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1 Introduction

Inflation is a framework involving dynamic spacetime. Can we begin to understand ques-
tions asked of an inflationary universe by considering much simpler questions asked of a
gauge theory evolving in flat spacetime? The existence of color-dual double-copy struc-
ture [1, 2] for both quantum field theory scattering amplitudes in Einstein-Hilbert gravity,
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as well as for classical solutions, is incredibly suggestive. For recent reviews of the double-
copy literature see refs. [3–5]. Here we make some first steps towards a double-copy con-
struction of scattering amplitudes in theories that could support supergravity α-attractor
models of inflation.

Supergravity α-attractor models are among the set of simple yet phenomenologically
viable inflationary models consistent with Planck and BICEP (see e.g. [6, 7] and references
therein). The simplicity of these models relies on a construction involving nilpotent super-
fields, which tame the proliferation of unwanted scalar modes during inflation. We have
long known that these seemingly esoteric superfields can be understood1 as Volkov-Akulov
(VA) fermions [10–14]. The equivalence of various nonlinear field redefinitions that relate
these representations have been explicitly verified through direct calculation of tree-level
scattering amplitudes [15]. So, with eyes on eventually exploring these inflationary mod-
els, we can start by introducing double-copy descriptions of Volkov-Akulov fermions with
gravity.

To set the stage, we recall a few well-known double-copy constructions. The first
is that dynamical gravity2 can be described by double-copying two Yang-Mills theories,
schematically denoted by

Mgravity = AYM ⊗AYM . (1.1)

We will explain this construction in detail in section 2, but the main point is that we con-
struct scattering amplitudes in a theory of spin-2 particles by combining simpler building
blocks from theories of spin-1 particles. It is also known that Volkov-Akulov fermions have
a double-copy description in terms of nonlinear sigma model (NLSM) scalar pions (denoted
here and elsewhere as ‘π’ for short) and fermions through

AVA = Aπ ⊗Afermions . (1.2)

The above VA fermion amplitudes can be imbedded in a maximally supersymmetric theory
by double-copying NLSM pions with the full N = 4 super Yang-Mills (sYM) multiplet,
giving a theory of Dirac scalars, VA fermions, and Born-Infeld photons, referred to as
Dirac-Born-Infeld-Volkov-Akulov (DBIVA) [19–22],

ADBIVA = Aπ ⊗AsYM . (1.3)

We will build toward a double-copy construction of α-attractor models by address-
ing the possible double-copy structure of scattering amplitudes involving Volkov-Akulov
fermions, gravitons, and their superpartners. We do so by conjecturing the existence of
a special color-dual gauge theory of NLSM pions interacting with vectors and attempt
to bootstrap it, adding higher-derivative operators as necessary for double-copy consis-
tency [23]. When double-copied with N = 4 super Yang-Mills (sYM) theory, this color-
dual vector-pion theory’s predictions would presumably generate scattering amplitudes in

1See also ref. [8] for connections made to de Sitter solutions from a unimodular approach to supergrav-
ity [9].

2To be precise N = 0 supergravity is the result of this straightforward double-copy. One can recover
Einstein-Hilbert gravity by including additional wrong-sign matter [16, 17] or by explicitly projecting out
unwanted states [18].

– 2 –



J
H
E
P
0
2
(
2
0
2
3
)
0
1
5

N = 4 Dirac-Born-Infeld-Volkov-Akulov-Supergravity (DBIVA + SG), schematically

AS2=0 ∼ ADBIVA+SG ≡ AYM+π ⊗AsYM , (1.4)

where AS2=0 are S-matrix elements describing nilpotent superfields coupled to dynamic
spacetime. In our approach, employing the double-copy construction, the spectrum of
the N = 4 supergravity theory is realized as a tensor product between the fields of the
constituent two gauge theories: a single vector field coupled to NLSM pions and the states
belonging to an N = 4 vector multiplet,

(A+, λ+
ABC , sAB, λ

−
A, A

−)⊗ (A+, A−, π) = (h++, ψ+
ABC , A

+
AB, χ

+
A, t̄)

⊕ (t, χ−ABC , A
−
AB, ψ

−
A , h

−−)⊕ (ABI+, λVA+
ABC , s

DBI
AB, λ

VA−
A, A

BI−) . (1.5)

All supersymmetry relations in the supergravity theory are inherited from the supersym-
metry of the N = 4 sYM factors. Following the conventions of e.g. ref. [24], we use (t, t̄) to
refer to the complex field that labels the external scalar states in the supergravity scattering
amplitudes. In terms of the two vector fields, these scalar fields are defined by,

t = A+
N=4 ⊗A

−
YM+π, t̄ = A−N=4 ⊗A

+
YM+π . (1.6)

Similarly the double-copy of our conjectured color-dual vector-pion theory with any su-
persymmetric Yang-Mills theory, including e.g. N = 1 sYM, should land on an associated
reduced supergravity theory coupled to a likewise reduced DBIVA multiplet. Indeed many
reduced symmetry supergravity theories can be considered by orbifolding the supersymmet-
ric gauge theory [25, 26] in combination with explicit projecting out of unwanted states [16].

In this paper we demonstrate how a color-dual bootstrap allows us to build amplitudes
in two models of double-copy consistent gauge theories of vectors and pions. In the most
conservative approach, we discover that additional higher-derivative operators must be
added to the action of a simple covariantized nonlinear sigma model to preserve the color-
dual structure beyond four-points. As was found in [23], including these additional oper-
ators induces a tower of color-dual contact terms required by the principle of double-copy
consistency. By collecting terms at each order in the pion decay width, Λ, we conjecture
that the amplitudes can be resummed to a dimensional reduction of (DF )2 +YM [27]. We
then use the resulting color-dual vector-pion amplitudes in the double-copy construction of
Einstein-Weyl-DBIVA theory. There is a natural question here as to whether the modified
Adler’s zero, induced by the required higher derivative operators, has allowed us to achieve
our aims of actually building nilpotent superfields coupled to supergravity. This motivates
us to identify an alternative approach to an adjoint color-dual gauged non-linear sigma
model with unmodified soft-behavior. This comes at a cost, however, which is to break
manifest exchange symmetry among pions.

The paper is organized as follows. In section 2, we review the amplitude relations
required for double-copy construction and the procedure for constructing double-copy con-
sistent theories using color-dual numerators. In section 3, we use an on-shell bootstrap to
identify additional operators required for our candidate vector-pion theory to obey color-
kinematics duality. In section 4, we observe that these additional operators induce a tower
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of higher-derivative corrections, which leads us to conjecture that our desired color-dual
vector-pion theory is a dimensional reduction of (DF )2 +YM theory. In section 5, we iden-
tify virtual gluon corrections to the six-point pure-pion amplitudes, required by double-copy
consistency in the (DF )2 +YM+ π theory, and comment on their implications for the ex-
pected Adler’s zero of pure Volkov-Akulov observables. In section 6 we present a second
model for color-dual gauged pions that leaves Adler’s zero unmodified at the cost of scalar
exchange symmetry. Our conclusions and discussion of future directions are in section 7.

2 Review of amplitude relations and the double-copy

In this work, we are interested in combining the two theories written schematically on
the right-hand side of eq. (1.4). The key to our procedure for calculating the desired
scattering amplitudes of Volkov-Akulov (VA) fermions coupled to gravity is the double-
copy construction [1]. Here we provide a brief review of how to implement the double-copy,
along with a general overview of on-shell methods. For more details we encourage the
reader to consult recent dedicated review papers [5, 28].

We start by considering a pure SU(N) Yang-Mills theory, whose action is given by

LYM = −1
4 Tr[FµνFµν ] , (2.1)

where Fµν = ∂µAν − ∂νAµ − ig[Aµ, Aν ] is the field strength, Aµ = AaµT
a is the massless

gluon field, T a are the generators of SU(N) (in the adjoint representation), and the trace is
over color indices. The field strength can also be written in terms of the covariant derivative
Dµ as

Fµν = i

g
[Dµ, Dν ] , for Dµ = ∂µ − igAµ , (2.2)

where g is the gauge coupling. The generators satisfy the normalization,

[T a, T b] = fabcT c , and Tr[T aT b] = δab , (2.3)

where fabc are the totally antisymmetric structure constants that satisfy the Jacobi identity,

fabef ecd − fdaef ebc − fdbef eca = 0 . (2.4)

To compute scattering amplitudes in this theory, one option is to fix a gauge and use
the action of eq. (2.1) to define Feynman rules. This has the advantage of making locality
manifest and attaching factors of fabc to each three-point vertex, but in turn requires ghosts
to remove gauge redundancy at loop level, and involves generally laborious calculation.
Off-shell Feynman rules are verbose, whereas physical on-shell quantities can be relatively
compact.

Two of the lessons from the on-shell community over the past few decades has been
to recycle on-shell information whenever possible through unitarity methods [29, 30], as
well as to minimize the work being done at any given time by considering color-ordered or
color-stripped quantities in gauge theories. We will discuss both, focusing first on color-
decomposition.
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2.1 Cubic representations

Gauge theory scattering amplitudes at tree-level can be expressed in terms of cubic (triva-
lent) graphs, as in the scaffolding of φ3 Feynman diagrams,

Am = gm−2 ∑
g∈Γm3

cgng
dg

. (2.5)

Here Am is referred to in the amplitudes community as a full or color-dressed m-point or
m-particle amplitude. The sum is over (2m − 5)!! distinct, connected, cubic tree-graphs
withm external legs. The color-weight cg of each graph g is calculated by giving each vertex
a structure constant fabc, and every internal edge a delta function δab. The external edges
for these graphs are always labeled, 1, . . . ,m and their color indices are in concordance
with their labeling, a1, . . . , am. The propagators or denominator weights, dg are dressed
as normal for massless φ3 Feynman diagrams, and the kinematic numerator weights ng are
dressed with whatever product of Lorentz invariants (including polarizations for external
gluons) are required to correctly reproduce the scattering amplitude.

The famous Yang-Mills quartic vertex familiar from Feynman rules is absorbed into
this cubic representation by appropriate factors of inverse propagators appearing in the
kinematic numerators. Such assignments are not at all unique, and so there are many
distinct representations that are all sufficient. Indeed one way of generating such a repre-
sentation is to begin by drawing all cubic Feynman diagrams, dressing them as normal, and
then drawing all quartic diagrams, and expanding them out to cubic diagrams consistent
with their color-dressings. This would not be efficient but is certainly a consistent way of
generating a cubic representation.

For the three-point amplitude (non-vanishing only for complex momenta), with k1 +
k2 + k3 = 0 and k2

i = 0, there is only one distinct graph with no internal propagators,

AYM
3 = g n3 c3 (2.6)

with c3 = fa1a2a3 . Due to the adjoint structure of c3, the kinematic weight must also be
antisymmetric in exchange of particle labels, otherwise the full amplitude would vanish.
Furthermore, there must be one polarization per external leg per term, and the amplitude
must be gauge invariant, i.e., A|εi→ki = 0. As all Mandelstam invariants sij ≡ (ki + kj)2

vanish at three-points, there are only two possible mass-dimensions one can write down.
The lowest order is associated with Yang-Mills, Tr(F 2):

n3 = (ε1 · ε2) ((k1 − k2) · ε3) + cyclic , (2.7)

the other is associated with the Tr(F 3) operator, which it turns out we will have use for
in this paper, so we quote its functional form here:

nF
3

3 = ((k1 − k2) · ε3) ((k2 − k3) · ε1) ((k3 − k1) · ε2) . (2.8)

Note that the nF 3
3 kinematic weight, when used, must come in with a dimensionful coupling

relative to n3. Again, up to the overall Wilson coefficient of the Tr(F 3) operator, the
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kinematic weight of nF 3
3 is entirely fixed by mass-dimension and anti-symmetry. As there

are no additional graphs, each of these numerators must be gauge-invariant independently,
which indeed they are.

Let us look at a slightly more interesting example, four-points, in Yang-Mills. Here
the scattering amplitude is given by,

g−2AYM
4 = csns

s12
+ ctnt

s14
+ cunu

s13
, (2.9)

where sij is used to mean (ki + kj)2. The color factors are given as follows:

cs = fa1a2ef ea3a4 , (2.10)
ct = fa4a1ef ea2a3 , (2.11)
cu = fa1a3ef ea2a4 . (2.12)

The traditional contact term has been absorbed to the cubic dressings by appropriately
multiplying cs, ct, or cu within the contact term by s12/s12, s14/s14, and s13/s13 respec-
tively. As the color-weights satisfy the Jacobi identity cs = ct + cu this assignment is by
no means unique.

One such assignment results in the following functional dressing [5] for the kinematic
numerators:

n(abcd) =
{[

(εa · εb)kµa + 2(εa · kb)εµb − (a↔ b)
][

(εc · εd)kc µ + 2(εc · kd)εdµ − (c↔ d)
]

+ sab
[
(εa · εc)(εb · εd)− (εa · εd)(εb · εc)

]}
,

(2.13)

with

ns = n(1234) , (2.14)
nt = n(4123) , (2.15)
nu = n(1324) . (2.16)

In particular it is worth noticing that the coefficient of sab in eq. (2.13) is exactly the piece
of the contact term absorbed by each cubic graph.

2.2 Color decomposition

At four-points, as well as higher multiplicity, local dressings of individual graphs are no
longer individually gauge invariant. Why? There can be cancellations between graphs
depending upon the redundancy between color factors. Generically the color-factors satisfy
the Jacobi identity,

fabef ecd = fdaef ebc + f caef edb (2.17)

with an implied sum over the repeated indices. Because of this redundancy in color-factors,
any representation that makes use of all (2m−5)!! cubic graphs and their individual color-
dressings are not in a minimal color basis. One can always use the Jacobi identities to
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1

σ(2) σ(3) σ(n− 1)

n

Figure 1. The basis graphs for any tree-level kinematics that satisfy Jacobi-like relations can be
expressed in terms of half-ladder diagrams where two legs, say 1 and n, are held fixed, and all other
leg labels σ(i) are permuted. See, e.g., ref. [31] for the relevant argument applied to color-factors.

re-express the color dressings in a minimal color basis of (m − 2)! color weights [31], and
the kinematic coefficients of those color weights will be gauge invariant.

Let us look at the four-point example above to see a concrete realization. One can
rewrite eq. (2.9) using ct = cs − cu to achieve,

g−2AYM
4 = cs

(
AYM

4 (1234) ≡ ns
s12

+ nt
s14

)
+ cu

(
AYM

4 ≡ nu
s13
− nt
s14

)
. (2.18)

The color-ordered or partial amplitudes AYM
4,tree(1234) and AYM

4,tree(1324) are gauge invariant
and only depend on an exponential number of cubic graphs as multiplicity increases [5].
They are related functionally and satisfy various field theory relations between them.

Generically, we can write m-multiplicity gauge theory scattering amplitudes in the
following form:

AYM
n, tree = gn−2 ∑

gi∈Γ(n)
3

cgi ngi
dgi

(2.19)

= gn−2 ∑
σ∈Sn−2

c(1, σ(2), . . . , σ(n− 1), n)AYM
n (1, σ(2), . . . , σ(n− 1), n) . (2.20)

where the c(1, σ(2), . . . , σ(n − 1), n) corresponded precisely to a product of color factors
dressing a half-ladder or multiperipheral graph,

c(1, σ(2), . . . , σ(n− 1), n) ≡ fa1aσ(2)b1f b1aσ(3)b2 · · · f bn−3aσ(n−1)an . (2.21)

Given this color structure, we call eq. (2.20) the half-ladder representation, as it restructures
the color-dressed amplitude in terms of a sum over color factors associated with “half-
ladder” cubic graphs, see e.g. figure 1. In the case of eq. (2.21), root legs 1 and n are held
fixed, and all other legs take on permutations of labels σ. The remaining color dressings
are then related to this choice of c(1, σ(2), . . . , σ(n−1), n) by iterated application of Jacobi
identities on the internal edges, or antisymmetry of individual vertices [31],

a1

a2 a3

a4

=
a1

a2 a3

a4

−
a1

a3 a2

a4

, (2.22)

where ai are labels of internal or external edges. The half-ladder basis of eq. (2.20) is
expressed in terms of a minimal color basis, meaning each kinematic partial amplitude
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contributes to the overall amplitude weighted by a completely distinct direction in color
space. Before proceeding, it is worth taking a moment to appreciate the utility of reframing
gauge invariant amplitudes in this way. While the local behavior manifest in the Feynman
rules generated eq. (2.1) has been obscured (at least for now), the local gauge symmetry
and Bose symmetry is now absolutely manifest.

One can choose alternative color-bases depending on which external legs are held fixed
as the half-ladder root legs. Their coefficients are also gauge invariant and indeed the
partial amplitudes of one basis can be linearly expressed in terms of partial amplitudes of
other bases. This is due to a set of linear relations known as the Kleiss-Kuijf relations [32],
which follow simply from the fact that kinematic dressings of graphs obey antisymmetry
around vertices, correspondent with the color-weights, to preserve Bose symmetry. The
partial amplitudes also inherit reflection and cyclic identities,

AYM
n,tree(1, 2, . . . , n) = AYM

n,tree(2, . . . , n, 1) , (2.23)

and
AYM
n,tree(1, 2, . . . , n) = (−1)nAYM

n,tree(n, . . . , 2, 1) , (2.24)

and also obey what is called the photon decoupling identity,∑
σ∈cyclic

AYM
n,tree(σ(1), σ(2), . . . , σ(n− 1), n) = 0 . (2.25)

As we will now show, the partial amplitudes respect an additional set of relations that
underly the local properties of the kinematic numerators hidden in each AYM

n,tree.

2.3 Color-dual numerators

Let us spend a second revisiting the generalized gauge choices that allow us to make
different assignments of contact terms to cubic graphs. As we mentioned earlier, when
a higher-point contact interaction, Xg, weighted by a color factor cg, is produced by the
Feynman rules, it can be made compatible with the form of eq. (2.19) by multiplying by an
overall factor of unity, taking cgXg → cg

dg
(dgXg). In which case, ng → ng + dgXg. Take for

example any three graphs {g1, g2, g3} in Γ(m)
3 whose color factors are related by the Jacobi

identity
cg1 = cg2 + cg3 . (2.26)

Then the amplitude is invariant under shifting the numerator factors by the following
generalized gauge transformation

ng1 → ng1 + dg1∆{g1,g2,g3} , ng2 → ng2 − dg2∆{g1,g2,g3} , ng3 → ng3 − dg3∆{g1,g2,g3} ,

(2.27)
leading to an overall shift in the amplitude of,

AYM
n, tree → AYM

n, tree + (cg1 − cg2 − cg3)∆{g1,g2,g3} = AYM
n, tree (2.28)

for any function ∆{g1,g2,g3} of the kinematic invariants. This is equivalent to the process of
absorbing contact terms into the trivalent graph representation of the full amplitude.

– 8 –



J
H
E
P
0
2
(
2
0
2
3
)
0
1
5

In the case of Yang-Mills amplitudes, for all graphs whose color factors are related by
the Jacobi identity, these ∆ can be chosen such that the ng satisfy the same relationships
as the color factors cg, i.e.

cgi + cḡi = 0 ⇒ ngi + nḡi = 0 ,
cgi − cgj − cgk = 0 ⇒ ngi − ngj − ngk = 0 ,

(2.29)

where ḡ is a cubic graph with an odd number of vertex flips relative to g. In this gauge, the
interplay between the algebraic relations of the local numerators and the color factors now
make Bose symmetry and gauge invariance manifest. Given the parallel structure between
the color and kinematic factors, we say that Yang-Mills theory obeys the duality between
color and kinematics, or simply, that it is color dual.

A wide variety of theories have been shown in the literature to be color dual, as
recently reviewed in refs. [5, 28, 33]. Such theories permit this special representation of the
numerators if and only if the partial amplitudes AYM

n,tree satisfy a further set of relations,
identified by Bern, Johansson and one of the authors [1],

n−1∑
i=2

k1 · (k2 + · · ·+ ki)AYM
n,tree(2, . . . , i, 1, i+ 1, . . . , n) = 0 , (2.30)

sometimes called the fundamental BCJ relations [34]. These additional kinematic identities
further reduce the basis of partial amplitudes from (n−2)! to (n−3)! elements. This leads
to an associated reduction in complexity of constructing both tree-level amplitudes and
multi-loop integrands via cut-construction.

2.4 The double-copy

A reduction in computational complexity is not the only advantage of performing calcu-
lations in color-dual theories. Consider the replacement of color-weight with color-dual
vector kinematic weight, cg → ng, yielding,

Mn,tree =
∑

gi∈Γ(n)
3

ngingi
dgi

. (2.31)

The resulting theory is local by construction and remains Bose symmetric due to the al-
gebraic properties of the numerators and the explicit sum over all permutations of graph
labels. But now the amplitudes are colorless with states determined by the tensor prod-
uct εµi ⊗ ενi . Furthermore, the new amplitude is invariant under linear diffeomorphisms,
the “square” of gauge invariance. In other words, two factors of Yang-Mills theory nu-
merators yields a theory of axion-dilaton-gravity. We call this procedure the double-copy
construction.

More generally, we can be agnostic to the origin of the numerators, and construct a
general class of theories of the form

Mn,tree =
∑

gi∈Γ(n)
3

agibgi
dgi

. (2.32)
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where the numerator weights agi and bgi are local functions of color and kinematics that
obey the same algebraic relations of eq. (2.29), subject to a suitable gauge choice. As long as
both the a-stripped ordered amplitudes and b-stripped ordered amplitudes are consistent
across multiplicities via factorization, we call such theories double-copy consistent. By
construction they are local and invariant under generalized gauge transformations acting
on each set of numerators.

It is worth also briefly mentioning how this process continues to loop level. In Yang-
Mills, at L loop level, the n-point amplitude in D dimensions is given by,

AYM
n,L-loop = iL−1gn−2+2L

L∏
l=1

∫
dD`l

(2π)D
∑
i

1
Si

cini
di

(2.33)

where `l are the loop momenta, the sum is over all cubic diagrams that can be built from
Feynman rules with distinct color structure ci, the di are products of propagators for each
internal line. The ni depend on contractions of the various kinematic quantities (including
loop momenta), and Si are symmetry factors. Then, the corresponding gravitational theory
has loop amplitudes [1, 2] of the form,

Mn,L-loop = AYM
n,L-loop

∣∣∣
ci→ñi,g→κ/2

= iL−1
(
κ

2

)n−2+2L L∏
l=1

∫
dD`l

(2π)LD
∑
i

1
Si

ñini
di

. (2.34)

As noted previously, the above considerations naturally extend to theories other than
Yang-Mills. The key to the double-copy in all of these cases is finding color-dual kinematic
numerators ng, i.e. that satisfy the Jacobi relations eq. (2.29). The goal in this paper is
to double-copy sYM with a color-dual theory of vectors coupled to pions, which we will
build up using an on-shell bootstrap. Once we have done so, we can replace adjoint color
factors with color-dual sYM numerators, thereby constructing the desired observables in a
putative theory of VA fermions coupled to supergravity.

2.5 Unitarity methods

We presented gauge-invariant building blocks of gauge theories in terms of easier to com-
pute, purely kinematic partial amplitudes, and we saw how it was possible to have algebraic
constraints on the building blocks of such partial amplitudes by imposing color-kinematics
duality on the numerator factors. How do we know that these partial amplitudes are con-
sistent with the theory we mean to be talking about? Generally they must satisfy what are
called unitarity cuts. At tree-level, this is simply factorization to lower-multiplicity on-shell
amplitudes, summed over states in the cut. The requirement of such consistency allows
for verification, and verification is sufficient for construction, as we will shortly discuss.
Furthermore, by considering ordered amplitudes that contribute to ordered-cuts, far fewer
graphs will be needed for any given cut.

To proceed, we note that the sum of scalar states is trivial, and that the sum over
massless vector states is given by the following completeness relation in terms of formal
polarizations on a cut leg with momenta k:∑

s∈states
εµs (k)ενs̄(−k) = ηµν − kµqν + qµkν

k · q
, (2.35)
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where q is an arbitrary null reference momentum that must cancel out in any physical
quantities, such as ordered amplitudes.

As an example, consider the s12-channel cut of the partial amplitude AYM(1234) =
ns/s12 + nt/s14. We are looking to verify,

lim
s12→0

s12A(1234) =
∑

s∈states
A(1, 2, ls)A(−ls̄, 3, 4) (2.36)

where A(abc) = n3(abc) is given in eq. (2.7). From the l.h.s. of our cut equation we have:

lim
s12→0

s12A(1234) = ns|s12→0

= n(1234)|s12→0

= A(1, 2, l)A(−l, 3, 4)|ε(l)µε(−l)ν→ηµν . (2.37)

In the last line we have exploited the property that — on the cut — the contact term drops
out of eq. (2.13), and the remaining inner product in the numerator can be written as a
product between two on-shell three-point amplitudes if the cut-polarizations are interpreted
as a spacetime metric. This is manifestly equal to the r.h.s. of our cut equation — since in
eq. (2.35), only the metric contributes in our sum over states, as ki · l = 0 for all external
legs i due to three-point on-shell kinematics [35].

2.6 Unitarity based bootstrap

One can invert verification to construction in the form of unitarity-based bootstrap meth-
ods [29, 30]. This is a longstanding approach applied to both tree amplitudes and loop-level
integrands. We will focus here on the idea of requiring the duality between color and kine-
matics in conjunction with unitarity based factorization.

Let us consider as an example a bootstrap through four-point for the amplitudes as-
sociated with the covariantized free scalar: L = (Dφ)2 + Tr(F 2). We have already fixed
the purely gluonic sector, so we are left to consider amplitudes involving scalars. Consider
the three-point amplitude between adjoint scalars and a massless vector. The color weight
will be of the form fabc and so the kinematic weight is incredibly restricted. As all dot
products between on-shell external momenta vanish for three-point kinematics, the only
three-point amplitude one can write down is:

A(Dφ)2

3 (1, 2, 3A) = gfabc(k1 − k2) · ε3 . (2.38)

Strictly speaking we could have given a new coupling to the three-point amplitude at this
stage, but consistency at four-point will force the same coupling as the three-point gluon.

At four-points, the first and simplest amplitude to consider is one with all-scalar ex-
ternal states. The full four-point amplitude will be of the form,

A(Dφ)2

4 (1, 2, 3, 4) = g2
(
nscs
s12

+ ntct
s14

+ nucu
s13

)
. (2.39)

The kinematic weight will be linear in Mandelstam invariants if it is to factorize to
eq. (2.38). Requiring the duality between color and kinematics lands us uniquely on the
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kinematic weight up to a constant of proprtionality, ξ,

n(Dφ)2(ijkl) = ξ (sik − sjk) . (2.40)

Here ns = n(Dφ)2(1234) and others following standard relabeling as for the gluonic numer-
ators previously constructed in eq. (2.13). Factorization on the s12-channel requires

n(Dφ)2(1234)|s12→0 = ξ(s13 − s23)|s12→0 (2.41)
= 2 ξ s13 (2.42)

=
∑
s

A(1, 2, lA,s)A(−lA,s̄, 3, 4) (2.43)

= (k1 − k2) · (k3 − k4)|s12→0 (2.44)
= 4 s13 (2.45)

fixing the constant of proportionality ξ = 2. The only remaining amplitude to consider
through four-points is the two-gluon two-scalar amplitude. In this case we actually have two
distinct graph topologies — one where each of the external gluons interacts with a separate
vertex connected by a scalar propagator, nI, and one where the two gluons interact at the
same vertex, nII. When legs labeled 1 and 4 are vectors, we have,

A(Dφ)2(1A, 2, 3, 4A) = g2
(
csnI(1A, 2, 3, 4A)

s12
+ ctnII(1A, 4A, 3, 2)

s14
+ cunI(1A, 3, 2, 4A)

s23

)
(2.46)

= g2
(
cs

[
A(1234) ≡ nI(1A, 2, 3, 4A)

s12
+ nII(1A, 4A, 3, 2)

s14

]
+ cu

[
A(1324) ≡ nI(1A, 3, 2, 4A)

s12
+ nII(1A, 4A, 2, 3)

s14

])
. (2.47)

The duality between color and kinematics requires that:

nII(1A, 4A, 3, 2) = nI(1A, 2, 3, 4A)− nI(1A, 3, 2, 4A) , (2.48)

which is manifestly antisymmetric under exchange j ↔ k. Thus, we need only give an
ansatz to nI. At this mass-dimension, a spanning set of independent Lorentz invariants is
simply:

{ε1 · ε4, ε1 · k2, ε1 · k4, ε4 · k1, ε4 · k2, s13, s14} (2.49)

and our initial ansatz is thus:

nI(1A, 2, 3, 4A) = ε1 · ε4(ξ1s13 + ξ2s14) + (ε1 · k2) (ξ3(ε4 · k1) + ξ4(ε4 · k2))
+ (ε1 · k4) (ξ5(ε4 · k1) + ξ6(ε4 · k2))

(2.50)

Fixing on the s-channel ordered cut of A(1234),

nI(1A, 2, 3, 4A)|s12→0 = A(1A, 2, l)A(−l, 3, 4A) = −4(ε1 · k2)(ε4 · k2) , (2.51)

yields ξ1 = ξ2, ξ4 = 4, and ξ3 = ξ5 = ξ6 = 0. One can fix the remaining parameters by
either considering the t-channel cut,

nII(1A, 4A, 3, 2)|s14→0 =
∑
s

A(1A, 4A, lA,s)A(−lA,s̄, 3, 4) , (2.52)
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A(n)(12345)
∣∣∣
s45−cut

=

1

2

3

α′n−1α′n−1 α′1α′1

4

5

+

1

2

3

α′ nα′ n α′0α′0

4

5

O(α′n)

A(n+1)(12345)
∣∣∣
s45−cut

=

1

2

3

α′ nα′ n α′1α′1

4

5

+

1

2

3

α′n+1α′n+1 α′0α′0

4

5

O(α′n+1)

Figure 2. Inductive ladder of higher-derivative contacts for the pure-vector theory generated by
cuts of the form A

(k)
5 |cut ∼ (A(k)

4 AYM
3 +A

(k−1)
4 AF

3

3 ) and considering double-copy consistency, where
A

(k)
n denotes n-point amplitudes appearing at mass-dimension α′k.

or demanding gauge invariance of A(1234). Either of these constraints fixes ξ2 = 1. This
yields ultimately,

nI(1A, 2, 3, 4A) = −4(k2 · ε1)(k3 · ε4)− s12(ε1 · ε4) , (2.53)

and we are done through four-points. Note that the presence of s12 means that our boot-
strap yields the contact-term required for the gauge-invariance of (Dφ)2. We will employ
a similar strategy to attempt to couple pions to vectors in a color-dual fashion.

2.7 Vector tower coming from Tr(F 3)

We will see that the Tr(F 3) operator must be included in our first candidate color-dual
vector-pion theory, and this has consequences. Here, we briefly review the relevant results
of [23] which described the color-dual bootstrap for a pure-vector Yang-Mills theory de-
formed by Tr(F 3), which ultimately must be a part of the vector-scalar theory that we
consider in this work. It was shown in [23] that an action of the form3

LYM+F 3 = −1
4 Tr(F 2) + gα′

3 Tr(F 3) , (2.54)

while obviously gauge invariant, is not color dual to all tree-level multiplicity at all orders
in α′. Instead, it appears that in order to make the theory double-copy consistent, one
must add an infinite tower of higher-derivative operators with increasing powers of α′. This
is required even at low multiplicity.

Consider the four-point amplitude. The action in eq. (2.54) gives a four-point ampli-
tude at O(α′2) by combining two α′Tr(F 3) vertices. This amplitude is not color dual by

3To compare the notation of [23] to the current paper, we note that [23] had g = 1. Restoring powers of
g, the coupling of Tr(F 3) should be gα′ as in eq. (2.54), which allows us to match the two notations with
the identification α′ = −Λ/g2.
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itself, but can be made so by adding a term proportional to α′2 Tr(F 4) to the theory [36].
The new α′2 Tr(F 4) term then contributes to the five-point amplitude. In particular, there
is an O(α′3) contribution at five points coming from combining α′2 Tr(F 4) with α′Tr(F 3).
This contribution was also shown to not be color dual by itself. To make it color dual, one
has to add a new operator at four points, schematically α′3 Tr(∂2F 4), which combines with
the O(α′0) three-point vertex in eq. (2.54) to give an O(α′3) contribution at five points
and make the amplitude color dual at that order. However, the new α′3 Tr(∂2F 4) can now
combine with α′Tr(F 3) to give an O(α′4) contribution at five points, which again is not
color dual, but can be fixed by a term schematically like α′4 Tr(∂4F 4). The essence of
this cut-consistency is outlined in figure 2. Thus, by just considering the four- and five-
point amplitudes, this tower was conjectured to continue indefinitely, requiring an infinite
number of higher-derivative operators to be color dual and satisfy the correct factorization.

3 Bootstrapping to a color-dual vector-pion theory

One might expect that a color-dual theory involving vectors and pions would be an in-
evitability. After all, both pure NLSM amplitudes [19, 37] and pure gluonic amplitudes are
double-copy consistent [38, 39] to all multiplicity. While one can be inspired by color-dual
all-vector amplitudes and all-pion amplitudes, the existence of a double-copy consistent
theory admitting mixed pion and vector amplitudes is an open question that we will now
begin to address.

3.1 Gauged nonlinear sigma models

A natural first step would be to couple Yang-Mills to the NLSM via simple covariantization,
by promoting ∂µ → Dµ. Consider then the covariantized NLSM Lagrangian4 for SU(N)
adjoint scalars π = πaT a coupled to gluons Aµ = AaµT

a,

Lcov.π = −1
4 Tr(F 2) + 1

2 Tr
[(

1− Λπ2
)−1

Dµπ
(
1− Λπ2

)−1
Dµπ

]
, (3.1)

where Λ is related to the pion decay constant fπ by Λ ∼ 1/f2
π , and the covariant derivative

is given as
Dµπ = (∂µπa − igfabcAbµπc)T a . (3.2)

Such theories, also with additional operators, have a venerable history in the literature, see
refs. [40, 41] for some earlier examples, and are referred to generally as gauged nonlinear
sigma models (e.g. [42]).

Our approach is as follows. We take eq. (3.1) as our starting point for a theory of vectors
and scalars. We then look at amplitudes of increasing multiplicity and check whether they
are color dual. Finding that at five-points they are not, we will modify eq. (3.1) using
the color-dual bootstrap, essentially adding new operators to eq. (3.1), to ensure that the
resulting theory is double-copy consistent. In the end, we find towers of higher-derivative

4Starting from the form of the pion action given in e.g. [19].
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operators that must be added to eq. (3.1) in order for the amplitudes to be color dual-and
satisfy consistent factorization to lower-point amplitudes.

All tree-level amplitudes in this theory through four-points are already known to be
color dual. The all-vector amplitudes belong to the predictions of Yang-Mills theory.
The O(Λ) contribution to the all-scalar four-point amplitude belongs to the predictions
of NLSM. The remaining contributions through four point belong to the scattering ampli-
tudes of the covariantized free-scalar theory, sometimes referred to as the simple-scalar, i.e.
Λ→ 0 in eq. (3.1). The first opportunity for an amplitude original to the theory eq. (3.1)
is at five points, which we discuss in the following section.

3.2 Tr(F 3) from double-copy consistency

To begin, we look at the O(gΛ) behavior of Acov.π(ππππA), with a factorization channel
involving the characteristic four-pion amplitude as well as the three-point scalar-vector
interaction. Through explicit calculation from eq. (3.1) we find that the tree-level five-
point amplitude Acov.π(ππππA), fails to satisfy the consistency relations of ref. [1] required
to participate in standard double-copy construction. Recall, however, that we only care
about the theory of eq. (3.1) as a starting point. There are any number of gauge-invariant
operators one might introduce, and indeed may be required, for the full theory to be
double-copy consistent, as described in [23].

There are two approaches to resolving this issue that we follow. A potentially more
radical solution is to admit the possibility that pions may belong to possibly distinct fields
— breaking exchange symmetry between scalars. We leave the discussion of such a model
to section 6. The more conservative approach, which we consider now, is to simply admit
higher derivative corrections to the fields we have already present in our theory. To identify
the requisite operators, we follow the color-dual bootstrap approach of starting with an
ansatz for the amplitude of the appropriate kinematic mass-dimension and little-group
scaling. We then establish whether or not it is possible to fix parameters so that our
desired scattering amplitude is color dual and satisfies the generalized unitarity cuts we
value. Previous examples in the literature of a similar approach include bootstrapping
NLSM pion amplitudes in ref. [5] and massive scalar QCD in ref. [33]. In these cases, at
a given kinematic mass-dimension, satisfactying color-kinematics duality and factorization
alone entirely constrain the amplitudes of the theory.

In the current problem of identifying the existence and nature of a not-completely
specified theory, we recognize that we might not have included at lower multiplicity all the
interactions required to admit both color-kinematics duality as well as healthy factorization
at five-points. So as far as factorization is concerned, we will at first only insist that our
five-point amplitude of the correct mass-dimension must be color dual, and satisfy the
factorization to four-pion scattering

A5(ππππA)|(k4+k5)-cut = A4(ππππ)×A3(ππA) . (3.3)

We will learn what was missing from the simple covariantization of eq. (3.1) by probing
the analytic structure of this new color-dual amplitude.
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Five-point amplitudes with four external scalars can be expressed in terms of kinematic
and color dressings of the fifteen distinctly labeled cubic (trivalent) graphs, Γ(5)

3 ,

A5(1π, 2π, 3π, 4π, 5A) =
∑
g∈Γ(5)

3

cgng
dg

. (3.4)

The color-weights cg are given by dressing each vertex with adjoint structure constants,
fabc, the propagators dg are dressed as normal for massless particles, and any remaining
kinematics and coupling constants are absorbed into the kinematic numerators, ng.

The fifteen graphs contributing to the five-particle amplitude can be described as
relabelings of only two graph topologies when one encodes external particle type in the
structure of the graph. In our case the four equivalent particles are the pions, and the lone
distinct fifth particle is the vector. The basis topology graph, with external gluon on a
terminal vertex, we will refer to as g1,

g1(1π, 2π, 3π, 4π, 5A) =

1

2 3 4

5

. (3.5)

The other topology, g2, has the external vector on the central vertex,

g2(1π, 2π, 3π, 4π, 5A) =

3

4 5 1

2

. (3.6)

Note in neither topology do we bother assigning a particle type to the internal legs (rep-
resented as dashed edges here). All propagating particles are massless and it does not
affect dressing the graph with kinematic weights, color-weights, or its propagators. Con-
tact terms are included by allowing for terms proportional to inverse propagators in the
kinematic numerators of the cubic graphs.

A color-dual kinematic Jacobi relation gives the kinematic weight of the second topol-
ogy, n(g2), in terms of two labelings of the first, n(g1),

n(g2(1π, 2π, 3π, 4π, 5A)) = n(g1(1π, 2π, 3π, 4π, 5A))− (3↔ 4) . (3.7)

All fifteen graphs in eq. (3.4) are thus given by the kinematic weight of various relabelings
of the basis graph g1, or linear combinations thereof. Thus, we need only give an ansatz of
the correct mass-dimension and little-group scaling to n(g1). Little group scaling demands
a polarization for the gluon, ε5, in each term. For the O(gΛ) contribution to A5(ππππA),
we require n(g1) to be third-order in Lorentz-invariants, (ki · kj)(kl · km)(kn · ε5). In terms
of a minimal basis of on-shell kinematics, the ansatz starts with 45 free parameters. We
enforce color-kinematics by imposing antisymmetry of each vertex as well as kinematic
Jacobi on every edge of both graphs. All remaining parameters are constrained uniquely
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via the four-pion cut eq. (3.3) and the vector Ward identity. In contrast to the amplitudes
constructed from the Lcov.π of eq. (3.1), we can now build the partial amplitudes that
satisfy the color-dual BCJ relations at five-point,

A5(1π, 2π, 3π, 4π, 5A) = gΛ
[
s35κ

(5)
2 − s25κ

(5)
3

s23
+ s35s25κ

(5)
12

s12s34
+ s25κ

(5)
3

s34
− s35κ

(5)
2

s12

+ 3
(
s24κ

(5)
1

s15
− s13κ

(5)
4

s45
+ κ

(5)
24

)]
,

(3.8)

where sij = (ki + kj)2, and κ(5)
i...j ≡ (ki + · · ·+ kj) · ε5.

Now we can see what was missing from the simple gauged NLSM in order to manifest
the duality between color and kinematics. Had we just considered the contribution from
Lcov.π, only the final term in eq. (3.8) would have been generated. As can be seen in the first
line, the newly constructed A(1π, 2π, 3π, 4π, 5A) has a two-propagator residue, admitting a
non-vanishing maximal-cut proportional to gΛ contributing to the secondary g2 topology,

A5(1π, 2π, 3π, 4π, 5A)|g2 Max.Cut =

3

4 5 1

2

.

If we had required that the above channels vanish (as they do for the theory of eq. (3.1))
then we would not have found a color-dual solution. This cut can only be satisfied at this
mass-dimension (in a non-abelian manner) by the inclusion of amplitudes associated with
the Tr(F 3) operator5 whose coupling is fixed to be gF 3 = Λ/g. Intriguingly, Tr(F 3) was
the first higher-derivative vector operator found to be compatible [36] with adjoint-type
double-copy, at least for all amplitudes admitting only single-insertions [43]. This leads us
to the following starting point for the double-copy consistent theory for YM + π,

Ldcc
YM+π ⊃ Lcov.π − gF 3

3 Tr(F 3) + . . . . (3.9)

In the next section we will demonstrate that this is just the beginning. Once Tr(F 3) forces
itself into the conversation, we find for double copy consistency that an infinite tower of
scalar-vector operators are needed at fixed multiplicity, thereby pushing both scalar and
vector sectors of the theory into concordance with particular ultraviolet completions.

4 Completing the vector-pion theory under double-copy consistency

4.1 New contributions for vector amplitudes with zero scalars

The first set of amplitudes to consider are the all-vector observables resulting from the
inclusion of Tr(F 3) to the Lagrangian of eq. (3.1). As reviewed in section 2.7, these

5Additional higher-derivative contact interactions may be required by double-copy consistency. We also
note that the Tr(F 3) operator that we consider here is the only other independent all-vector three-point
amplitude besides the one contained in pure YM. In our notation, it is given explicitly by Tr(F 3) =
Tr(FµνFνρFρµ).
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contributions were identified in [23], where the interplay between pure Yang-Mills theory
and Tr(F 3) induces a ladder of higher-derivative four-point local contact terms. The
coefficients for a subset of the available color-dual contacts are completely fixed by the
gauge coupling, g, and the dimensionful Tr(F 3) coefficient, gF 3 = Λ/g, when we demand
that the theory is double-copy consistent. By setting any additional higher-derivative
freedom to zero, we find that for k ≥ 2, the required color-dual contacts take the form:

A
(k)
4 (1A, 2A, 3A, 4A) = g2

( Λ
g2

)k
u×

[
tr[F1F2] tr[F3F4]

s2
12

sk−1
12 + cyc(2, 3, 4)

]
, (4.1)

where
Fµνi = kµi ε

ν
i − kνi ε

µ
i , (4.2)

and
A

(F 3)2+F 4

4 ≡ A(2)
4 , AD

2kF 4
4 ≡ A(k+2)

4 . (4.3)

It will be helpful to note that A(1)
4 is intimately related to the A(DF )2 amplitude of [44] as

written in D-dimensions [45],
A

(1)
4 = AF

3
4 −A

(DF )2

4 . (4.4)

As stated above, these are precisely the building blocks that appear in the inductive ladder
described in section 2.7. By considering pure-vector contacts that contribute to two-scalar
three-vector five-point amplitudes via factorization, we have now been able to explicitly
verify eq. (4.1) through O(Λ5).

In ref. [23] it was conjectured that the resulting two-parameter effective field theory
can be resummed to (DF )2 + YM theory, first identified in [44] when considering whether
conformal gravity is double-copy constructible. The amplitudes generated by the (DF )2 +
YM Lagrangian have been used in the double-copy construction of open bosonic string and
heterotic string amplitudes at tree-level. The conjectured resummation of the inductive
ladder in ref. [23] is due to the observation that if one collects A(k)

4 to all orders in mass-
dimension, this is equivalent to a low energy expansion of the four-point ordered (DF )2 +
YM amplitude:

g−2A(DF )2+YM(1234) = AYM
(1234) + α′A

(DF )2

(1234) + α′u

[
tr[F1F2] tr[F3F4]
s2

12(1 + α′s12)
+ cyc(2, 3, 4)

]

= AYM
(1234) + α′AF

3

(1234) +
∞∑
k=2

α′ kA
(k)
(1234) .

(4.5)

Recall, as stated in section 2.7, the dimensionful coupling α′ = −Λ/g2. The additional
freedom alluded to above was then described in ref. [23] by the following double-copy
consistent higher-derivative vector amplitude:

Adcc
(1234) = A(DF )2+YM(1234)

1 +
∑
x≥1,y

c(x,y)σ
x
3σ

y
2

 (4.6)

where σ3 = (stu)/8 and σ2 = (s2 + t2 + u2)/8 are permutation invariants of four-point
kinematics. Again, by considering two-scalar three-vector factorization, we have verified
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that the double-copy consistent building blocks in our tower are reproduced by the low
energy expansion of eq. (4.6) up through O(Λ5), at which point there are two additional
free parameters, c(1,0) and c(1,1). Thus, it would appear that in order for our candidate
vector-pion theory to satisfy the duality between color and kinematics to all-multiplicity,
we are interested in a Lagrangian of the form, (DF )2 + YM + π + . . ., where the ellipses
denote the potential of additional higher-derivative operators that are unconstrained by
double-copy consistency.

For the remainder of this section, we will focus our attention on the operators whose
Wilson coefficients are fixed completely in terms of Λ and g, and thus required by double-
copy consistency, and allow all unconstrained freedom in the free parameters, c(x,y), to
vanish.

4.2 New contributions for vector amplitudes with two scalars

Now, in our vector-scalar theory, the inclusion of Tr(F 3) creates a new O(Λ) contribution
at four points to the two-pion, two-vector scattering amplitude, A4(ππAA). Consider the
four-point scattering where legs one and two are pions, and legs three and four are vectors.
Demanding factorization to the correct Tr(F 3) vertex and double-copy consistency, there
is a new Λ contribution to the partial amplitude,

A
(1)
4 (1π, 2π, 3A, 4A) = Λu

s

[
(k3 · ε4)(k4 · ε3)− (k3 · k4)(ε3 · ε4)

]
, (4.7)

where s = (k1 + k2)2, u = (k1 + k3)2 = −s − t, and for the remainder of the paper, the
superscript (k) denotes k-th order in Λ.

We also find that demanding factorization and double-copy consistency has forced an
additional two-pion-two-vector contact operator. This can most easily be seen by consid-
ering the other ordered amplitudes given by the BCJ relations. At four-point these are

A4(1π, 2π, 3A, 4A)
u

= A4(1π, 2π, 4A, 3A)
t

= A4(1π, 3A, 2π, 4A)
s

, (4.8)

which is true for our amplitudes by construction. Then, we can see from eq. (4.7) that the s-
channel pole in A4(1π, 3A, 2π, 4A) cancels, making it a pure contact term. For completeness,
the full color-dressed amplitude is given by

A4(ππAA) = (csu+ cus)
A4(1π, 2π, 3A, 4A)

u
. (4.9)

With the inclusion of Tr(F 3) and an O(Λ) contribution to A4(ππAA) required by
double-copy consistency, we are now forced to consider contributions to A5(ππAAA) at
O(Λ2). We proceed with the same procedure as the previous section, constructing an ansatz
that respects mass-dimension and little-group scaling, and then impose BCJ relations, and
we will find an inductive process, in the same spirit to that identified in [23] and reviewed
in section 2.7, that generates a tower of higher derivative operators with Wilson coefficients
fixed in terms of Λ and g.

After requiring that our kinematic weights are color-dual, we can fix the remaining
freedom on consistent factorization to the available lower multiplicity building blocks. At
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A(n)(1π2A3π4A5A)
∣∣∣
s45−cut

=

1

2

3

Λn−1Λn−1 Λ1Λ1

4

5

+

1

2

3

ΛnΛn Λ0Λ0

4

5

O(Λn)

A(n+1)(1π2A3π4A5A)
∣∣∣
s45−cut

=

1

2

3

ΛnΛn Λ1Λ1

4

5

+

1

2

3

Λn+1Λn+1 Λ0Λ0

4

5

O(Λn+1)

Figure 3. Inductive ladder of higher-derivative contacts generated by consideration of color-dual
consistency and cuts of the form A(ππAA)× (AYM

3 +AF
3

3 ).

this mass-dimension, the O(Λ) partial amplitude of eq. (4.7) will contribute to a three-to-
two-particle generalized unitarity cut with Tr(F 3). This will leave the Tr(F 2) contribution
to the two-particle cut available to interact with a potential O(Λ2) contact on the other
side of the cut, if required by double-copy consistency (shown in figure 3 for general mass-
dimension). Indeed, we find that an additional four-point contact term is required of the
form,

A
(2)
4 (1π, 2π, 3A, 4A) = Λ2

g2 u
[
(k3 · ε4)(k4 · ε3)− (k3 · k4)(ε3 · ε4)

]
, (4.10)

for our candidate vector pion theory to continue to respect double-copy consistency. By
the same logic, this now requires us to further consider contributions at the next order
in Λ — yielding yet another four-point contact at O(Λ3). In fact, we observe that in
order for A5(ππAAA) to be consistent to all orders in Λ, contact terms contributing to
the partial amplitude, A(k)

4 (ππAA), at O(Λk) must be completed by an additional contact
A

(k+1)
4 (ππAA) at O(Λk+1), as required by double-copy consistency. This inductive process

is sketched in figure 3. It turns out that the general form of these color-dual four-point
contributions at each additional order in mass-dimension can evidently be written as,

A
(k)
4 (1π, 2π, 3A, 4A) = g2

( Λ
g2

)k
u sk−1 tr[F3F4]

s
, (4.11)

where the superscript k counts additional orders in mass-dimension, and Fµνi is given in
eq. (4.2). The resulting tensor,

tr[FiFj ] ≡ Fµνi F ρσj ηµρηνσ = −2
[
(ki · εj)(kj · εi)− (ki · kj)(εi · εj)

]
, (4.12)

is the same tensor structure found in eq. (4.7) and eq. (4.10), for example. We have
explicitly verified eq. (4.11) up to O(Λ5) when unconstrained freedom in higher-derivative
Wilson coefficients is set to zero.
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A(1π2π3π4π5A) ⊃

3

4

5

ΛnΛn Λ0Λ0

1

2

+

1

2

3

ΛnΛn Λ0Λ0

4

5

Figure 4. Generalized unitarity cuts used to constrain BCJ satisfying partial amplitudes con-
tributing to A5(ππππA). Given the existence of A(n)

4 (ππAA) at any order O(Λn), an additional
four-point all-pion higher-derivative contact is required to maintain double-copy consistency at five-
point, such that A(n)

4 (ππAA) ⇐⇒ A
(n)
4 (ππππ).

4.3 New contributions for vector amplitudes with four scalars

With this tower of contacts contributing to A4(ππAA) in hand, we can immediately see
that additional higher derivative corrections must be added to the all-pion amplitude,
A4(ππππ), in order for A5(ππππA) to be double-copy consistent to all orders in mass-
dimension.

Imposing the factorization constraints in figure 4, and setting any remaining freedom
to zero, we find that the four-point ordered amplitude contributing to the all-pion cuts at
a given order in Λ takes the form,

A
(k)
4 (1π, 2π, 3π, 4π) = g2

( Λ
g2

)k
u
[
sk−1 + tk−1 + uk−1

]
. (4.13)

We have verified through O(Λ5) that four-point amplitudes of the form stated in eq. (4.11)
and eq. (4.13) are required for double-copy consistency at five points.

5 Analysis of the double-copy consistent vector-pion theory

In this section we will identify out some novel features of this candidate vector-pion theory,
and some directions for future studies. To begin, we provide a set of tables that display the
additional color-dual operators that are required for our conjectured vector-pion theory.
All cells that appear with a diagram indicate that the amplitude has been constructed,
and is available in the ancillary file.

5.1 Summary of new contributions

Cells in green correspond to amplitudes that are generated by the Feynman rules of
eq. (3.1), our starting point. The four-pion five-point amplitude in table 3 is highlighted
in red, to indicate that it is the first amplitude that forced us to consider additional op-
erators; these additional operators, that served as the base-steps of our inductive tower,
are highlighted in yellow in tables 1 and 2. Finally, the bold-face numbers in each cell
correspond to the number of free Wilson-coefficients generated by our bootstrap. These
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O(Λn)
||π|| = 2k

k = 0 k = 1

n = 0 YMYM YMSYMS

n = 1 F 3F 3

Table 1. Three-point amplitudes for 2k pions — Green cells contain amplitudes generated by
eq. (3.1). The additional Tr(F 3) interaction highlighted in yellow was needed in eq. (3.8) for
double-copy consistency.

O(Λn)
||π|| = 2k

k = 0 k = 1 k = 2

n = 0 YMYM 0 YMSYMS 0 YMSYMS 0

n = 1 F 3F 3 0 0 NLSMNLSM 0

n = 2 F 4F 4 0 0 0

n = 3 D2F 4D2F 4 1 1 1

n = 4 D4F 4D4F 4 1 1 1

n = 5 D6F 4D6F 4 2 2 2

Table 2. Four-point amplitudes for k pairs of pions — Green cells contain amplitudes generated by
eq. (3.1). The additional interactions highlighted in yellow were needed in eq. (3.8) for double-copy
consistency.
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O(Λn)
||π|| = 2k

k = 0 k = 1 k = 2

n = 0
YMYM

0
YMSYMS

0
YMSYMS

0

n = 1 0 0
cov.πcov.π

0

n = 2 0 0 0

n = 3 1 1 1

n = 4 1 1 1

n = 5 3

Table 3. Five-point amplitudes for k pairs of pions — Green cells contain amplitudes generated
by eq. (3.1). The amplitude highlighted in red violated BCJ relations when only considering in-
teractions of eq. (3.1). This amplitude, Acov.π, needed additional interactions in eq. (3.8) to be
double-copy consistent.
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O(Λn)
||π|| = 2k

k = 3

n = 2 NLSMNLSM + Anew
6A
new
6

Table 4. Six-point amplitude for 3 pairs of pions — Green cells contain amplitudes generated by
eq. (3.1). The additional contribution at O(Λ2) is required for double-copy consistency of the full
vector-pion theory.

additional parameters are unconstrained by double-copy consistency and five-point factor-
ization; however there could in principle be additional constraints at higher multiplicity.

As outlined in the review of unitarity methods in section 2.5, these amplitudes were
constrained by (1) color-kinematics (2) factorization and (3) gauge invariance. To elucidate
the requisite four-point contacts through O(Λ5) and the available freedom, we only consid-
ered color-kinematic and factorization constraints on the same mass-dimension five-point
amplitude; and did not perform the computationally onerous process of further imposing
gauge-invariance. For this reason, the zero- and two-scalar five-point amplitudes at O(Λ5)
are left blank.

In addition to the three-, four- and five-point amplitudes, we have constructed the
all-scalar six-point amplitude at NLSM mass-dimension, O(Λ2). Due to the inclusion of
a five-point amplitude at O(Λ2/g) required by double-copy consistency, there is a novel
correction to the pure NLSM six-point amplitude, shown in table 4. We will discuss the
implications of this in more detail in the next subsection.

5.2 Modifying NLSM and thus DBIVA behavior

As suggested in table 4, the existence of five-point contributions at O(Λ2/g) to A(ππππA)
mandates corrections to the already color-dual six-point pion amplitude for our theory.
This additional O(Λ2/g) term leads to non-trivial corrections to the pure pion six-point
amplitude at O(Λ2), such that

A
(DF )2+YM+π
6 (123456)

∣∣∣
Λ2

= Aπ6 (123456) + Anew
6 (123456) (5.1)

where the first term is the usual six-point NLSM partial amplitude:

Aπ6 (123456) = 9Λ2
[
s13s46
s123

+ s24s51
s234

+ s35s62
s345

− s135

]
(5.2)

and the novel contribution appearing at O(Λ2) takes the form:

Anew
6 (123456) = Λ2

[
1
2

(
(s15 + s25)τ12|34

s12s34
+
s36τ12|45
s12s45

+
(s35 + s36)τ12|56

s12s56

)

+
τ12|56 − τ12|45

s12
− (s14 + s23) + cyc(1, 2, 3, 4, 5, 6)

] (5.3)
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where we have introduced the notation, τij|kl = siksjl − silsjk. The novel contribution,
Anew

6 , has non-vanishing residues on cuts that expose individual three-point amplitudes,

A6|Λ2A6|Λ2 ⊃ Λ2/gΛ2/g gg . (5.4)

This new contribution alters the Addler’s zero behavior of the theory. Note that Anew
6 does

not contribute to typical factorization channel available to six-point NLSM pion amplitudes,
the sewing of two four-point trees. It is particularly interesting to note that this novel
contribution to the six-point amplitude independently satisfies the BCJ relations, unlike
the additional term in eq. (3.8) that was required to make A(ππππA) color-dual. The
identification of the coupling with Λ2 is only required by double-copy consistency with the
lower-multiplicity results found thus far. The gauge theory cut, depicted above, will then
lead to a non-vanishing factorization channel in the resulting double-copy to DBIVA+Weyl-
Einstein supergravity:

A6(λVA · · ·λVA)
∣∣∣
l2-cut
∼
∑

states
A5(λVA · · ·λVA, ls̄)A3(−ls, λVAλVA) (5.5)

This is obviously in contrast to the usual behavior of pure DBIVA, that mandates fac-
torization to three-point trees vanish in the scattering. As both contributions above in
eq. (5.1) appear at O(Λ2), it is not possible to tune the interaction to recover pure DBIVA
theory from the resulting double-copy.

We must admit this is a somewhat disturbing aspect of our construction — we wished
to build Volkov-Akulov coupled to supergravity, but we seem to have altered the very soft-
limit behavior we identify with Volkov-Akulov scattering to begin with. Does this destroy
the nilpotence associated with the fermionic field in DBIVA uncoupled to supergravity?
The answer to that question awaits future work. We note that the more radical construction
presented in section 6 does leave DBIVA behavior unmodified to all multiplicity at the cost
of manifest exchange symmetry between scalars in the constituent gauged NLSM theory.

5.3 Resumming to dimensionally reduced (DF )2 + YM

Was it in some sense inevitable that an effective field theory of identical scalars, NLSM,
could only be combined with an effective field theory of vectors, (DF )2 +YM, in a double-
copy consistent way? We are prepared to conjecture an answer by considering the suggestive
field theory question: what is the dimensional reduction of (d+1)-dimensional (DF )2+YM,
a known color dual theory, to d-dimensions?

We can perform a dimensional reduction of this form directly at the level of amplitudes.
To do so, we will define the (d + 1)-dimensional momenta, Ka, and polarizations, Ea, as
follows:

Ka = (kµ, 0)a Ea =

1 a = d

εµ a 6= d
(5.6)
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where µ takes on values in the lower dimensional subspace, µ = 0, . . . , d − 1. When
we identify the pions with the extra-dimensional polarization mode, Ea=d, one finds that
the building blocks in eq. (4.5) exactly reproduce the scalar amplitudes in eq. (4.11) and
eq. (4.13). The same goes the for available five-point amplitudes through O(Λ4).

Furthermore, this dimensional reduction procedure is in one-to-one correspondence
with the application of transmutation operators, Tij = ∂

∂(εiεj) , of Cheung, Shen, and
Wen [46, 47], related to the ‘generalized dimensional reductions’ of Cachazo, He, and
Yuan [19]. So the observation that the all-vector building blocks in eq. (4.1), generated by
L(DF )2+YM, are secretly related to the mixed vector-pion color-dual building blocks iden-
tified in eq. (4.11) and eq. (4.13) can be neatly captured by the following set of relations:

A
(n)
4 (1π, 2π, 3A, 4A) = T12 ◦A(n)

4 (1A, 2A, 3A, 4A) (5.7)

A
(n)
4 (1π, 2π, 3π, 4π) = (T12T34 + cyc(2, 3, 4)) ◦A(n)

4 (1A, 2A, 3A, 4A) (5.8)

Dimensional reduction does not seem to affect the double-copy consistency [5], but does
offer consistently interacting scalars. Likewise, performing this dimensional reduction on
the (DF )2 + YM Lagrangian yields the type of interaction terms required to build the color-
dual mixed amplitudes we have presented here through six-points. So adding appropriately
weighted higher derivative vector operators to the covariantized NLSM seems exactly the
right approach to build a theory compatible with the double-copy web of theories through
the interactions we have yet explored.

The double-copy of sYM with (DF )2 + YM is known to yield a Weyl-Einstein type
conformal supergravity (CSG) [44],

ACSG = AsYM ⊗A(DF )2+YM . (5.9)

This theory is related to the gravitational amplitudes in the heterotic string by a particular
choice of Wilson coefficients for an additional tower of double-copy consistent higher deriva-
tive operators. Our conjectured vector-pion theory double-copied with sYM is then related
to this family of Weyl-Einstein type conformal supergravities, by what appears to be a
sort of dimensional reduction — but one that only applies to one factor in the double-copy
construction. Our model appears consistent with the behavior of modified Volkov-Akulov
fermions dynamically coupled to spacetime of interest in α-attractor models, which nat-
urally reside in gravity theories where the super Poincaré symmetry is upgraded to the
super-conformal group [48]. This arises from a candidate vector-pion theory that is related
to the color-dual (DF )2 +YM via dimensional-reduction. All-order in Λ predictions in this
theory could be extracted directly from any multiplicity (DF )2 + YM theory amplitudes.

Moreover, constructing the Lagrangian for our vector-pion theory, with all residual
higher-derivative freedom set to zero, is just a matter of redefining the gauge fields, Aa →
(Aµ, π)a and projecting the derivatives down to the lower dimensional subspace, ∂a →
(∂µ, 0)a. This gives us the following conjecture for the Lagrangian that reproduces the
amplitudes constructed in this paper:

L(DF )2+YM+π ≡ L(DF )2+YM

∣∣∣∂a→(∂µ,0)a

Aa→(Aµ,π)a
. (5.10)
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The observation that a double-copy consistent vector-pion theory could be equivalent
to the dimensional reduction of (DF )2 + YM + HD also sheds some light on the question
of why we cannot recover the usual NLSM Adler’s zero condition from taking limits of
coupling in our theory. Since the α′ in (DF )2 + YM-amplitudes is related to the pion
decay-width, α′ = −Λ/g2, the limit g → 0 is equivalent to the α′ → ∞ limit, where
the theory becomes a dimensional reduction of the dimension six theory, L(DF )2 [44]. In
this limit, dimensional reduction is one-to-one with dimensional truncation and all pionic
amplitudes vanish.

5.4 Helicity selection rule from new contributions

The tensor structure of eq. (4.7) is different from the standard Tr(F 2) contribution, which
has particularly sharp implications for the helicity structure of gluon scattering in four
dimensions. The standard Tr(F 2) term only contributes to this amplitude for mixed-
helicity gluons, while the Tr(F 3) operator only contributes to this amplitude for same-
helicity gluons. Using the four-dimensional spinor-helicity formalism, when the gluons are
both plus helicity the amplitude is simply

A4(1π, 2π, 3+
A, 4

+
A) = Λu

s
[34]2 , (5.11)

which starts at O(Λ) because the standard YM vertex does not contribute. It is worth
spending a few words considering the implications this has for the double-copy theory we are
attempting to build. Aiming for DBIVA + supergravity, double-copying these amplitudes
with N ≤ 4 super-Yang-Mills amplitudes, we now find in our constructed gravity theory
non-vanishing four-point interactions such as, e.g.:

A4(χVA+χVA−h++t̄) = A4(λ+λ−A+A−)⊗A4(ππA+A+) . (5.12)

This is quantitatively different than the amplitude arising from the double-copy with only
the covariantized NLSM of eq. (3.1).

5.5 Double-copy consistency of massive Yang-Mills

The structure of the hidden tower of corrections also lends itself to studying the double-copy
consistency of massive gauge theory. By starting with the Proca Lagrangian,

L = −1
4Tr(F

2) + 1
2m

2Tr [AµAµ] (5.13)

we can recover the starting point of this paper, (3.1), by performing a Stuckelberg trans-
formation on the gauge fields,

Aµ →
i

g
U †DµU (5.14)

where the U ∈ SU(N) group elements are expressed in terms of the Cayley parameterization
as in (3.1), and Λ = m2/g2. The color-dual nature of this action was previously studied
in [49] with application to the double-copy construction of dRGT gravity amplitudes. As
we have outlined throughout the text, many of the irrelevant operators that one could add
to (3.1), included in the tables of section 5.1, will be required for double-copy consistency
in higher-multiplicity tree amplitudes.
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6 A flavorful approach to a color-dual vector-pion theory

Here we demonstrate a more radical possibility for building a color-dual gauged pion theory.
A recent study by one of the authors [50] demonstrated that D-dimensional gauge theory
amplitudes can be decomposed into building blocks that preserve all the partial amplitude
relations of the parent vector theory. This expansion, referred to as the reducible-amplitude
block-decomposition, takes the following form for Yang-Mills,

AYM
(σ) =

b|σ|/2c∑
k=1

∑
ρ∈S2|k

σ

ε(ρ)∆
(ρ)
(σ) (6.1)

where ρ = (a1b1) . . . (akbk) is a list of paired legs that appear as external labels in the
ordered list, σ, and ε(ρ) = (εa1εb1) · · · (εakεbk) are dot products of D-dimensional polariza-
tions. The sum starts at k = 1 since all kinematic monomials for Yang-Mills at tree-level
contain at least one factor of ε(ab). The observation relevant for the following discussion is
that ∆(ρ)

(σ) are kinematic functions that independently satisfy BCJ relations with a flavor
structure determined by ρ. Furthermore, the building blocks, ∆(ρ)

(σ), can be consistently
combined to produce pion amplitudes via the dimensional reduction of ref. [47],

EZa = 1
gfπ

(kµa , 0, ikµa ), EYa = (~0, 1,~0), (6.2)

where momenta Ka live in the d-dimensional scattering subspace:

Ka = (kµa , 0, 0). (6.3)

Applying this dimensional reduction to pure gluon amplitudes in D = 2d+1 dimensions will
yield NLSM tree-level amplitudes when two particle (ij) are projected along Y -directions,
and the remaining particles take on Z-polarizations [47]:

ANLSM
(12...n) = AYM(Z1, . . . , Yi, . . . , Yj , . . . , Zn) ≡ ∆(ij)

(12...n)

∣∣∣
ε→k

. (6.4)

These amplitudes can also be generated using Feynman rules from a Lagrangian that is per-
turbatively equivalent to NLSM given a particular weight of Z-particles [51]. Since they are
equivalent to a special dimensional reduction from Yang-Mills [47], they can be expressed
in terms of ∆(ij)

(12...n) by considering how eq. (6.2) acts on the block decomposition [50].
Now let’s return to the starting point of this paper. In pursuit of constructing am-

plitudes for DBIVA dynamically coupled to spacetime via the double-copy, the goal was
to identify a double-copy consistent theory of NLSM pion interacting with gluons. While
the construction of eq. (6.4) introduces different particle flavors that obscures the scalar-
exchange symmetry of the NLSM Lagrangian, it does suggest an alternative approach to
higher derivative model analyzed in previous sections. Namely, one could augment the
flavored dimensional reduction in eq. (6.2) by introducing an additional gluon polarization
that is restricted to the d-dimensional subspace:

EAa = (εµa , 0, 0). (6.5)
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Truncating gluons from D = 2d+1 down to d-dimensions provides a potential path towards
consistently coupling the longitudinal pions with gluons; albeit in a way that violates
exchange symmetry between the external pions. Take for example, the following four-
scalar five-point amplitudes at pion mass dimension:

AYM
5 (1Z , 2Y , 3Y , 4Z , 5A) = g

f2
π

(
s24κ

(5)
1

s15
− s13κ

(5)
4

s45
+ κ

(5)
24

)
s14
s23
∼ s14∆(14)(23)

(12345) , (6.6)

AYM
5 (1Y , 2Z , 3Z , 4Y , 5A) = g

f2
π

(
s24κ

(5)
1

s15
− s13κ

(5)
4

s45
+ κ

(5)
24

)
∼ s23∆(14)(23)

(12345) , (6.7)

AYM
5 (1Y , 2Z , 3Y , 4Z , 5A) = g

f2
π

(
s24κ

(5)
1

s15
− s24κ

(5)
4

s45

)
∼ s24∆(13)(24)

(12345) . (6.8)

where the relationship of these amplitudes to ∆(ρ)
(σ) is due to the Ward identities derived

in [50]. It is worth noting that AYM
5 (1Y , 2Z , 3Z , 4Y , 5A) happens to be identical to the last

term in eq. (3.8). We remind the reader that this term is precisely the five-point amplitude,
Acov.π

5 , generated by the gauged NLSM Lagrangian of eq. (3.1):

Acov.π
5 (1π, 2π, 3π, 4π, 5A) ≡ AYM

5 (1Y , 2Z , 3Z , 4Y , 5A). (6.9)

However, given this definition, one can check that the four-pion five-point amplitude of
Acov.π

5 does not satisfy BCJ relations when the pions are taken to be identical bosons. This
observation led earlier to introducing an additional Tr(F 3) operator with coupling Λ/g in
section 3.2. Indeed, one can check that the following BCJ relation, eq. (2.30), does not
hold when applied to Acov.π

5 :

s1|2A
cov.π
5 (1π, 2π, 3π, 4π, 5A) + s13|2A

cov.π
5 (1π, 3π, 2π, 4π, 5A)

+ s134|2A
cov.π
5 (1π, 3π, 4π, 2π, 5A) 6= 0,

(6.10)

where si|j1...jn = ki · (kj1 + · · ·+ kjn).
In contrast, when we keep track of particle flavor for the dimensionally reduced pionic

amplitudes of eq. (6.7) and eq. (6.8), with Y - and Z-particles coupled to gluons, we find
that the usual BCJ relation does hold:

s1|2A
YM
5 (1Y , 2Z , 3Z , 4Y , 5A) + s13|2A

YM
5 (1Y , 3Z , 2Z , 4Y , 5A)

+ s134|2A
YM
5 (1Y , 3Z , 4Y , 2Z , 5A) = 0.

(6.11)

This is simply a consequence of Yang-Mills satisfying BCJ relations in D-dimensions, and
the pion-vector amplitudes above just being a special choice of D-dimensional polarizations.
Thus, the amplitudes generated using the dimensional reduction of eq. (6.2) and eq. (6.5)
are manifestly color-dual. Indeed an important feature of this model is that any m-point
tree-level amplitude with 2(m − 1) Z particles and 2 Y particles will match exactly the
same scattering amplitudes and have the same soft behavior as the NLSM.

Since we require no additional interactions beyond those generated by the dimensional
reduction from D = 2d+ 1 dimensions, the six-point pure-scalar NLSM amplitude is unaf-
fected, and consequently the behavior of six-point DBIVA amplitudes in the double-copy
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theory coupled to supergravity is likewise unaffected. It is, however, worth noting that
eq. (6.6) has additional poles not generated by the gauged NLSM of eq. (3.1). In this
case, unlike the approach studied in previous sections, these additional residues avoid the
introduction of tr(F 3) that forced a tower of higher-derivative pion-vector interactions.
These additional poles are generated by a combination of the pure-scalar three-point ver-
tices derived in [47], and additional vector-pion interactions. The following are the off-shell
Feynman rules for the novel interactions between gluons and Y -particles,

Y a
1

Y b
2

Ac,µ3
≡ V µ

abc = g fabc(k1 − k2)µ, (6.12)

and gluons with the Z-particle,

Aa,µ1

Ab,ν2

Zc3
≡ V µν

abc = f−1
π fabc

[
ηµν k3 ·(k1 − k2) + (kν3k

µ
2 − k

µ
3 k

ν
1 )
]
. (6.13)

Both of these vertex rules can be constructed by applying the dimensional reduction of
eq. (6.2) to the off-shell Feynman rules of the Yang-Mills three-point function in eq. (2.7).
While the vertex V µ

abc of eq. (6.12) produces the familiar three-point amplitude of eq. (2.38),
the vertex V µν

abc of eq. (6.13) is novel. A consequence is that any tree-level amplitudes
involving external Y and A external states will simply be amplitudes shared with the
covariantized free scalar.

Furthermore, while V µν
abc is needed for consistent factorization of the AYM

(AZZA) four-
point amplitude, we can see that it must vanish on-shell6 when external polarizations are
transverse and momenta are light-like. In addition to V µν

abc at three-point, there will also
be novel four-point vertices that are required for AYM

(AZZA) to be gauge invariant.
In summary, while this approach violates exchange symmetry between external scalars,

it has merit in that we can smoothly interpolate between pure Yang-Mills amplitudes,
when taking fπ →∞, and pure NLSM amplitudes, when taking the gauge coupling g → 0.
Furthermore, since this flavored formulation of gauged pions avoids the O(Λ2/g) five-point
contribution described in section 5.2, the Adler’s zero of pure pions at six-point is preserved.
In other words, any pure scalar amplitudes at pion mass dimension are identical to those
generated by the NLSM Lagrangian, free of corrections from higher-dimension contacts
needed for double-copy consistency.

6The AYM
(AAZ) amplitude is equivalent on-shell to three-point function A

(χ)
(ggπ) of [50], in that they both

vanish. However as we note, AYM
(AAZ) vanishes due to on-shell three-point kinematics, whereas the three-point

function Aχ(ggπ) vanished due to the kinematic factor being symmetric under color ordering.
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7 Conclusions

In this paper we have begun to establish whether a color-dual theory of vectors coupled
to pions can exist. We have demonstrated the existence of two distinct candidate theories
through six-point interactions. We include expressions for all basis kinematic weights n(g)
and associated amplitudes in a machine readable auxiliary file. One fascinating promise of
such a color-dual theory is its role in the double-copy description of a Dirac-Born-Infeld-
Volkov-Akulov-type theory coupled to dynamic spacetime — a necessary ingredient if we
aspire to double-copy descriptions of many phenomenological α-attractor models involving
supergravity. As the literature provides color-dual maximally supersymmetric Yang-Mills
theory representations through four-loops [52], we have reduced multi-loop calculations in
DBIVA + CSG to carrying out cut-construction in our candidate color-dual vector-pion
theory.

The possibilities for future study are rather large, with non-trivial payoff, and these
are just first steps. To craft arbitrary inflationary potentials we will want to investigate
double-copy construction of higher-derivative operators targeting the inflaton sector. It
will be intriguing to explore the consequences of these choices especially considering the
good UV behavior of conformal supergravity theories, which seem a necessary feature of
our more conservative double-copy construction of section 3. This model, however, suffers
from modified Adler’s zero behavior which could call into question whether the fermions in
the double-copy supergravity theory can rightly be associated with nilpotent superfields —
a question that awaits future study. Our second model described in section 6 neatly evades
this issue at the cost of manifest exchange symmetry between scalars in the color-dual
gauged pion theory.

Towards constructing the type of ultra-soft UV behavior potentially offered by string
theory one should, in both models, consider questions of attempting to climb the ladder
of higher-derivative operators towards closed-string scattering with the abelianized open-
string. Furthermore, it will be fascinating to see what type of interpretation one can give
to other double-copy constructions associated with these color-dual vector-pion theories
and to explore their potential phenomenology. Consider, for example, the double-copy
of each color-dual gauged-pion model with itself. By identifying color-dual gauged pion
theories, we have effectively constructed color dual theories describing a decoupling limit of
massive vectors — theories whose consistent double-copy should describe a decoupling limit
of massive gravity. Indeed, the resulting double-copy spectrum should describe Goldstone
modes of broken time-translation generators in a theory of N = 0 gravity + Born-Infeld
+ Galileons, arguably a theory of dark energy.
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