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Chernozhukov et al. (2016) provide a generic 
double/debiased machine learning (ML) 
approach for obtaining valid inferential state-
ments about focal parameters, using Neyman-
orthogonal scores and cross-fitting, in settings 
where nuisance parameters are estimated using 
ML methods. In this note, we illustrate the appli-
cation of this method in the context of estimat-
ing average treatment effects (ATE) and average 
treatment effects on the treated (ATTE) using 
observational data. Empirical illustrations and 
code are available as supplementary material to 
this paper, and more general discussion and ref-
erences to the existing literature are available in 
Chernozhukov et al. (2016).

Machine Learning in Econometrics ‡

Double/Debiased/Neyman Machine Learning 
of Treatment Effects†

By Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, 
Christian Hansen, and Whitney Newey*

‡Discussants: Panagiotis Toulis, University of Chicago; 
Matthew Harding, Duke University; Hai Wang, Singapore 
Management University.

* Chernozhukov: Massachusetts Institute of Technology, 
50 Memorial Drive, Cambridge, MA 02142 (e-mail: 
vchern@mit.edu); Chetverikov: University of California 
Los Angeles, 315 Portola Plaza, Los Angeles, CA 
90095 (e-mail: chetverikov@econ.ucla.edu); Demirer: 
Massachusetts Institute of Technology, 50 Memorial Drive, 
Cambridge, MA 02142 (e-mail: mdemirer@mit.edu); 
Duflo: Massachusetts Institute of Technology, 50 Memorial 
Drive, Cambridge, MA 02142 (e-mail: duflo@mit.edu); 
Hansen: University of Chicago, 5807 S. Woodlawn Avenue, 
Chicago, IL 60637 (e-mail: chansen1@chicagobooth.edu); 
Newey: Massachusetts Institute of Technology, 50 Memorial 
Drive, Cambridge, MA 02142 (e-mail: wnewey@mit.edu). 
This material is based upon work supported by the National 
Science Foundation under Grant No. 1558636.

† Go to https://doi.org/10.1257/aer.p20171038 to visit the 
article page for additional materials and author disclosure 
statement(s).

I.  Scores for Average Treatment Effects

We consider estimation of ATE and ATTE 
under the unconfoundedness assumption of 
Rosenbaum and Rubin (1983). We consider 
the case where treatment effects are fully het-
erogeneous and the treatment variable, ​D​, is 
binary, ​D ∈ {0, 1}​. We let ​Y​ denote the outcome 
variable of interest and ​Z​ denote a set of con-
trol variables. We then model random vector 
​(Y, D, Z)​ as

(1)  ​Y = ​g​0​​ (D, Z ) + ζ,	 E [ζ  | Z, D ] = 0,

(2)  D = ​m​0​​ (Z ) + ν,	 E [ ν  | Z ] = 0.​

Since ​D​ is not additively separable, this model 
allows for very general heterogeneity in treat-
ment effects. Common target parameters ​​θ​0​​​ in 
this model are the ATE,

	​​ θ​0​​ = E[ ​g​0​​ (1, Z ) − ​g​0​​ (0, Z )  ] ,​

and the ATTE,

	​​ θ​0​​ = E[ ​g​0​​ (1, Z ) − ​g​0​​ (0, Z ) | D  =  1 ] .​

The confounding factors ​Z​ affect the treat-
ment variable ​D​ via the propensity score, ​​
m​0​​ (Z ) : = E [ D | Z ] ,​ and the outcome variable via 
the function ​​g​0​​ (D, Z)​. Both of these functions 
are unknown and potentially complicated, and 
we consider estimating these functions via the 
use of ML methods.

We proceed to set up moment conditions with 
scores that obey a type of orthogonality with 
respect to nuisance functions. Specifically, we 
make use of scores ​ψ(W, θ, η)​ that satisfy the 
identification condition
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(3)	​ Eψ(W, ​θ​0​​ , ​η​0​​ ) = 0,​

and the Neyman orthogonality condition

(4)	​​​​ ∂​η​​ Eψ(W, ​θ​0​​ , η) |​​η=​η​0​​​​ = 0​,

where ​W = (Y, D, Z)​, ​​θ​0​​​ is the parameter of 
interest, ​η​ denotes nuisance functions with pop-
ulation value ​​η​0​​​ and ​​∂​η​​​ f ​​|​η=​η​0​​​​​ denotes the deriva-
tive of f with respect to η (the Gateaux derivative 
operator).

Using moment conditions that satisfy (4) to 
construct estimators and inference procedures 
that are robust to small mistakes in nuisance 
parameters has a long history in statistics, e.g., 
Neyman (1959). Using moment conditions that 
satisfy (4) is also crucial to developing valid 
inference procedures for ​​θ​0​​​ after using ML 
methods to produce estimators ​​η ̂ ​​ as discussed, 
e.g., in Chernozhukov, Hansen, and Spindler 
(2015). In practice, estimation of ​​θ​0​​​ will be 
based on the empirical analog of (3) with ​​η​0​​​ 
replaced by ​​​η ˆ ​​0​​​, and the Neyman orthogonality 
condition (4) ensures sufficient insensitivity to 
this replacement that high-quality inference for ​​
θ​0​​​ may be obtained. The second critical ingredi-
ent, that enables the use of a wide array of mod-
ern ML estimators is data splitting, as discussed 
in the next section.

Neyman-orthogonal scores are readily avail-
able for both the ATE and ATTE one can use the 
doubly robust/efficient scores of Robins and 
Rotnitzky (1995) and Hahn (1998) which are 
automatically Neyman orthogonal. For estimat-
ing the ATE, we employ

(5)  ​ψ(W, θ, η) := g(1, Z ) − g(0, Z)

	 ​+  ​ D(Y − g(1, Z ) )  _____________ 
m(Z) ​  

	 − ​ 
(1 − D)(Y − g(0, Z ))  __________________  

1 − m(Z) ​  − θ,​​

with

	​ η(Z ) := (g(0, Z ), g(1, Z ), m(Z)​) ′ ​,

	​ η​0​​ (Z ) := ( ​g​0​​ (0, Z ), ​g​0​​ (1, Z ), ​m​0​​ (Z)​) ′ ​,​

where ​η(Z)​ is the nuisance parameter with 
true value denoted by ​​η​0​​ (Z)​ consisting of 
​P​-square integrable functions, for ​P​ defined 

in Assumption 1, mapping the support of ​Z​ to ​
ℝ × ℝ × (ε, 1 − ε)​ where ​ε > 0​ is a constant. 
For estimation of ATTE, we use the score

(6)  ​​ψ(W, θ, η ) := ​ 
D(Y − g(0, Z ))  _____________ m ​

	 −   ​ m(Z )(1 − D)(Y − g(0, Z ))   ______________________  (1 − m(Z ))m ​  − θ ​ D __ m ​ ,​

with

	​ η(Z )  := (g(0, Z ), g(1, Z ) , m(Z ) , m​) ′ ​,

​η​0​​ (Z )  := ( ​g​0​​ (0, Z ), ​g​0​​ (1, Z ), ​m​0​​ (Z ), E [ D]​) ′ ​,​

where again ​η(Z)​ is the nuisance parameter 
with true value denoted by ​​η​0​​ (Z)​ consisting 
of three ​P​-square integrable functions, for ​P​ 
defined in Assumption 1, mapping the sup-
port of ​Z​ to ​ℝ × ℝ × (ε, 1 − ε)​ and a constant ​
m ∈ (ε, 1 − ε)​. The respective scores for ATE 
and ATTE obey the identification condition 
(3) and the Neyman orthogonality property 
(4). Note that all semi-parametrically efficient 
scores share the orthogonality property (4), but 
not all orthogonal scores are efficient. In some 
problems, we may use inefficient orthogonal 
scores to have more robustness. Moreover, the 
use of efficient scores could be considerably 
refined using the targeted maximum likelihood 
approach of Scharfstein et al. (1999) and van der 
Laan and Rubin (2006) in many contexts.

II.  Algorithm and Result

We describe the estimator of ​​θ​0​​​ using ran-
dom sample ​​(​W​i​​ )​ i=1​ 

N ​​ . The algorithm makes 
use of a form of sample splitting, which we 
call cross-fitting. It builds on the ideas in, 
e.g., Angrist and Krueger (1995). The use of 
sample-splitting is a crucial ingredient to the 
approach that helps avoid overfitting which can 
easily result from the application of complex, 
flexible methods such as boosted linear and tree 
models, random forests, and various ensemble 
and hybrid ML methods.

A. Algorithm: Estimation by ​K​-fold 
Cross-Fitting

Step 1: Let ​K​ be a fixed integer. Form a 
​K​-fold random partition of ​{1,  .  .  . , N }​ by 
dividing it into equal parts ​​( ​I​k​​ )​ k=1​ 

K ​​  each of size ​
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n := N / K​, assuming that ​N​ is a multiple of ​K​. 
For each set ​​I​k​​​, let ​​I​ k​ 

c​​ denote all observation indi-
ces that are not in ​​I​k​​​.

Step 2: Construct ​K​ estimators

	​​​ θ ˇ ​​0​​ ( ​I​k​​ , ​I​ k​ c​ ),  k = 1,  .  .  . , K,​

that employ the machine learning estimators

 ​​​ η ˆ ​​0​​ (​I​ k​ c​ ) = ​​
(

 ​​g ˆ ​​0​​ (0, Z; ​I​ k​ 
c​ ), ​​g ̂ ​​0​​ (1, Z; ​I​ k​ 

c​ ),

	​​ m ˆ ​​0​​ (Z; ​I​ k​ 
c​ ), ​  1 ____ 

N − n ​ ​ ∑ 
i∈​I​ k​ 

c​
​​​ ​D​i​​ )

​ 
′ ​ ,​

of the nuisance parameters

​​η​0​​ (Z ) = ( ​g​0​​ (0, Z ), ​g​0​​ (1, Z ), ​m​0​​ (Z ), E [ D]​) ′ ​,​

and where each estimator ​​​θ ˇ ​​0​​ (​I​k​​ , ​I​ k​ c​ )​ is defined as 
the root ​θ​ of

	​​  1 __ n ​ ​ ∑ 
i∈​I​k​​

​​​ ψ(W, θ, ​​η ˆ ​​0​​ ( ​I​ k​ c​ )) = 0,​

for the score ​ψ​ defined in (5) for the ATE and in 
(6) for the ATTE.

Step 3: Average the ​K​ estimators to obtain the 
final estimator:

(7)	​​​ θ ̃ ​​0​​  = ​  1 __ 
K

 ​ ​ ∑ 
k=1

​ 
K

  ​​ ​​θ ˇ ​​0​​ ( ​I​k​​ , ​I​ k​ c​ ).​

An approximate standard error for this estimator 
is ​​σ ˆ ​/ ​√ 

__
 N ​​, where

	​​​ σ ˆ ​​​ 2​  = ​  1 __ 
N

 ​ ​ ∑ 
i=1

​ 
N

 ​​ ​​ψ ˆ ​​ i​ 
2
​ ,​

​​​ψ ˆ ​​i​​ := ψ(​W​i​​, ​​θ ̃ ​​0​​, ​​η ˆ ​​0​​ (​I​ k(i)​ c ​ ))​, and ​k(i) := {k ∈ 
{1, … , K} : i ∈ ​I​k​​ }​. An approximate ​(1 − α)  
× 100 percent​ confidence interval is

	​​ CI​n​​ := [ ​​θ ̃ ​​0​​ ± ​Φ​​ −1​ (1 − α / 2)​σ ˆ ​/ ​√ 
__

 N ​ ] .​

We now state a formal result that provides 
the asymptotic properties of ​​​θ ̃ ​​0​​​. Let ​​( ​δ​n​​ )​ n=1​ 

∞ ​​  and 
​​(​Δ​n​​)​ n=1​ 

∞ ​​  be sequences of positive constants 
approaching 0. Let ​c, ε, C​, and ​q > 4​ be 
fixed positive constants, and let ​K​ be a fixed  
integer.

Assumption 1: Let  be the set of prob-
ability distributions ​P​ for ​(Y, D, Z)​ such that 
(i) equations (1)–(2) hold, with ​D ∈ {0, 1}​; 
(ii) the following conditions on moments hold 
for all ​N​ and ​d ∈ {0, 1}​: ​|| g(d, Z) ​||​P, q​​ ≤ C​, 
​|| Y ​||​P, q​​ ≤ C​, ​P(ε ≤ ​m​0​​ (Z ) ≤ 1 − ε) = 1​,  
P(​​E​P​​​ [​​ζ​​ 2​​ | Z ] ≤ C) = 1, ||ζ​​||​P,2​​​ ≥c and ||ν​​||​P,2​​​  
≥ c; and (iii) the ML estimators of the nui-
sance parameters based upon a random subset ​​
I​ k​ 

c​​ of ​{1,  .  .  . , N}​ of size ​N − n​, obey the follow-
ing conditions for all ​N ≥ 2K​ and ​d ∈ {0, 1}​:  
​|| ​​g ˆ ​​0​​ (d, Z; ​I​ k​ 

c​ ) − ​g​0​​ (d, Z) ​||​P, 2​​ ⋅ || ​​m ̂ ​​0​​ (Z; ​I​ k​ 
c​ )  − 

​m​0​​(Z)​||​P, 2​​ ≤ ​δ​n​​ ​n​​ −1/2​​, ​|| ​​g ˆ ​​0​​(d, Z; ​I​ k​ 
c​) − ​g​0​​(d, Z) ​||​P, 2​​  

+ || ​​m ˆ ​​0​​ (Z; ​I​ k​ 
c​ ) − ​m​0​​ (Z) ​||​P, 2​​ ≤ ​δ​n​​​, and ​P(ε ≤ 

​​m ˆ ​​0​​ (Z; ​I​ k​ 
c​ ) ≤ 1 − ε ) = 1​, with ​​P​P​​​-probability no 

less than ​1 − ​Δ​n​​​.

The assumption on the rate of estimating the 
nuisance parameters is a non-primitive con-
dition. These rates of convergence are avail-
able for most often used ML methods and are 
case-specific, so we do not restate conditions 
that are needed to reach these rates. The condi-
tions are not the tightest possible but are chosen 
for simplicity.

Theorem 1: Suppose that the ATE, 
​​θ​0​​ = ​E​P​​ [ ​g​0​​ (1, Z ) − ​g​0​​ (0, Z ) ]​, is the target 
parameter and we use the estimator ​​​θ ̃ ​​0​​​ and 
other notations defined above. Alternatively, 
suppose that the ATTE, ​​θ​0​​  = ​ E​P​​ [ ​g​0​​ (1, Z )  − ​
g​0​​ (0, Z ) | D  =  1]​, is the target parameter and 
we use the estimator ​​​θ ̃ ​​0​​​ and other notations 
above. Consider the set  of probability distri-
butions ​P​ defined in Assumption 1. Then, uni-
formly in ​P ∈ ​, the estimator ​​​θ ̃ ​​0​​​ concentrates 
around ​​θ​0​​​ with the rate ​1 / ​√ 

__
 N ​​ and is approxi-

mately unbiased and normally distributed:

	​​ σ​​ −1​ ​√ 
__

 N ​ (​​θ ̃ ​​0​​ − ​θ​0​​ )  ⇝ N(0, 1),

	​ σ​​ 2​ = ​E​P​​ [ ​ψ​​ 2​ (W, ​θ​0​​ , ​η​0​​ (Z )) ] ,​

and the result continues to hold if ​​σ​​ 2​​ is replaced 
by ​​​σ ˆ ​​​ 2​​. Moreover, confidence regions based 
upon ​​​θ ̃ ​​0​​​ have uniform asymptotic validity:

	​​ sup​ 
P∈

​ ​​​​|P(​θ​0​​ ∈ ​CI​n​​) − (1 − α)|​​ → 0.

The scores ​ψ​ are the efficient scores, so both 
estimators are asymptotically efficient, in the 
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sense of reaching the semi-parametric efficiency 
bound of Hahn (1998).

The proof, given in the online Appendix, 
relies on the application of Chebyshev inequal-
ity and the central limit theorem.

III.  Accounting for Uncertainty Due to 
Sample-Splitting

The method outlined in this note relies on 
subsampling to form auxiliary samples for 
estimating nuisance functions and main sam-
ples for estimating the parameter of interest. 
The specific sample partition has no impact 
on estimation results asymptotically but may 
be important in finite samples. Specifically, 
the dependence of the estimator on the partic-
ular split creates an additional source of varia-
tion. Incorporating a measure of this additional 
source of variation into estimated standard errors 
of parameters of interest may be important for 
quantifying the true uncertainty of the parameter  
estimates.

Hence we suggest making a slight modifica-
tion to the asymptotically valid estimation pro-
cedure detailed in Section II. Specifically, we 
propose repeating the main estimation proce-
dure ​S​ times, for a large number ​S​, repartitioning 
the data in each replication ​s = 1,  .  .  . , S​. Within 
each partition, we then obtain an estimate of 
the parameter of interest, ​​​θ ̃ ​​ 0​ s ​​. Rather than report 
point estimates and interval estimates based on a 
single replication, we may then report estimates 
that incorporate information from the distribu-
tion of the individual estimates obtained from 
the ​S​ different data partitions.

For point estimation, two natural quantities 
that could be reported are the sample average 
and the sample median of the estimates obtained 
across the ​S​ replications, ​​​θ ̃ ​​ 0​ Mean​​ and ​​​θ ̃ ​​ 0​ Median​​. 
Both of these reduce the sensitivity of the esti-
mate for ​​θ​0​​​ to particular splits. ​​​θ ̃ ​​ 0​ Mean​​ could be 
strongly affected by any extreme point esti-
mates obtained in the different random par-
titions of the data, and ​​​θ ̃ ​​ 0​ Median​​ is obviously 
much more robust. We note that asymptoti-
cally the specific random partition is irrelevant, 
and ​​​θ ̃ ​​ 0​ Mean​​ and ​​​θ ̃ ​​ 0​ Median​​ should be close to each  
other.

To quantify and incorporate the variation 
introduced by sample splitting, one might also 
compute standard errors that add an element 

to capture the spread of the estimates obtained 
across the ​S​ different sets of partitions. For ​​​θ ̃ ​​ 0​ Mean​​,  
we propose adding an element that captures 
the spread of the estimated ​​​θ ̃ ​​ 0​ s ​​ around ​​​θ ̃ ​​ 0​ Mean​​. 
Specifically, we suggest

	​​​ σ ̂ ​​​ Mean​  = ​ √ 

___________________

   ​ 1 __ 
S
 ​ ​ ∑ 
s=1

​ 
S

  ​​​(​​σ ̂ ​​ s​ 2​ + ​( ​​θ ̃ ​​ 0​ 
s
 ​ − ​ 1 __ 

S
 ​ ​ ∑ 
j=1

​ 
S

  ​​ ​​θ ̃ ​ ​ 0​ 
j
 ​)​​ 

2

​)​ ​ ,​

where ​​​σ ̂ ​​s​​​ is defined as in Section II. The second 
term in this formula takes into account the vari-
ation due to sample splitting which is added to 
a usual estimate of sampling uncertainty. Using 
this estimated standard error obviously results 
in more conservative inference than relying on 
the ​​​σ ̂ ​​s​​​ alone. We adopt a similar formulation 
for ​​​θ ̃ ​​ 0​ Median​​. Specifically, we propose a median 
deviation defined as

​​​σ ̂ ​​​ Median​ = ​median​ 
​
​ ​ ​​ {​√ 

______________

  ​​σ ̂ ​​ i​ 2​ + ​(​​θ ˆ ​​i​​ − ​​θ ˆ ​​​ Median​)​​ 
2
​ ​}​​ i=1​ 

S
 ​ .​

This standard error is more robust to outliers 
than ​​​σ ̂ ​​​ Mean​​.
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