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The pressure-driven miscible displacement of a less viscous fluid by a more viscous
one in a horizontal channel is studied. This is a classically stable system if the more
viscous solution is the displacing one. However, we show by numerical simulations
based on the finite-volume approach that, in this system, double diffusive effects can
be destabilizing. Such effects can appear if the fluid consists of a solvent containing
two solutes both influencing the viscosity of the solution and diffusing at different
rates. The continuity and Navier–Stokes equations coupled to two convection–diffusion
equations for the evolution of the solute concentrations are solved. The viscosity
is assumed to depend on the concentrations of both solutes, while density contrast
is neglected. The results demonstrate the development of various instability patterns
of the miscible ‘interface’ separating the fluids provided the two solutes diffuse at
different rates. The intensity of the instability increases when increasing the diffusivity
ratio between the faster-diffusing and the slower-diffusing solutes. This brings about
fluid mixing and accelerates the displacement of the fluid originally filling the channel.
The effects of varying dimensionless parameters, such as the Reynolds number and
Schmidt number, on the development of the ‘interfacial’ instability pattern are also
studied. The double diffusive instability appears after the moment when the invading
fluid penetrates inside the channel. This is attributed to the presence of inertia in the
problem.

Key words: convection, double diffusive convection, fingering instability, interfacial flows

(free surface), multiphase and particle-laden flows, multiphase flow

1. Introduction

The dynamics of interface patterns and mixing between two miscible fluids is an
active research area (Rashidnia, Balasubramaniam & Schroer 2004; Balasubramaniam
et al. 2005) and is of importance in many industrial processes, e.g. in enhanced oil
recovery, fixed bed regeneration, hydrology and filtration. There exist other industrial
applications in which the displacement of one fluid by another miscible/immiscible
fluid (Joseph et al. 1997) occurs, e.g. in the oil and gas industry, the transportation
of crude oil in pipelines relies on the stability of two-layer flows when the highly
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viscous fluid is at the wall. In the food processing industries cleaning involves the
removal of a highly viscous fluid by water. The stability of this type of two-phase flow
in a channel or pipe has been widely investigated both theoretically (Ranganathan &
Govindarajan 2001; Selvam et al. 2007; Sahu et al. 2009a; Sahu & Matar 2010, 2011)
and experimentally (Hickox 1971; Hu & Joseph 1989; Joseph & Renardy 1992; Joseph
et al. 1997).

Linear stability analyses of displacement flows in porous media (Saffman & Taylor
1958; Chouke, Van Meurs & Van Der Pol 1959; Tan & Homsy 1986) explain that,
if the displacing fluid is less viscous than the displaced one, the interface separating
them becomes unstable and a fingering pattern develops at the interface. A review
on such dynamics in porous media and Hele-Shaw cells is given by Homsy (1987).
In a pipe flow, when a less viscous miscible fluid displaces a more viscous one, a
two-layer core–annular flow is obtained in most of the channel/pipe as the elongated
‘finger’ of the less viscous fluid penetrates into the bulk of the more viscous one.
The interface between the two fluids becomes unstable, forming Kelvin–Helmholtz
(KH) instabilities and ‘roll-up’ structures (Joseph et al. 1997; Sahu et al. 2009a,b).
Experimental studies in miscible core–annular flows (Taylor 1961; Cox 1962; Chen
& Meiburg 1996; Petitjeans & Maxworthy 1996; Kuang, Maxworthy & Petitjeans
2003) have focused on analysing the thickness of the more viscous fluid layer left
on the pipe walls and the speed of the propagating ‘finger’ tip. The development
of different instability patterns, like axisymmetric ‘corkscrew’ patterns, in miscible
flows has also been investigated (Lajeunesse et al. 1997, 1999; Scoffoni, Lajeunesse
& Homsy 2001; Cao et al. 2003; Gabard & Hulin 2003). Axisymmetric ‘pearl’ and
‘mushroom’ patterns were observed in neutrally buoyant core–annular horizontal pipe
flows at high Schmidt number and Reynolds number in the range 2 < Re < 60 (d’Olce
et al. 2008). By an asymptotic analysis, Yang & Yortsos (1997) studied miscible
displacement flows (in Stokes flow regime) between parallel plates and in cylindrical
capillaries with large aspect ratio. They found viscous fingering instability for large
viscosity ratio and that the displacement efficiency decreases with increasing viscosity
ratio.

Goyal, Pichler & Meiburg (2007) performed a linear stability analysis of a miscible
displacement flow in a vertical Hele-Shaw cell with a less viscous fluid displacing a
more viscous one. They found that the flow develops as a result of linear instability.
Their nonlinear simulations of the Stokes equations predict that increasing the unstable
density stratification and decreasing diffusion increase the front velocity. The flow
fields obtained by these simulations are qualitatively similar to those observed in the
experiment of Petitjeans & Maxworthy (1996) in capillary tubes and in the theoretical
predictions of Lajeunesse et al. (1999) for Hele-Shaw cells. The study of Petitjeans
& Maxworthy (1996) discussed the formation and propagation of a single finger for a
miscible fluid in a capillary tube. Such dynamics was also found by Taylor (1961) for
immiscible fluids.

Thus from the literature discussed above, it has been understood that a
hydrodynamic instability of fingering or a KH pattern occur only if the viscosity
or density increases along the direction of propagation, i.e. when a less viscous/dense
fluid displaces a more viscous/dense fluid. The situation of a more viscous fluid
displacing a less viscous one is being classically understood as a stable situation.
This stable displacement flow in a vertical cylindrical tube of small diameter was
experimentally investigated by Rashidnia et al. (2004) and Balasubramaniam et al.

(2005). For downward displacement (with gravity), the ‘interface’ separating the fluids
becomes unstable and exhibits an asymmetric sinuous shape. On the other hand, in
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the case of upward displacement (against gravity), a stable diffusive finger of the

more viscous fluid penetrating the less viscous one is observed for small displacement

speed. At a larger displacement speed, an axisymmetric finger with a needle-shaped

spike propagates out from the main finger tip. To the best of our knowledge, these

are the only experiments that have discussed the displacement flow in a classically

stable system. A similar situation in a porous medium or Hele-Shaw cell has been

investigated theoretically (Pritchard 2009; Mishra et al. 2010). They found that

double diffusive (DD) effects can destabilize the classically stable situation of a more

viscous fluid displacing a less viscous one and affect the viscous fingering dynamics.

Therefore, it is interesting to understand whether such a concept of destabilization of

an otherwise stable situation by differential diffusion effects can also occur in pressure-

driven channel flows if the solvent at hand contains two different solutes influencing

the viscosity and diffusing at different rates. Recently, Sahu & Govindarajan (2011)

found an unstable DD mode in a classically stable system of three-layer pressure-

driven channel flow (with highly and less viscous fluids occupying the core and

near-wall regions of the channel, respectively) by conducting a linear stability

analysis. The convective and absolute nature of this instability is studied by Sahu

& Govindarajan (2012). They assumed that the flow is symmetrical about the channel

centreline.

In this context, the main objective of this present study is to understand the

influence on the dynamics of differential diffusion between two solutes influencing

viscosity when a highly viscous solution of these solutes displaces a less viscous

one in a channel without the gravitational force (classically stable system). The

two solutions are miscible and their viscosity is a function of the concentration of

the two solutes, which diffuse at different rates. The flow dynamics is governed

by the continuity and Navier–Stokes equations coupled to two convection–diffusion

equations for the concentration of both solutes through a concentration-dependent

viscosity. We conduct numerical simulations and analyse destabilization of the flow

by differential diffusion effects occurring if the two solutes controlling the viscosity

diffuse at different rates. The effects of varying the dimensionless parameters, such

as Reynolds number, Schmidt number and ratio of the diffusivity of the species,

on the development of interfacial instability patterns are studied. The fundamental

challenge in the modelling of the flow configuration addressed here is to consider the

Navier–Stokes equation for fluid flow in a channel geometry instead of considering

Stokes equations in a capillary tube or Darcy’s law in Hele-Shaw geometry.

The rest of this paper is organized as follows. The problem is formulated in § 2, the

method of solution using a finite-volume approach is explained in § 3 and the results

of the numerical simulations are presented in § 4. Concluding remarks are provided

in § 5.

2. Mathematical formulation

Consider a two-dimensional channel initially filled with a stationary Newtonian

incompressible fluid containing scalars S and F in quantity S2 and F2 and of viscosity

µ2. This solution is displaced by the same solvent in which the scalars are present

with different values S1 and F1 giving a viscosity µ1 (see figure 1). The inlet fluid

is injected with an average velocity V (≡ Q/H), where Q and H denote the total

flow rate and the height of the channel, respectively. We use a rectangular coordinate

system (x, y) to model the flow dynamics, where x and y denote the horizontal and
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FIGURE 1. Schematic diagram showing the initial flow configuration: fluid ‘2’ occupies the
entire channel and is about to be displaced by fluid ‘1’.

vertical coordinates, respectively. The channel inlet and outlet are located at x = 0

and L, respectively. The rigid and impermeable walls of the channel are located at

y = 0 and H.

In order to determine the flow dynamics, we consider the incompressible

Navier–Stokes equations along with the convection–diffusion equations for the

conservation of both solutes. The governing equations are given by

∇ ·u = 0, (2.1)

ρ

[

∂u

∂t
+ u ·∇u

]

= −∇p + ∇ · [µ(∇u + ∇u
T)], (2.2)

∂S

∂t
+ u ·∇S = Ds∇

2S, (2.3)

∂F

∂t
+ u ·∇F = Df ∇

2F, (2.4)

where u ≡ (u, v) is the velocity vector with components u and v in the x and y

directions, respectively, p denotes pressure, and S and F are two scalars with diffusion

coefficients Ds and Df , respectively, such that Df > Ds. The density ρ is taken to

be constant. In order to keep the model as simple as possible, the effects of cross-

diffusion and of possible dependence of diffusion on concentration are neglected

here.

We assume that the viscosity µ has the following dependence on S and F (Mishra

et al. 2010; Sahu & Govindarajan 2011):

µ = µ1 exp

[

Rs

(

S − S1

S2 − S1

)

+ Rf

(

F − F1

F2 − F1

)]

, (2.5)

where Rs ≡ (S2 − S1) d(ln µ)/dS and Rf ≡ (F2 − F1) d(ln µ)/dF are the log-mobility

ratios of solutes S and F, respectively. While there is no experimental evidence in

support of (2.5) in a ternary system, it has been widely used to study viscosity-related

instabilities (e.g. Chen & Meiburg 1996; Tan & Homsy 1986; Mishra et al. 2010),

and will be used here for mathematical convenience, and to allow for comparison

with previous theoretical work using the same assumption. Since diffusivity and

viscosity in a liquid are related approximately inversely through the Stokes–Einstein

equation (Probstein 1994), one cannot conduct an experiment in which viscosity

varies significantly and diffusivity does not. However, in order to avoid discouraging

complexity of the problem right away and in order to build upon previous works, we

start here by assuming the diffusion coefficients to be constant.
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The following scaling is employed to non-dimensionalize equations (2.1)–(2.5)

(x, y) = H(x̃, ỹ), t =
H2

Q
t̃, (u, v) =

Q

H
(ũ, ṽ), p =

ρQ2

H2
p̃,

µ = µ̃µ1, s̃ =
S − S1

S2 − S1

, f̃ =
F − F1

F2 − F1

, (2.6)

where the tildes designate dimensionless quantities. After dropping tildes, the

dimensionless governing equations become

∇ ·u = 0, (2.7)
[

∂u

∂t
+ u ·∇u

]

= −∇p +
1

Re
∇ · [µ(∇u + ∇u

T)], (2.8)

∂s

∂t
+ u ·∇s =

1

Re Scs

∇2s, (2.9)

∂f

∂t
+ u ·∇f =

1

Re Scf

∇2f , (2.10)

where Re ≡ ρQ/µ1, Scs ≡ µ1/ρDs and Scf ≡ µ1/ρDf denote the Reynolds number

and the Schmidt numbers of the slower- and faster-diffusing solutes, respectively, and

δ ≡ Df /Ds > 1 is the ratio of the diffusion coefficients of the faster- and slower-

diffusing solutes. Thus Scf = Scs/δ. The dimensionless viscosity has the following

dependence on f and s:

µ = exp(Rss + Rf f ). (2.11)

The initial conditions for s and f in the dimensionless form are s = f = 0 everywhere

inside the channel and s = f = 1 at the inlet. The numerical procedure and boundary

conditions used to solve equations (2.7)–(2.10) are described in § 3. Note that, for

the boundary conditions used here, when one of the log mobility ratios (either Rf

or Rs) is set to zero or δ = 1, the above equations (2.7)–(2.11) reduce to a single

solute model, the flow dynamics of which has been discussed using a Navier–Stokes

solver by Sahu et al. (2009a). To have an idea of the order of magnitude of the log

mobility ratios for real systems, we note that, if, for instance, the invading fluid is

methanol (kinematic viscosity ν = 0.6704 cSt) and the displaced fluid is a mixture of

ethylene glycol, acetone and methanol (ν = 0.5472 cSt) (Kalidas & Laddha 1964), we

get Rs = 3 and Rf = −3.24. The values of the parameters will thus be chosen in this

order of magnitude.

3. Numerical solution

3.1. Methods

We use a finite-volume approach similar to the one developed by Ding, Spelt

& Shu (2007) in order to solve the system of equations (2.7)–(2.10). These

equations are discretized using a staggered grid. The scalar variables (the pressure

and concentrations of the solutes) are defined at the centre of each cell and the

velocity components are defined at the cell faces. The discretized convection–diffusion
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equations for the conservation of both solutes are given by

3

2
sn+1 − 2sn + 1

2
sn−1

1t
=

1

Re Scs

∇2sn+1 − 2∇ · (unsn) + ∇ · (un−1sn−1), (3.1)

3

2
f n+1 − 2f n + 1

2
f n−1

1t
=

1

Re Scf

∇2f n+1 − 2∇ · (unf n) + ∇ · (un−1f n−1), (3.2)

where 1t = tn+1 − tn and the superscript n signifies the discretized nth step. In order to
discretize the advective terms, i.e the nonlinear terms in (2.9) and (2.10), a weighted
essentially non-oscillatory (WENO) scheme is used. A central difference scheme is
used to discretize the diffusive term on the right-hand sides of (2.9) and (2.10).

In order to achieve second-order accuracy in the temporal discretization, the
Adams–Bashforth and Crank–Nicolson methods are used for the advective and second-
order dissipation terms, respectively, in (2.8). This results in the following discretized
equation:

u
∗ − u

n

1t
=

1

pn+1/2

{

−

[

3

2
H (un) −

1

2
H (un−1)

]

+
1

2Re
[L (u∗, µn+1) + L (un, µn)]

}

,

(3.3)

where u
∗ is the intermediate velocity, and H and L denote the discrete convection

and diffusion operators, respectively. The intermediate velocity u
∗ is then corrected to

the (n + 1)th time level,

u
n+1 − u

∗

1t
= ∇pn+1/2. (3.4)

The pressure distribution is obtained from the continuity equation at time step n + 1
using

∇ · (∇pn+1/2) =
∇ ·u

∗

1t
. (3.5)

Solutions of the above discretized equations are subject to no-slip, no-penetration and
no-flux conditions at the top and bottom walls. A fully developed velocity profile with
a constant flow rate taken to be unity is imposed at the inlet (x = 0), and Neumann
boundary conditions are used at the outlet (x = L).

The following steps are employed in our numerical solver in order to solve
equations (2.7)–(2.10).

(i) The concentration fields of the solutes are first updated by solving (2.9) and (2.10)
with the velocity field at time steps n and n − 1.

(ii) These are then updated to time step n + 1 by solving (2.8) together with the
continuity equation (2.7).

The numerical procedure described above was developed by Ding et al. (2007)
in the context of interfacial flows. Sahu et al. (2009a,b) modified this finite-volume
method to simulate pressure-driven neutrally buoyant miscible channel flow with high
viscosity contrast.

3.2. Validations

An important aspect of numerical methods is to choose the optimum grid size for
the numerical simulations to obtain the results in considerably less computational
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FIGURE 2. Temporal evolution of the position xtip of the leading front separating the two
solutions for (a) s and (b) f obtained using 81 × 2501 grid points for Re = 500, Scs = 20,
Rs = 3, Rf = −3.6 and δ = 5.

time. It is essential to perform the numerical simulations with different grid points
in order to carry out mesh refinement tests and to show convergence of the method.
The temporal variations of the spatial location of the leading front separating the two
fluids, (xtip), of both solutes s and f are plotted in figure 2(a,b), respectively. The
parameter values chosen are Re = 500, Scs = 20, Rs = 3, Rf = −3.6 and δ = 5 in
order to incorporate DD phenomena in the simulation. The results are obtained using
81 × 2501 grid points in a channel of aspect ratio 1 : 100. Numerical simulations
using 61 × 2001 and 51 × 1601 grids are also conducted in the same computational
domain. We found (not shown) that the results are graphically indistinguishable, with a
maximum absolute error less than 0.05 %. On the basis of the spatial variation of xtip,
one could measure the speed of the finger tip and study the interfacial dynamics (Sahu
et al. 2009a,b). It can be seen that the velocity of the leading front between the two
solutions is constant, as (xtip)s

and (xtip)f
both vary linearly with time. The rest of the

computations in this paper are performed using 61 × 2001 grid points, in a channel of
aspect ratio 1 : 100.

As discussed before, setting Rf = 0 (without DD effects), the present governing
equations match those given in Sahu et al. (2010). Thus, to further validate our
code, we reproduced a result of Sahu et al. (2010) by studying the spatio-temporal
evolution of the concentration of the solute s in figure 3. The parameter values are
Re = 500, Scs = 100, Rs = 2.3026 and Rf = 0. Note that Rs = 2.3026 corresponds to
the unstable case of a less viscous fluid injected into a more viscous one with a
viscosity ratio 10 as considered by Sahu et al. (2010). It can be seen in figure 3 that
the ‘interface’ becomes unstable, which in turn forms vortical structures and gives rise
to intense mixing of the two solutions. During this initial period the flow dynamics is
dominated by the formation of KH-type instabilities. At later time (t > 25, for this set
of parameters) the remnants of s assume the form of thin layers adjacent to the upper
and lower walls. The flow at this stage is dominated by diffusion.

4. Results and discussion

Let us now analyse the role of differential diffusion on the dynamics and, in
particular, investigate how such DD effects can destabilize an otherwise stable
situation.
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0 0.25 0.50 0.75 1.00

FIGURE 3. (Colour online) Spatio-temporal evolution of the concentration field of solute s
at successive times (from top to bottom, t = 5, 15, 20, 25 and 40). The rest of the parameter
values are Re = 500, Scs = 100, Rs = 2.3026 and Rf = 0. These results are in excellent
agreement with figure 3 of Sahu, Ding & Matar (2010). The greyscale/colour map of all the
plots is shown at the bottom.

4.1. Effects of δ

The spatio-temporal evolution of the concentration field of solute s for the parameter
values Re = 100, Scs = 100, Rs = 3 and Rf = −3.6 are plotted in figure 4 for different
values of δ. In the starting configuration at t = 0, the chosen log mobility ratios
correspond to a monotonically decreasing viscosity profile at the miscible interface
of both fluids, which represents a classically stable interface. For δ = 1 (when
Df = Ds), it can be seen that the highly viscous fluid initially displaces the less
viscous one like a miscible plug flow and then a fully developed Poiseuille flow
regime arises with a pure diffusive miscible interface. Such a stable pattern is termed
here as a ‘pure–Poiseuille–diffusive’ finger (see figure 4a). For δ > 1 the miscible
interface becomes unstable due to the DD mechanism. Figure 4(b) for δ = 5 shows the
development of a spike at the tip of the finger and the fact that the miscible interface
deviates from the ‘pure–Poiseuille–diffusive’ finger. For a larger δ (see figure 4c for
δ = 10), the flow becomes unstable, forming symmetrical wavy interfaces because of a
KH-type instability. At later stages the flow dynamics is like a three-layer core–annular
flow (Chen & Meiburg 1996; Petitjeans & Maxworthy 1996; Kuang et al. 2003).
These instabilities occur at the interface primarily because a viscosity contrast arises
due to the DD effects. At the tip of the single finger a ‘cap-type’ instability is
observed for the large value of δ = 10 (see figure 4c) unlike the spike-like instability
for the moderate value of δ = 5 (figure 4b). This ‘cap-type’ instability leads to a
mushroom structure at very late times.

In order to investigate the mechanism of the instability for δ > 1, the viscosity
fields for the parameter values of figure 4 are plotted in figure 5. It is seen that,
at the wall, a highly viscous stenosis region is formed due to the DD effects when
δ > 1. Such a region does not occur if δ = 1. This viscous stenosis region increases
with increasing δ. A highly viscous region behind the wall was also observed in the
miscible displacement experiment of Taylor (1961). In figure 5(a), which corresponds
to δ = 1, a viscosity profile decreasing monotonically along the axial direction is
obtained at any fixed transverse axis. But for δ > 1 the viscosity profile becomes
non-monotonic in the axial direction and features locally a less viscous fluid layer
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FIGURE 4. (Colour online) Spatio-temporal evolution of the concentration field of solute
s at successive times (from top to bottom, t = 20, 30, 40, 50 and t = 75) for (a) δ = 1,
(b) δ = 5 and (c) δ = 10. The rest of the parameter values are Re = 100, Scs = 100, Rs = 3 and
Rf = −3.6.

between two more viscous layers (see figure 5 for δ = 5). This is similar to the
situation in DD viscous fingering in porous media (Mishra et al. 2010). For δ = 10,
rolling structures similar to those in the contours of s (in figure 4) are also observed in
the viscosity contours shown in figure 5(c).

We further analyse the spatial distribution of viscosity by plotting in figure 6
the evolution in time of the axial variation of the transverse averaged viscosity,

µ =
∫ 1

0
µ dy. It can be seen in figure 6(a) that µ varies monotonically in the axial

direction for δ = 1. The variation of µ is however non-monotonic for δ = 5 and 10.
Hence, a local maximum develops such that, locally, the less viscous zone close to
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FIGURE 5. (Colour online) The viscosity field at t = 40 for (a) δ = 1, (b) δ = 5 and
(c) δ = 10 and the simulations of figure 4.
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FIGURE 6. Variation of transverse average viscosity µ =
∫ 1

0
µ dy in the streamwise direction

for (a) δ = 1, (b) δ = 5 and (c) δ = 10 and parameters of figure 4.

the injection side displaces a more viscous region. This is the main cause of the
instabilities that can occur in pressure-driven displacement flows of a less viscous fluid
by a more viscous one in a channel, as studied here. This non-monotonic character
of the viscosity profile due to DD effects was also found in viscous fingering of the
classically stable displacement of a less viscous fluid by a more viscous one in porous
media (Mishra et al. 2010). At early times, the instability starts here at the axial
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FIGURE 7. Variation of axially averaged viscosity µx =
∫ L/H

0
µ dx in the streamwise direction

for (a) δ = 1, (b) δ = 5 and (c) δ = 10 and parameters of figure 4.

station (after the viscous stenosis region) where there is a change in the slope of the
viscosity curve. The spike/cap instability occurs at the tip of the single finger where µ

decreases to a value smaller than the initial viscosity at that location (figure 6b,c). For
δ = 10, the KH instability occurs approximately in the region (35 < x < 60) at t = 40
where there is a large zig-zag oscillation in µ. The length of this region increases with
time (see figure 6c).

In figure 7, we plot the evolution of the transverse variation of the axially averaged

viscosity, µx =
∫ L/H

0
µ dx. For δ = 1 it can be seen in figure 7(a) that µx is maximum

at the centreline of the channel. Thus it is similar to a core–annular flow where the
less and more viscous fluids occupy the annular and core regions, respectively. This
is known to be a stable situation in core–annular types of flow (Sahu & Govindarajan
2011). Unlike for δ = 1, when δ = 5 and 10, the viscosity is maximum near the
wall regions, which, in the context of core–annular flow, is an unstable situation, as
discussed in Selvam et al. (2007) and Sahu & Govindarajan (2011). Close inspection
also reveals that increasing δ increases the viscosity near the wall regions, and thus has
a destabilizing effect.

During the displacement process, as the highly viscous fluid displaces the less
viscous one, the total viscosity inside the channel is expected to increase linearly. This
behaviour can be seen for δ = 1 in figure 8, where the normalized total averaged

viscosity, µav ≡ (1/µ0)
∫ L

0
µ dx, is plotted versus time. Here, µ0 is the total viscosity at

t = 0, when only the displaced solution (solution ‘2’) is present inside the channel.
The dotted line in figure 8 represents the analytical solution for the plug-flow
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FIGURE 8. Variation of normalized average viscosity µav = (1/µ0)
∫ L

0
µ dx with time for

different values of δ and parameters of figure 4. The dotted line represents the analytical

solution for the plug-flow displacement, given by µav = 1 + (t/L)[e−(Rs+Rf ) − 1].
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FIGURE 9. Measure of the normalized mass of the displaced fluid: (a) Ms = Ms0.98
/Ms1 of

solute ‘s’ and (b) Mf = Mf0.98
/Mf 1 of solute ‘f ’, for different values of δ. The dotted lines

represent the analytical solution of plug-flow displacement, given by Ms = Mf = 1 − tH/L.

displacement, given by µav = 1 + t[e−(Rs+Rf ) − 1]/L. It can be seen that, for this
set of parameter values, the line corresponding to δ = 1 is close to this analytical
solution. For δ > 1, µav increases at a higher rate than for δ = 1. This rate increases
with increasing δ. The rate of increase of viscosity remains the same nearly until the
time t = 5 for all the δ values considered, which implies that the onset of DD effects
in the case of channel flows occurs very early (approximately at t = 5 for this set
of parameter values). In porous media the DD effects start from the very beginning
(Mishra et al. 2010). This delay here of the onset of the DD effects is attributed to the
presence of inertia in the present problem.

In figure 9(a,b), we plot the temporal evolution of the normalized mass of the
displaced solute s (Ms = Ms0.98

/Ms1
) and f (Mf = Mf0.98

/Mf1
), respectively. Here, Ms1

and Mf1
are the initial masses of the solutes s and f , respectively, and Ms0.98

and
Mf0.98

are the masses corresponding concentration labels >0.98 of the solutes s and
f , respectively. The parameter values are the same as those used to generate figure 4.
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FIGURE 10. (Colour online) Spatio-temporal evolution of the concentration field of solute s
at successive times (from top to bottom, t = 20, 40 and 50) for (a) Re = 100, (b) Re = 200
and (c) Re = 500. The rest of the parameter values are δ = 10, Scs = 20, Rs = 3 and
Rf = −3.6.

Inspection of figure 9 reveals that Ms and Mf undergo an almost linear decrease at the
early stages of the flow due to the displacement by solution ‘1’. The slope of the curve
during this linear stage is considerably steeper than that of the line represented by
1 − tH/L. This corresponds to the plug-flow displacement of solution ‘2’ by solution
‘1’ when the sharp interface separating the two solutions has not yet reached the
channel exit. At this early stage, the flow dynamics is dominated by the formation of
vortical structures for the larger δ values. As shown in figure 4, the intensity of the
instabilities increases with increasing δ. These manifest themselves via the formation
of vortical structures, which give rise to intense mixing of the two fluids and a rapid
displacement of the solutes present inside the channel. It can be seen in figure 9 that
the displacement rate increases with increasing δ. At approximately t = 70 for this
set of parameters when the ‘front’ of the displacing fluid ‘1’ reaches the end of the
simulation domain, a transition to another linear regime occurs. The slope of the Ms

and Mf versus time plot is much smaller than the previous one. In this regime the
flow dynamics is dominated by diffusion. Close inspection of figure 9 also reveals that
up to t = 5 the slopes of Ms and Mf versus time are the same for all values of δ,
confirming the delay in the onset of DD effects in pressure-driven displacement flows
as described in figure 8.

4.2. Effects of Re and Scs

We have also carried out a parametric study to investigate the effect of varying the
Reynolds number on the displacement characteristics for δ = 10, Scs = 20, Rs = 3
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FIGURE 11. Variation of transverse average viscosity, µ, in the streamwise direction for
(a) Re = 100, (b) Re = 200 and (c) Re = 500 and parameter values of figure 10.

and Rf = −3.6. In figure 10, it is seen that increasing the value of Re from 100
to 200 and then to 500, respectively, leads to the rapid development of instabilities
that lead to complex dynamics and intricate flow patterns. These are punctuated by
more pronounced roll-up phenomena. Note that, for these parameter values, the flow
is in a laminar regime. A close inspection of figure 10 also reveals that the diffusive
mixing decreases with increasing Re. This is due to the decrease in effective diffusion,
characterized by the Péclet number Pe ≡ Re Scs, with increasing Re. It can be seen
that a mushroom-like structure appears at the tip of the leading finger. However, it is
persistent only for the intermediate value of Re. The decrease in the effective Péclet
number (highly diffusive mixing) for the low value Re = 100 destroys this structure at
the nose of the leading finger. For Re = 500 the diffusive mixing is very small and the
interface separating the fluids becomes sharper. It can be seen that the location of the
appearance of the KH-type instabilities is shifted towards the tip of the finger when
decreasing the Reynolds number.

The evolution of the corresponding axial variation of the transverse averaged
viscosity µ is plotted for Re = 100, 200 and 500 in figure 11. It can be seen that
the variation of µ is non-monotonic for all values of Re considered. Here, we study
a case with highly diffusive mixing (Scs = 20), unlike figure 6, which corresponds to
Scs = 100 (low diffusion). However like low diffusive flow, the instability starts near
the viscous stenosis region (not shown) in this case too. The mushroom (spike/cap)
type instability occurs at the tip of the single finger when µ decreases to a value
smaller than the initial viscosity and gradually (suddenly) increases to the initial
viscosity (see figure 11). It can be seen that the zig-zag oscillation in µ, which
corresponds to the KH instability region, moves in the axial direction. The evolution
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FIGURE 12. Variation of axially averaged viscosity, µx, in the streamwise direction for
(a) Re = 100, (b) Re = 200 and (c) Re = 500 and parameter values of figure 10.
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FIGURE 13. Variation of normalized average viscosity, µav , with time for simulations of
figure 10. The dotted line represents the analytical solution for the plug-flow displacement.

of the transverse variation of the axially averaged viscosity, µx, plotted in figure 12,
reveals that, as time progresses, the viscosity near the walls increases and the local
maximum of the curve moves towards the channel wall, which in turn destabilizes the
flow. The normalized total averaged viscosity, µav is plotted versus time in figure 13
for different values of Re. The dotted line in figure 13 represents the analytical
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FIGURE 14. (Colour online) Spatio-temporal evolution of the concentration field of solute
s at successive times (from top to bottom, t = 20, 40, 50, 75 and 95) for (a) Scs = 103 and
(b) Scs = 105. Other parameter values are δ = 10, Re = 200, Rs = 3 and Rf = −3.6.

solution for the plug-flow displacement. It can be seen that µav increases almost
linearly for all values of Re considered. The slope increases with increasing Re and is
considerably larger than that of the analytical solution. Close inspection of figure 13
also reveals that these lines overlap up to t = 5 (approximately), which confirms the
delay in the onset of DD effects as compared to the phenomena observed in porous
media.

Finally, we study in figure 14 the flow dynamics for very large Schmidt numbers,
i.e. Scs = 103 and 105. The rest of the parameter values are δ = 10, Re = 200, Rs = 3
and Rf = −3.6. While instabilities due to DD effects can still be seen for Scs = 103,
the flow is stable for Scs = 105. In this case the Schmidt number of the faster-diffusing
solute Scf is 104 for δ = 10. As the Schmidt numbers of both the solutes are quite
large (practically in the immiscible limit), the diffusive effects are not destabilizing.
This is also evidenced in figure 15, showing that, for Scs = 105, the profiles of the
axially averaged viscosity µx are qualitatively similar to those of the stable single-
component system (δ = 1) shown in figure 7(a). However, a close inspection of
figure 15(b) reveals that, unlike in figure 7(a), µx smoothly approaches a constant
value just near the wall, which is stabilizing the flow.

5. Concluding remarks

Pressure-driven displacements within a horizontal channel of two different solutions
of two scalars influencing the viscosity and having different diffusion rates are studied
here numerically. We consider specifically the displacement of a less viscous solution,
which occupies the channel initially, by a more viscous one. We show that such
a classically stable displacement can become unstable if the two solutes impacting
the viscosity diffuse at sufficiently different rates. In our simulations, the continuity
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FIGURE 15. Variation of the axially averaged viscosity, µx, in the streamwise direction for
(a) Scs = 103 and (b) Scs = 105. The rest of the parameter values are as in figure 14.

and Navier–Stokes equations coupled to two convection–diffusion equations for the

concentration of both solutes are solved using a finite-volume approach. The viscosity

is assumed to be an exponential function of the concentrations of both solutes. In

order to isolate the effects of viscosity contrast, the density is assumed to be the

same for both the fluids. The numerical code has been validated by conducting a grid-

refinement test and also reproducing the results of single-component displacement flow

(Sahu & Matar 2010). The results demonstrate the development of various instability

patterns of the ‘interface’ separating the fluids when DD effects are present. The

intensity of the instability increases with increasing diffusivity ratio between the faster-

diffusing and the slower-diffusing solutes. This instability brings about fluid mixing

and accelerates the displacement of the solution originally occupying the channel.

The effects of the dimensionless parameters, such as Reynolds number and Schmidt

number, on the development of the ‘interfacial’ instability pattern are also studied. A

mushroom-like structure appears at the tip of the leading finger, which is persistent

only for intermediate values of Re. The DD instability appears after the invading

fluid penetrates inside the channel. This is attributed to the presence of inertia in the

present problem. These different types of instabilities can be obtained by specifying

the slow and fast components as mass and heat typically. Experimentally, the predicted

instability can be looked for using two non-reacting chemical species both influencing

the viscosity of the solution and having different diffusion coefficients as in the case of

two polymers with chains of different length, for instance.

Note that we have here assumed that the diffusion is pseudo-binary and that

the diffusion coefficients are constant and do not depend on solute concentration.

Further developments could be made to include cross-diffusion or concentration-

dependent diffusion (Curtiss & Hirschfelder 1949). Moreover, as mentioned above,

the Stokes–Einstein relationship (Probstein 1994) shows that, in a solution, it is not

possible that viscosity varies significantly without a correspondingly strong variation

in diffusivity. Preliminary computations performed to account for the Stokes–Einstein

dependence of diffusivity on viscosity show that, although DD effects still destabilize

the system, some feature of the results are qualitatively different. These aspects should

be the focus of additional future studies. Eventually, let us note that we have here also

used an exponential viscosity–concentration relationship. Other viscosity–concentration

models (Iglesias-Silva & Hall 2010) or non-monotonic viscosity profiles (Manickam &

Homsy 1993) could be investigated in future studies along the same lines.
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