1 − z̄

��

;

ð28Þ

where Li2 is the dilogarithm. In fact, I1f000g is simply the

Bloch-Wigner function [38,39] divided by

ffiffiffiffiffiffiffiffi

−J2
p

¼ p2

3
ðz − z̄Þ: ð29Þ

Geometrically, the Bloch-Wigner function expresses the

volume of an ideal tetrahedron (i.e., with vertices at 0, 1, z
and ∞) living in the hyperbolic 3-space spanned by the

complex z-plane times the real line. Since
ffiffiffiffiffiffiffiffi

−J2
p

is propor-

tional to the area of the Euclidean triangle in Fig. 1, the

master integral I1f000g is thus given by the ratio of these

quantities.

Recall that J2 is proportional to E via (20). Naively, we

may therefore expect to reach the flat space limit by taking

J2 → 0, or from (29), taking z → z̄. On the other hand, the

Bloch-Wigner function has the property that all branch cuts

in the logarithms and dilogarithms cancel, rendering I1f000g
single-valued everywhere in the complex plane.

3
As a

result, we do not obtain a singularity corresponding to a flat

space limit since the pole in z − z̄ is canceled by the

FIG. 1. The momenta in the 3-point function form a triangle by

momentum conservation, with angle ϕi appearing opposite the

side of length jpij.

3
Single-valued polylogarithms of higher transcendality have

been studied in, e.g., [40–42].
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vanishing of the numerator in (28) [43]. Physically, the

reason for this is that the energy of each particle is positive

so taking the limit z → z̄ corresponds to taking the collinear
limit p1 þ p2 − p3 → 0. (Recall we ordered our momenta

so p1 þ p2 ≥ p3, hence this specific collinear limit is

selected.)

In order to reach the flat space limit E → 0, we must

instead continue one of the energies to become negative, as

described in (13), which sends

u ¼ juje−2iθ; v ¼ jvje−2iθ: ð30Þ

As θ ranges from zero to π, the trajectories of z and z̄ are

then as plotted in Fig. 2. Starting from complex conjugate

initial values, for 0 < θ < π, one finds z and z̄ are no longer
complex conjugates meaning the branch cuts in the

logarithms and dilogarithms no longer cancel. From

(28), these cuts are located along the negative real axis,

and along the positive real axis for values greater than unity.

As we increase θ, we find z crosses the branch cut on the

positive real axis, while z̄ crosses the branch cut on the

negative real axis, both in a clockwise sense. Upon

reaching θ ¼ π their values are once again complex

conjugates, but their final positions are now exchanged

relative to their initial ones. While the exact shape of the

trajectory depends on the initial values, the manner in

which the respective cuts are crossed is always the same.

As a result of crossing these cuts, we acquire the

following new contributions, whose signs are fixed by

the direction in which the cuts are crossed:

Li2ðzÞ → Li2ðzÞ − 2πi ln z;

lnð1 − zÞ → lnð1 − zÞ þ 2iπ;

ln z̄ → ln z̄þ 2iπ: ð31Þ

After analytic continuation, we therefore find

I1f000g

	

	

	

θ¼π
¼ I1f000g

	

	

	

θ¼0

þ 1

2p2

3
ðz − z̄Þ

×

�

iπ

�

ln

�

z̄

z

�

þ ln

�

1 − z

1 − z̄

��

− 2π2
�

; ð32Þ

where the z and z̄ on the right-hand side refer to their final

values at θ ¼ π. (For the first term however this distinction

is immaterial since I1f000gjθ¼0 is even under exchanging z

and z̄.) If we now send z → z̄ so that they collide on the real
axis between zero and unity, without crossing any further

cuts, we obtain the leading singular behavior

lim
E→0

I1f000g

	

	

	

θ¼π
¼ −lim

z→z̄

π2

p2

3
ðz − z̄Þ

¼ þ π2
ffiffiffiffiffiffiffiffi

−J2
p ¼ −

iπ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8jc123jE
p : ð33Þ

The positive sign in the penultimate equation follows

because z and z̄ have exchanged positions relative to their

initial values in (29). The value of
ffiffiffiffiffiffiffiffi

−J2
p

is the same at

θ ¼ 0 and θ ¼ π, and was fixed as the positive root
ffiffiffiffiffiffiffiffi

−J2
p

¼ þi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8jc123jE
p

by our choice ℑðzÞ ≥ 0 for θ ¼ 0.

We thus recover the same flat space limit as in (23)

above, and the answer will clearly be the same for any

analytic continuation so long as the cuts are traversed in the

same manner before sending z → z̄. Had we continued in

the opposite sense (i.e., with θ running from zero to −π) the

flat space limit would take the opposite sign, but our real

interest here is only in the momentum dependence.

Continuing from θ ¼ 0 to π nevertheless seems more

natural since this preserves ℑðzÞ ≥ 0 for the first part of

the trajectory in cases where z and z̄ are initially collinear,

as illustrated in the right-hand panel of Fig. 2.

Remarkably, the analytic continuation of this same

integral has been studied in the context of position-space

4-point functions in [29,44,45], where the general behavior

is very similar to that found here. The basis for this

(a)

1

(b)

1

FIG. 2. (a) As we increase θ from 0 to π, z and z̄ move clockwise in the complex plane following the solid blue and orange dashed

paths, respectively. Starting from generic complex conjugate initial values (corresponding to physical momentum configurations), they

ultimately end up exchanging positions. In the process, z crosses the branch cut between ð1;∞Þ while z̄ crosses the branch cut between
ð−∞; 0Þ. (b) The trajectory of z and z̄ as we continue from a collinear initial configuration to one with E ¼ 0. The flat space limit thus

corresponds to bringing z and z̄ to a point on the real axis between 0 and 1 after crossing the cuts in the direction shown.
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connection is explained in the Appendix, where we relate

the 3-point master integral I1f000g to a dual conformal box

integral. Taking the flat space limit of I1f000g then corre-

sponds to computing the leading singularity of this box

integral via its global residue. In fact, this connection

between the flat space limit and the leading singularity is

also visible at the level of the 3-point function. In [17],

Cutkosky showed that the leading singularity of the triangle

integral (28), obtained by putting all three propagators on

shell, has the beautiful geometrical interpretation
Z

d4lδðl2Þδððlþ p1Þ2Þδððl − p3Þ2Þ ¼
π

8Δ
; ð34Þ

where Δ is the area of the triangle (19). Including the factor

of ð2πiÞ3 accompanying the delta functions, and the factor

of 1=4π2 in (27), we again recover precisely (23).

IV. EVALUATING THE FLAT SPACE

LIMIT OF CORRELATORS

Having analyzed the master integral, let us now discuss

how to evaluate the flat space limit of correlators for general

even dimensions d ¼ 2n ≥ 4. The relevant correlators for

the double copy are hJJJi and hTTTi, as well as hJJOi and
hTTOi for a marginal operator O. As for the master

integral, a number of different approaches can be taken.

We discuss these in each of the following three subsections.

While all approaches give the same result, they present

different features of interest.

A. Asymptotic analysis

First we present a simple asymptotic formula for the flat

space limit of a general triple-K integral. We start by

analytically continuing the general triple-K integral (3).

Using (13) and (15), we obtain

Iαfβ1β2β3gðp1; p2; p3Þ
	

	

	

θ¼π

¼ Iαfβ1β2β3gðp1; p2; jp3jÞ − iπp
β1
1
p
β2
2
p
β3
3

×

Z

∞

0

dx xαKβ1
ðp1xÞKβ2

ðp2xÞIβ3ðjp3jxÞ; ð35Þ

where the phase e−iπβ3 from the continuation of the Bessel

function cancels with that from the continuation of p
β3
3
. To

evaluate the flat space limit of this analytically continued

integral, we now consider the asymptotic behavior of its

integrand. Physically, the flat space limit is reached by

going to pix ≫ 1, which corresponds to the deep interior of

the bulk spacetime. Replacing the Bessel functions with

their asymptotic behaviors,

KβðpixÞ →
ffiffiffiffiffiffiffiffiffiffi

π

2pix

r

e−pix; IβðpixÞ →
ffiffiffiffiffiffiffiffiffiffiffiffi

1

2πpix

s

epix;

ð36Þ

we obtain the flat space limit

lim
E→0

Iαfβ1β2β3gðp1; p2; p3Þ
	

	

	

θ¼π

¼ −
π3=2Γðα − 1=2ÞΠ3

i¼1
p
βi−1=2
i

ffiffiffi

8
p

Eα−1=2
: ð37Þ

Note this result derives entirely from the KKI integral in

(35), since the triple-K integral is finite for collinear

configurations [23]. This asymptotic formula agrees with

our result (23) for the flat space limit of I1f000g, as well as
the results in [16] for odd spacetime dimensions.

In even dimensions, however, we encounter divergent

triple-K integrals and hence we must take into account the

effects of regularization and renormalization. In general, a

triple-K integral diverges whenever the indices satisfy [46]

αþ 1� β1 � β2 � β3 ¼ −2n ð38Þ

for any (independent) choice of � signs and non-negative

integer n. To regulate, one performs infinitesimal shifts of

the operator and spacetime dimensions, and thus of the

indices α; fβig parametrizing the triple-K integrals. The

divergences can then be extracted and eliminated by the

addition of covariant local counterterms, before removing

the regulator to obtain the renormalized correlators.

For the correlators of interest here, one finds from the

detailed analysis of [18,19] that the regulated form factors

contain only ultralocal divergences, meaning they are

analytic functions of the squared momenta.
4
Terms of this

form, and the corresponding counterterm contributions,

cannot contribute any singular behavior in the flat space

limit: this would require the appearance of factors of E
raised to negative powers, which are not ultralocal. It

therefore suffices to apply the continuation (35) to the

regulated form factors and extract the leading behavior as

E → 0 using the asymptotic formula (37). The result is

necessarily finite as the regulator is removed and all

dimensions are restored to their physical values.
5

B. Analytic continuation of the renormalized

form factors in d = 4

Where the renormalized form factors are known explic-

itly, we can alternatively apply the analytic continuation

4
Such singularities correspond to triple-K integrals with sign

choice ð− − −Þ in (38). In fact, for hTTTi, hJJOi and hTTOi,
one also encounters individual triple-K integrals with semilocal
ð− −þÞ or ðþ − −Þ divergences, however these either cancel
with one another, or else are multiplied by vanishing coefficients.
The regulated form factors then contain only ultralocal ð− − −Þ
divergences. This is consistent with the absence of ð− −þÞ or
ðþ − −Þ type counterterms for these correlators.

5
From the analysis of [46], the KKI integral in (35) is singular

only when the sign of β3 in (38) is þ. However, as above, all
singularities of this type either cancel or are multiplied by
vanishing coefficients.
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(13) directly to the renormalized form factors. In this

approach we never encounter any divergences since we

always work within the renormalized theory.

To illustrate this we consider the case d ¼ 4, where all

renormalized form factors have been evaluated in terms of

differential operators acting on the finite master integral

I1f000g [18,19]. These derivatives can be evaluated by

making repeated use of the relation

p1

∂

∂p1

I1f000g ¼
1

J2

�

2p2

1
ðp2

1
− p2

2
− p2

3
ÞI1f000g

− p2

1
lnp2

1
þ 1

2
ðp2

1
þ p2

2
− p2

3
Þ lnp2

2

þ 1

2
ðp2

1
− p2

2
þ p2

3
Þ lnp2

3

�

: ð39Þ

Ultimately, one finds that all renormalized form factors are

given by a linear combination of the master integral I1f000g
multiplied by some rational function of the squared

momenta and
ffiffiffiffiffiffiffiffi

−J2
p

, plus logarithms of the momenta

and renormalization group scale multiplied by similar

rational functions, plus polynomials in the squared

momenta. As we now discuss, the analytic continuation

of all these terms is easily accomplished using the results of

Sec. III.

The situation is clearest in the ðz; z̄Þ variables, where all
factors of

ffiffiffiffiffiffiffiffi

−J2
p

rationalize according to (29). The renor-

malized form factors An then take the form

pl
3
An ¼ a

ð0Þ
n p2

3
I1f000g þ a

ð1Þ
n lnðzz̄Þ

þ a
ð2Þ
n lnðð1 − zÞð1 − z̄ÞÞ þ a

ð3Þ
n ln

p2

3

μ2
þ a

ð4Þ
n ; ð40Þ

where the factor of pl

3
renders An dimensionless, and the

a
ðmÞ
n are specific rational functions of z and z̄. In particular,

these rational functions may diverge as z̄ → z. Although we
acquire new terms from analytically continuing the logs,

the leading behavior in the flat space limit in fact always

comes from the continuation of the master integral I1f000g.
This can be understood as follows. The key point is that the

renormalized form factors are finite in the collinear limit,
6

which corresponds to sending z̄ → z while keeping θ ¼ 0.

Since in the collinear limit [43]

lim
z̄→z

I1f000g

	

	

	

θ¼0

¼ −
1

2p2

3

�

ln z

1 − z
þ lnð1 − zÞ

z

�

; ð41Þ

we see that if a
ð0Þ
n diverges as ðz − z̄Þ−k for some k, then a

ð1Þ
n

and a
ð2Þ
n must also diverge at this same order, so that

χ1 ¼ lim
z̄→z

�

2a
ð1Þ
n −

1

2ð1 − zÞ a
ð0Þ
n

�

;

χ2 ¼ lim
z̄→z

�

2a
ð2Þ
n −

1

2z
a
ð0Þ
n

�

ð42Þ

are both finite. The remaining rational functions a
ð3Þ
n and

a
ð4Þ
n are both subleading: a

ð3Þ
n is finite in the collinear limit

since no cancellations are possible for this term, while any

collinear divergences in a
ð4Þ
n are necessarily of order

ðz − z̄Þ−kþ2, since they must cancel against the polynomial

terms that arise in I1f000g at subleading order [i.e., at order

ðz − z̄Þ2 relative to the leading term shown in (41)].

After we analytically continue to θ ¼ π, the coefficient

a
ð0Þ
n now acquires an additional factor of ðz − z̄Þ−1 from

analytically continuing the master integral according to

(33). The continuations of the log terms in (40) do not

produce any additional divergences, however, and so

overall the leading ðz − z̄Þ−kþ1 behavior of the form factor

is that associated with the master integral. Thus, to find

the leading behavior of the renormalized form factors

in the flat space limit, we actually only need to know

the coefficient a
ð0Þ
n of the master integral. This is a

substantial simplification.

Finally, let us remark that our approach is also readily

applicable to the problem of continuing Euclidean CFT

correlators to Lorentzian signature, as studied in [47–49].

One simply needs to analyze how z and z̄ move in the

complex plane under Wick rotation, then evaluate the

corresponding continuation of the master integral as dis-

cussed in Sec. III.

C. Extracting the dependence on the master

integral in general dimensions

For general even dimensions above four, results are

available for the regulated form factors, and the nature of all

divergences and counterterms have been tabulated [18,19].

Once again, all triple-K integrals can be computed starting

from the master integral I1f000g using the reduction scheme

of [37]. To obtain the final renormalized form factors then

requires a certain amount of additional case-by-case analy-

sis of counterterm contributions. While this analysis is easy

to perform in any specific case, it is difficult to write down

general closed-form expressions. From the d ¼ 4 discus-

sion above, however, all we really need to know is the

contribution to the renormalized form factors coming from

the master integral I1f000g, since this is the term that

dominates in the flat space limit. This contribution is easily

evaluated as we now explain.

6
In the regulated theory, the form factors are linear combina-

tions of triple-K integrals, and triple-K integrals do not have
collinear singularities [23]. The counterterm contributions are
ultralocal and thus do not have collinear singularities either. The
renormalized form factors are then finite for collinear configu-
rations, as can be checked explicitly using the results of [18,19].
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Working in the regulated theory to avoid divergences, all

triple-K integrals are first reduced to the integral I0f111g.
This can be achieved using the relations [37]

Iαþ1fβ1þ1;β2;β3g ¼ ð2β1 − p1∂p1
ÞIαfβ1β2β3g; ð43Þ

Iαþ2fβ1;β2;β3g ¼
�

∂2
pj
þ 1 − 2βj

pj

∂pj

�

Iαfβ1β2β3g; ð44Þ

Iαþ1fβ1þ1;β2þ1;β3þ1g ¼
1

α − βt − 1
Bβ1;β2;β3

Iαfβ1β2β3g; ð45Þ

where in (44) one can choose any pj from j ¼ 1, 2, 3 and

the operator in (45) is

Bβ1;β2;β3
¼ p2

1
ð2β2 − p2∂p2

Þð2β3 − p3∂p3
Þ þ cyclic: ð46Þ

From these relations, we can construct the five index-

shifting operations listed in Table I. The first three

operations in this table follow from cyclic permutations

of (43), while the fourth and fifth operation are (44) and

(45), respectively.

From (4.2)–(4.7) of [37], the form of the dimensionally

regulated integral I0f111g is

I0þuϵf1þv1ϵ;1þv2ϵ;1þv3ϵg ¼
Ið−2Þ

ϵ2
þ Ið−1Þ

ϵ
þ IðschemeÞ

þ Iðscale-violatingÞ þ IðnonlocalÞ

þOðϵÞ; ð47Þ

where the indices have been shifted by an infinitesimal

parameter ϵ times scheme-dependent constants ðu; v1;
v2; v3Þ. The divergent terms Ið−2Þ and Ið−1Þ are ultralocal

and semilocal, respectively, and will ultimately be removed

by subtracting counterterm contributions. The scheme-

dependent term IðschemeÞ contains logarithms of the indi-

vidual momentum magnitudes and hence is semilocal,

while the scale-violating piece Iðscale-violatingÞ contains

products of such logarithms and is nonlocal. The final

scale-invariant, nonlocal piece IðnonlocalÞ (also referred to as

I
ðfinÞ
0f111g in [18,19]) encodes the dependence on the master

integral we seek:

IðnonlocalÞ ¼ J2

4
I1f000g: ð48Þ

As in our discussion for d ¼ 4, the finiteness of the

renormalized form factors in the collinear limit ensures

the leading contribution in the flat space limit comes

solely from IðnonlocalÞ. Unlike I1f000g, neither IðschemeÞ or

Iðscale-violatingÞ acquire any additional divergences as z̄ → z
after continuing to θ ¼ π. Since for θ ¼ 0 any divergences

as z̄ → z must cancel, the leading divergence as z̄ → z for
θ ¼ π must then come from I1f000g. For this reason, we can
simply replace

I0f111g →
J2

4
I1f000g ð49Þ

for the purposes of computing the flat space limit of the

renormalized form factors. All details of the regulariza-

tion scheme and renormalization analysis can be safely

neglected, since their contribution is subleading in the flat

space limit.

In summary, the known expressions for the regulated

form factors can be related to I0f111g using the opera-

tions (43)–(45) summarized in Table I, after which we

substitute (49). The leading behavior in the flat space limit

then corresponds to applying the same sequence of dif-

ferential operators to the leading flat space behavior of

ðJ2=4ÞI1f000g, evaluated using (23). In fact, one only needs

to keep track of the leading contributions when evaluating

these derivatives, which enables further simplification. For

example, the flat space limit of I2f111g can be obtained by

applying operation 5 in Table I, which simplifies to

lim
E→0

I2f111g ∝ ðp2

1
p2p3 þ cyclicÞ∂2

E

1
ffiffiffiffiffiffiffiffiffiffiffi

c123E
p ∝

ffiffiffiffiffiffiffiffi

c123
p

E3=2
:

ð50Þ

Here, we retained only the terms in (46) featuring deriv-

atives, since their action is to generate more singular

powers of E. For this same reason, the factor of
ffiffiffiffiffiffiffiffi

c123
p

from the flat space limit of I1f000g can be moved outside the

derivatives, which can then be replaced by derivatives with

respect to E using the chain rule. Using this method, we

find that the triple-K integrals we encounter all exhibit

flat space behavior in agreement with the asymptotic

formula (37).

V. GENERAL EVEN DIMENSIONS

In this section, we apply the procedure of Sec. IV C to

compute the flat space limit of 3-point correlators of stress

tensors, currents and marginal scalar operators, which we

TABLE I. Index-shifting operations generated by cyclic per-

mutations of (43) (operations 1, 2 and 3), along with (44) and (45)

(operations 4 and 5). Through repeated use of these operations,

all the regulated triple-K integrals in even-dimensional correla-

tors can be reduced to I0f111g.

Operation δα δβ1 δβ1 δβ3

1 1 1 0 0

2 1 0 1 0

3 1 0 0 1

4 2 0 0 0

5 1 1 1 1
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denote T, J, and O, respectively. We show that correlators

reduce to flat space scattering amplitudes in one higher

dimension related by a double copy, extending the results

of [16] to even dimensions. We take the spacetime dimen-

sion to be d ¼ 2n > 4, postponing the analysis of d ¼ 4

(where more detailed results for the renormalized form

factors are available) to the following section.

A. hJJJi
First, we consider the 3-point correlator of conserved

currents. This can be decomposed into form factors as

follows:

hJJJi ¼ A1ðp1; p2; p3Þϵ1 · p2ϵ2 · p3ϵ3 · p1

þ ½A2ðp1; p2; p3Þϵ1 · ϵ2ϵ3 · p1 þ cyclic�: ð51Þ

Here, hJJJi represents the correlator fully contracted with

polarization vectors, and with color factors suppressed. We

also strip off the overall delta function associated with

momentum conservation. (Such correlators are denoted

⟪…⟫ in [18,19].) From the conformal Ward identities, one

finds [18]

A1 ¼ C1Inþ2fn−1;n−1;n−1g;

A2 ¼ C1Inþ1fn−1;n−1;ng þ C2Infn−1;n−1;n−1g; ð52Þ

where C1 and C2 are constants, and

C2 ¼ #C1 þ #CJJ; ð53Þ

where CJJ is the normalization of the 2-point function. The

# represent specific dimension-dependent constants whose

precise form is not important for reasons explained below.

The reduction to I0f111g and then to I1f000g via (49) is

depicted in Fig. 3, where circled numbers correspond to

operations in Table I. Applying these operations to (23) and

using (53), we can read off the flat space limit,

lim
E→0

hJJJi ∝ c
ðd−3Þ=2
123

�

C1

Eðdþ3Þ=2 ðAF3 þOðEÞÞ

þ CJJ

Eðd−1Þ=2 ðAYM þOðEÞÞ
�

; ð54Þ

where the gauge theory scattering amplitudesAF3 andAYM

are given in (10). In this calculation, the contribution from

the first term in (53) is subleading, while the # in the second

term proportional to CJJ has been absorbed into the overall

constant of proportionality in (54). Since C1 is an arbitrary

constant, we have additionally rescaled C1 to eliminate any

relative factors between the two terms in (54).

B. hTTTi
The form factor decomposition for the stress tensor

3-point function is

hTTTi
¼ A1ðp1; p2; p3Þðϵ1 · p2ϵ2 · p3ϵ3 · p1Þ2

þ ðA2ðp1; p2; p3Þϵ1 · ϵ2ϵ1 · p2ϵ2 · p3ðϵ3 · p1Þ2 þ cyclicÞ
þ ðA3ðp1; p2; p3Þðϵ1 · ϵ2Þ2ðp1 · ϵ3Þ2 þ cyclicÞ
þ ðA4ðp1; p2; p3Þϵ1 · ϵ3ϵ2 · ϵ3ϵ1 · p2ϵ2 · p3 þ cyclicÞ
þ A5ðp1; p2; p3Þϵ1 · ϵ2ϵ2 · ϵ3ϵ3 · ϵ1; ð55Þ

where hTTTi represents the correlator fully contracted with
polarization vectors and with the delta function of momen-

tum conservation stripped off. The form factors are [18]

A1 ¼ C1I5þnfn;n;ng;

A2 ¼ 4C1I4þnfn;n;nþ1g þ C2I3þnfn;n;ng;

A3 ¼ 2C1I3þnfn;n;nþ2g þ C2I2þnfn;n;nþ1g þ C3Inþ1fn;n;ng;

A4 ¼ 8C1I3þnfnþ1;nþ1;ng − 2C2I2þnfn;n;nþ1g

þ C4Inþ1fn;n;ng;

A5 ¼ 8C1Inþ2fnþ1;nþ1;nþ1g þ 2C2½Inþ1fnþ1;nþ1;ng

þ Inþ1fnþ1;n;nþ1g þ Inþ1fn;nþ1;nþ1g�
þ C5In−1fn;n;ng; ð56Þ

where C1 to C5 are constants (independent of those

introduced in the previous subsection) which are related by

C4 ¼ 2C3 þ #C2; C5 ¼ #C1 þ #C2 þ #C3: ð57Þ

Here, the # are specific dimension-dependent constants

whose form is not of interest since the corresponding terms

are subleading in the flat space limit. The factor of two in

the first equation is however important in order to recover

the Einstein gravity amplitude. We can likewise replace C3

in terms of the normalization CTT of the stress tensor

2-point function,

C3 ¼ #C1 þ #C2 þ #CTT ; ð58Þ

where the terms proportional to C1 and C2 are also

subleading in the flat space limit.

The reduction of the triple-K integrals to I0f111g is

depicted in Fig. 4. Using (49), the flat space limit of these

FIG. 3. Reduction scheme for the regulated triple-K integrals

appearing in hJJJi, where the numbered operations refer to

Table I, and 5
n−1 means applying operation 5 a total of n − 1

times.
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integrals can then be deduced from that of I1f000g. After
rescaling the (theory-specific) constants C1 and C2 to

absorb dimension-dependent constants, we obtain the flat

space limit

lim
E→0

hTTTi ∝ c
ðd−1Þ=2
123

�

C1

Eðdþ9Þ=2 ðAW3 þOðEÞÞ

þ C2

Eðdþ5Þ=2 ðA
222

ϕR2 þOðEÞÞ

þ CTT

Eðdþ1Þ=2 ðAEG þOðEÞÞ
�

: ð59Þ

Remarkably, the gravitational amplitudes arising in the flat

space limit of hTTTi are double copies of the gauge theory
amplitudes arising in the flat space limit of hJJJi, as given
in (9). This result takes the same form as in odd dimensions

[16], as one would expect from the dimension-independent

nature of the amplitudes themselves.

C. hJJOi
For the case of two currents and a marginal scalar, the

form factor decomposition is

hJJOi ¼ −A1ðp1; p2; p3Þϵ1 · p2ϵ2 · p1

þ A2ðp1; p2; p3Þϵ1 · ϵ2: ð60Þ

The form factors are [19]

A1 ¼ C1Inþ1fn−1;n−1;ng;

A2 ¼ C1Infn−1;n−1;nþ1g þ C2In−1fn−1;n−1;ng; ð61Þ

where the constants C1 and C2 (which are once again

independent from those defined in previous subsections)

satisfy

C2 ¼ #C1: ð62Þ

Using the reduction to I1f000g in Fig. 5, we then obtain

lim
E→0

hJJOi ∝ c
ðd−3Þ=2
123

p3

C1

Eðdþ1Þ=2 ðAϕF2 þOðEÞÞ; ð63Þ

where AϕF2 is the amplitude for two gluons and a scalar

in (12).

D. hTTOi
Finally, in the case of two stress tensors and a marginal

scalar, we have

hTTOi ¼ A1ðp1; p2; p3Þðϵ1 · p2ϵ2 · p1Þ2

− A2ðp1; p2; p3Þϵ1 · ϵ2ϵ1 · p2ϵ2 · p1

þ A3ðp1; p2; p3Þðϵ1 · ϵ2Þ2; ð64Þ

where the form factors are [19]

A1 ¼ C1I3þnfn;n;ng;

A2 ¼ 4C1I2þnfn;n;nþ1g þ C3Inþ1fn;n;ng;

A3 ¼ 2C1Inþ1fn;n;nþ2g þ C2Infn;n;nþ1g

þ C3In−1fn;n;ng; ð65Þ

and the constants satisfy

C2 ¼ #C1; C3 ¼ #C1: ð66Þ

Using the triple-K reduction in Fig. 6, the flat space limit

is given by

lim
E→0

hTTOi ∝ c
ðd−1Þ=2
123

C1

Eðdþ5Þ=2 ðA
220

ϕR2 þOðEÞÞ; ð67Þ

where the amplitude A220

ϕR2 for two gravitons and a scalar

is a double copy of that for two gluons and a scalar

arising in the flat space limit of hJJOi, as given in (11).

FIG. 4. Reduction scheme for the regulated triple-K integrals

appearing in hTTTi, where the numbered operations refer to

those in Table I.

FIG. 5. Reduction scheme for the regulated triple-K integrals

appearing in hJJOi.

FIG. 6. Reduction scheme for the regulated triple-K integrals

appearing in hTTOi. All numbered operations refer to those in

Table I.
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Once again, we find the same double copy structure for

even-dimensional correlators as that obtained in [16] for

odd-dimensional correlators.

VI. FOUR DIMENSIONS

We present the case of d ¼ 4 separately since the

complete renormalization analysis has been carried out in

[18,19]. For hTTTi this allows us to parametrize the flat

space limit in terms of the trace anomaly coefficients.

We also briefly discuss the double copy structure for

anomalies.

A. hJJJi
In d ¼ 4, the renormalized form factors for hJJJi are

given by [18]

A1 ¼ −C1p1p2p3

∂3

∂p1∂p2∂p3

I1f000g þ…;

A2 ¼ C1p1p2p
2

3

∂2

∂p1∂p2

I1f000g þ 4CJJI
ðfinÞ
2f111g þ…; ð68Þ

where the ellipses denote terms which are nonsingular in

the flat space limit. We have additionally suppressed a

factor relating to the color and the charge multiplying the

2-point normalization CJJ. The finite integral I
ðfinÞ
2f111g is

given in (3.48) of [18]. Using (23) and (43)–(49), we

recover the flat space limit in (54).

B. hTTTi
The renormalized form factors for hTTTi are [18]

A1 ¼ C1I7f222g þ…;

A2 ¼ 2

�

aþ c − 2C1p3

∂

∂p3

�

I
ðfinÞ
5f222g þ…;

A3 ¼ 2

�

2c − ðaþ cþ C1Þp3

∂

∂p3

þ C1p
2

3

∂2

∂p2

3

�

I
ðfinÞ
3f222g þ…;

A4 ¼ 4

�

c − aþ ðaþ cÞp3

∂

∂p3

þ 2C1

�

8 − 4

X

3

j¼1

pj

∂

∂pj

þ p1p2

∂2

∂p1∂p2

��

I
ðfinÞ
3f222g þ…;

A5 ¼ 2ðaþ cÞ
�

32 − 8

X

3

j¼1

pj

∂

∂pj

þ 2

X

i<j

pipj

∂2

∂pi∂pj

�

I
ðfinÞ
1f222g − 8C1p

3

1
p3

2
p3

3

∂3

∂p1∂p2∂p3

I1f000g þ…; ð69Þ

where once again the ellipses denote terms that are non-

singular in the flat space limit. Here, the triple-K integral

I7f222g and the finite integrals I
ðfinÞ
5f222g, I

ðfinÞ
3f222g and I

ðfinÞ
1f222g can

all be expressed as derivatives of the master integral, see

(3.198)–(3.201) of [18]. The coefficients a and c are those

entering the trace anomaly,

hTμ
μi ¼ aE4 þ cW2; ð70Þ

where E4 is the Euler density and W2 is the square of the

four-dimensional Weyl tensor. (Note that the Euler coef-

ficient a is often defined with an additional minus sign to

here.) To ensure the 2-point function is traceless, we work

in a scheme where the □R contribution to the trace

anomaly vanishes.

Using (23) and (43)–(49), we recover the flat space limit

in (59) with
7

C2 → aþ c; CTT → c: ð71Þ

We can equivalently write this as

lim
E→0

E13=2

c
3=2
123

hTTTi ∝ C1AW3 ; ð72Þ

lim
E→0

E9=2

c
3=2
123

hTTTijC1¼0 ∝ ðaþ cÞA222

ϕR2 ; ð73Þ

lim
E→0

E5=2

c
3=2
123

hTTTijC1¼0;aþc¼0 ∝ cAEG: ð74Þ

The coefficients of the ϕR2 and Einstein gravity amplitudes

arising in the flat space limit are thus parametrized by the

trace anomaly. This is natural from a holographic perspec-

tive since these anomaly coefficients are determined by

bulk gravitational interactions [20–22]. Hence for Einstein

gravity, for example, aþ c ¼ 0 and the A222

ϕR2 contribution

vanishes. Note that our results do not rely on holography

and therefore also apply to conformal field theories without

a holographic dual.

Finally, while our focus is on the transverse traceless

parts of correlators, we note that double copy structure also

arises in the trace part of this correlator as shown in [18].

From the trace Ward identity, this takes the form

7
The exact relation from [18] is CTT ¼ −2c, but here as in (59)

we omit such numerical coefficients.
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hTμ
μðp1ÞTðp2ÞTðp3Þi
¼ 2hTðp2ÞTð−p2Þi þ 2hTðp3ÞTð−p3Þi þA; ð75Þ

where we trace over the first two indices and contract the

rest with polarization tensors. The anomalous contribution

A comes from functionally differentiating the trace

anomaly (70). The part proportional to the Euler anomaly

coefficient a is then a double copy of the chiral anomaly:

AEuler ¼ 40aA2

chiral;

Achiral ¼ ϵμ2μ3μ4μ5ϵ
μ2
2
ϵ
μ3
3
p
μ4
2
p
μ5
3
; ð76Þ

where the chiral anomaly arises in the transverse Ward

identity for currents,

hðp1 · J
aðp1ÞÞJbðp2ÞJcðp3Þi

¼ gfadchJdðp2ÞJbð−p2Þi − gfabdhJdðp3ÞJcð−p3Þi
þ dabcAchiral: ð77Þ

In this identity, fabc is the structure constant, g the gauge

coupling, and dabc is a group-theoretic factor depending on
the matter content. The double copy (76) derives from the

specific structure of type A anomalies (in the classification

of [50]), and is not present for type B anomalies such as the

Weyl-squared contribution to the trace anomaly.

C. hJJOi
The renormalized form factors are given by [19]

A1 ¼ C1

�

2 − p3

∂

∂p3

�

I
ðfinÞ
2f111g þ…;

A2 ¼ C1p
2

3
I
ðfinÞ
2f111g þ…; ð78Þ

where the omitted terms are nonsingular in the flat space

limit. Using (23) and (43)–(49), we recover the flat space

limit in (63).

D. hTTOi
The renormalized form factors are given by [19]

A1 ¼ C1

�

2 − p1

∂

∂p1

��

2 − p2

∂

∂p2

��

2 − p3

∂

∂p3

�

I
ðfinÞ
2f111g

þ…;

A2 ¼ 4C1

�

1 − p3

∂

∂p3

�

I
ðfinÞ
3f222g þ…;

A3 ¼ 2C1I
ðfinÞ
3f222g þ…; ð79Þ

where again the omitted terms are nonsingular in the flat

space limit. Using (23) and (43)–(49), we recover the flat

space limit in (67).

VII. CONCLUSION

In this paper, we extended to even spacetime dimensions

our results for the double copy structure of momentum-

space CFT correlators [16]. This double copy structure is

inherited from the bulk scattering amplitudes that arise on

taking the flat space limit of correlators. Our main achieve-

ment is to understand the analytic continuation required to

reach the flat space limit. Analytically continuing the

largest momentum magnitude, which is an energy from

the bulk perspective, we arrive at configurations with E ¼ 0

for which bulk energy conservation is restored. Analyzing

the behavior of the master integral I1f000g under this con-

tinuation, the flat space limits of all renormalized correla-

tors can then be constructed.

Prior to analytic continuation, the master integral can be

expressed as a 1-loop triangle integral and evaluated in

terms of a Bloch-Wigner function in suitable complex

variables. Under analytic continuation, these complex

variables follow a simple path in the complex plane which

involves crossing two branch cuts. The resulting disconti-

nuities produce a new term which supplies the necessary

singular behavior in the flat space limit. This term can also

be derived from the leading singularity of the 1-loop

triangle integral, revealing interesting connections to dual

conformal symmetry. The flat space limit of all other triple-

K integrals, and that of the correlators themselves, can then

be deduced by applying differential operators to I1f000g.
The above discussion holds for 3-point correlators

of stress tensors, currents, and marginal scalars of general

CFTs in all even dimensions greater than two, and we

verified it explicitly it in four dimensions where the

renormalized correlators have been fully evaluated. In this

case, we showed that anomalies play an important role in the

flat space limit. In particular, we found that the flat space

limit of stress tensor correlators is controlled by conformal

anomalies, in line with general holographic expectations.

It is remarkable that double copy structure plays such a

ubiquitous role in correlation functions of general CFTs. It

would be interesting to explore how this extends to higher-

point correlators in momentum space. A general solution to

the conformal Ward identities for n-point scalar correlators
in momentum space was recently proposed in [51], so it

would be interesting to extend this to tensorial correlators

and understand how to systematically compute their flat

space limit. Note that the general solution in [51] can be

written as a 3-loop Feynman integral so it is conceivable that

the flat space limit is encoded in the leading singularity of

this integral. It may also be fruitful to look for double copy

structure in the correlators derived from Witten diagrams

of specific theories in the bulk such as bi-adjoint scalars,

Yang-Mills, and Einstein gravity. KLT-like relations for

inflationary graviton correlators have been explored in

[52], and our results for double copy structure can likewise

applied to cosmology. In the future it would also interesting

to consider correlators of higher spin currents which would
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probe higher spin interactions in the bulk [53]. Finally, it

would be of interest to explore if the analytic continuation

we used to reach the flat space limit can be adapted to

continue CFT correlators from Euclidean to Lorentzian

signature. This problem has recently been analyzed via

other methods in [47–49], but our approach here seems

particularly promising.
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APPENDIX: LEADING SINGULARITY OF THE

MASTER INTEGRAL

The master integral I1f000g for four-dimensional 3-point

CFT correlators is a limit of the dual conformal box integral

[54,55]. This box integral also plays a prominent role in the

context of N ¼ 4 SYM [56,57]. The leading singularity

can easily be computed by writing the box integral in

coordinates which make the dual conformal symmetry

manifest (the region momentum coordinates), then evalu-

ating the global residue.

We begin by writing the box integral as

Φðu; vÞ ¼ x2
13
x2
24

Z

d4x5

1

x2
15
x2
25
x2
35
x2
45

; ðA1Þ

where xij ¼ xi − xj and the region momentum coordinates

are related to the external momenta by

x12 ¼ p1; x23 ¼ p2; x34 ¼ p0
3
; x41 ¼ p0

4
: ðA2Þ

The integral is invariant under translations and inversions

xi → xi=x
2
i , and therefore has conformal symmetry in

region momentum space, known as dual conformal sym-

metry [58]. As a result, it depends only on the dual

conformal cross-ratios

u ¼ x2
12
x2
34

x2
13
x2
24

; v ¼ x2
14
x2
23

x2
13
x2
24

: ðA3Þ

To recover a 3-point function in momentum space, we

define

x12 ¼ p1; x23 ¼ p2; x31 ¼ p3; ðA4Þ

where p3 ¼ p0
3
þ p0

4
, and take the limit x4 → ∞. We then

recover

u ¼ p2

1

p2

3

; v ¼ p2

2

p2

3

; ðA5Þ

and setting l ¼ x51, we find

lim
x4→∞

Φðu; vÞ ¼
Z

d4x5

x2
13

x2
15
x2
25
x2
35

¼
Z

d4l
p2

3

l2ðlþ p1Þ2ðl − p3Þ2

¼ 4π2p2

3
I1f000g: ðA6Þ

The box and triangle integrals in region momentum space

are depicted in Fig. 7.

An efficient method to evaluate the leading singularity of

the box integral was devised in [59]. In place of x
μ
5
, we

change variables to the four new coordinates

Pi ¼ x2i5; i ¼ 1;…; 4: ðA7Þ

The Jacobian for this transformation is

J ¼ det

�

∂Pi

∂x
μ
5

�

¼ detð−2xμi5Þ: ðA8Þ

As det ðMMTÞ ¼ ðdetMÞ2, taking M
μ
i ¼ −2x

μ

i5 we have

J 2 ¼ detð4xi5 · xj5Þ ¼ 24 detðx2ij − x2i5 − x2j5Þ; ðA9Þ

since xij ¼ xi5 − xj5 and the matrix is 4 × 4. We now have

Z

d4x5

1

x2
15
x2
25
x2
35
x2
45

¼
Z

d4Pi

J

1

P1P2P3P4

; ðA10Þ

and the leading singularity is just the global residue

ð2πiÞ4 1

J

	

	

	

	

Pi¼0

¼ 4π4
1
ffiffiffiffiffiffiffiffiffiffiffiffi

det x2ij

q ¼ 4π4

x2
13
x2
24
ðz − z̄Þ : ðA11Þ

The leading singularity of I1f000g is then

π2

p2

3
ðz − z̄Þ ¼

π2
ffiffiffiffiffiffiffiffi

−J2
p ; ðA12Þ

which agrees with (23).

FIG. 7. Region momenta relating the massless box to the

3-point master integral I1f000g. All external momenta are taken

as ingoing.
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