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Double-diffusive Marangoni convection in a rectangular cavity with horizontal temperature and

concentration gradients is considered. Attention is restricted to the case where the opposing thermal

and solutal Marangoni effects are of equal magnitude �solutal to thermal Marangoni number ratio

R�=−1�. In this case a no-flow equilibrium solution exists and can remain stable up to a critical

thermal Marangoni number. Linear stability analysis and direct numerical simulation show that this

critical value corresponds to a supercritical Hopf bifurcation point, which leads the quiescent fluid

directly into the oscillatory flow regime. Influences of the Lewis number Le, Prandtl number Pr, and

the cavity aspect ratio A �height/length� on the onset of instability are systematically investigated

and different modes of oscillation are obtained. The first mode is first destabilized and then

stabilized. Sometimes it never gets onset. A physical illustration is provided to demonstrate the

instability mechanism and to explain why the oscillatory flow after the onset of instability

corresponds to countersense rotating vortices traveling from right to left in the present configuration,

as obtained by direct numerical simulation. Finally the simultaneous existence of both steady and

oscillatory flow regimes is shown. While the oscillatory flow arises from small disturbances, the

steady flow, which has been described in the literature, is induced by finite amplitude

disturbances. © 2010 American Institute of Physics. �doi:10.1063/1.3333436�

I. INTRODUCTION

The density of a fluid can be influenced simultaneously

by heat and solute with different diffusivities. In a gravita-

tional field, this can generate many intriguing flow phenom-

ena, even when the overall density distribution is stable. Due

to its great importance in geology and many industrial pro-

cesses, this double-diffusive buoyancy convection has been

the topic of intensive research for many years.
1–3

Depending

on the applications, different configurations of the tempera-

ture and solute concentration gradients have been consid-

ered. Only one special case is mentioned here when these

gradients are both horizontal and the resultant thermal and

solutal buoyancy forces are opposing and of equal magnitude

�buoyancy ratio R�=−1�. In this case, a quiescent equilib-

rium corresponding to the pure conductive and diffusive state

exists and can remain stable up to a critical thermal Rayleigh

number. Krishnan
4

was the first to numerically study in a

square cavity the transition from the equilibrium regime to

the steady convective and time-dependent regimes. Gobin

and Bennacer
5

studied the onset of convection both in an

infinite vertical layer with impermeable and slip boundary

conditions and in a finite cavity. A turning point of the sub-

critical branch was incorrectly identified as the critical bifur-

cation point of the quiescent equilibrium. Later Ghorayeb

and Mojtabi
6

studied this problem more systematically and

corrected this mistake. They numerically showed that the

primary instability of the equilibrium corresponds to a tran-

scritical bifurcation point. The onset of oscillatory flow
7

and

nonlinear bifurcation analysis
8,9

have been done and exten-

sions of the configuration to an inclined cavity
10

and to a

tilted porous cavity
11

have also been considered.

In crystal growth and many other industrial processes, a

liquid surface in contact with air is often present and Ma-

rangoni effects need to be taken into account. Like buoyancy

force, liquid surface tension force can also be simultaneously

influenced by temperature and solute concentration. While

pure thermal Marangoni flow has been extensively studied,
12

much less effort has been devoted to the so-called double-

diffusive Marangoni flow. The linear stability analysis of

Pearson
13

was generalized by McTaggart
14

to consider simul-

taneously thermal and solutal Marangoni effects. It was

found that when these two effects are opposing, there are

circumstances under which the onset of instability is oscilla-

tory. This analysis was extended by Ho and Chang
15

using

nonlinear analysis. The linear stability characteristics of a

double-diffusive fluid layer influenced by Marangoni effects

were investigated by Chen and Su,
16

and the interaction be-

tween Marangoni and double-diffusive instabilities was ex-

perimentally studied by Tanny et al.
17

All these studies were

dedicated to the situation when the temperature and concen-

tration gradients are in the vertical direction. A stably strati-

fied fluid layer �vertical concentration gradient� heated hori-

zontally �horizontal temperature gradient� was studied by

Chen and Chen,
18

where it was shown experimentally that

salt fingers can be generated by flows driven by Marangoni
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effects. The onset of finger convection in a similar configu-

ration was also studied both experimentally and numerically

by Chan and Chen,
19

where interaction between the thermal

and solutal Marangoni effects was clearly shown.

Double-diffusive Marangoni convection in a rectangular

cavity with horizontal temperature and concentration gradi-

ents was first simulated by Bergman.
20

The most important

result of this study is that, in the absence of buoyancy, con-

vection may occur, even though the overall surface tension

difference along the free surface suggests stagnant fluid con-

ditions �solutal to thermal Marangoni number ratio R�=−1�.
This situation is very similar to the above-mentioned special

case in double-diffusive buoyancy convection when R�=−1,

except that the driving mechanism here is surface tension,

rather than buoyancy. The quiescent equilibrium can remain

stable up to a certain critical thermal Marangoni number,

beyond which convection occurs. Bergman
20

obtained steady

flow solution at a moderate thermal Marangoni number.

Some numerical
21

and experimental
22

works have also been

done for opposing thermal and solutal Marangoni effects

with application to crystal growth. However, while the pri-

mary bifurcation from the equilibrium in the special case

R�=−1 has been elucidated by the work of Ghorayeb and

Mojtabi,
6

the primary instability for the double-diffusive Ma-

rangoni problem with R�=−1 has not yet been investigated.

It is the purpose of the present paper to investigate the

onset of double-diffusive Marangoni convection in a rectan-

gular cavity with horizontal temperature and concentration

gradients with R�=−1. It is shown by linear stability analysis

that for the wide parameter range considered in the present

paper, the primary instability is always a Hopf one. Thus the

convection after the onset of instability is oscillatory, rather

than steady. Careful direct numerical simulations are per-

formed to validate the linear stability results and a simple

physical illustration is provided to demonstrate the instability

mechanism. Finally in addition to the oscillatory flow re-

gime, it is shown that, due to finite amplitude disturbances,

there coexists a steady flow regime that was first obtained by

Bergman.
20

II. PROBLEM DEFINITION

The two-dimensional rectangular cavity is made up of

three rigid walls, of length L and height H and filled with a

binary fluid, with a nondeformable liquid-air surface on the

top �Fig. 1�. Different temperatures and concentrations are

specified at the left �T1 ,C1� and right �T2 ,C2� vertical walls,

where T1�T2 and C1�C2, and zero heat and mass fluxes are

imposed on the two horizontal boundaries. The no-slip

boundary condition is adopted for all velocity components

on the rigid walls, and on the upper surface the Marangoni

boundary condition is applied. Boussinesq approximation is

assumed to be valid except for the surface tension �, which

is allowed to vary linearly with the liquid temperature and

solute concentration. Thus

��T,C� = �0 − �T�T − T0� − �C�C − C0� , �1�

where �0=��T0 ,C0�, �T=−��� /�T�C, and �C=−��� /�C�T.

Thermophysical properties of the fluid are estimated at the

reference temperature T0 and concentration C0, which are set

to be equal to T2 and C2, respectively. For the majority of

mixtures, liquid surface tension increases with concentration

of an inorganic solute and decreases for an organic solute.

Since we are discussing double-diffusive convection in a

broad sense and T and C are referred to components with

higher and lower diffusivities, respectively, �T and �C can

assume both positive and negative values. Buoyancy effects

are neglected in the present study.

By choosing L as the unit of length and � /L as the unit

of velocity, where � denotes kinematic viscosity of the fluid,

the nondimensionalized equations governing the conserva-

tion of mass, momentums, energy, and solute concentration

can be written as

�u

�x
+

�v

�y
= 0, �2�

�u

�t
+ u

�u

�x
+ v

�u

�y
= −

�p

�x
+ � �2u

�x2
+

�2u

�y2� , �3�

�v

�t
+ u

�v

�x
+ v

�v

�y
= −

�p

�y
+ � �2

v

�x2
+

�2
v

�y2� , �4�

��

�t
+ u

��

�x
+ v

��

�y
=

1

Pr
� �2�

�x2
+

�2�

�y2� , �5�

�c

�t
+ u

�c

�x
+ v

�c

�y
=

1

Pr · Le
� �2c

�x2
+

�2c

�y2� , �6�

together with boundary conditions

x = 0, y � �0,A�:u = v = 0, � = c = 1, �7�

x = 1, y � �0,A�:u = v = 0, � = c = 0, �8�

y = 0, x � �0,1�:u = v = 0,
��

�y
=

�c

�y
= 0, �9�

y = A, x � �0,1�:v = 0,
��

�y
=

�c

�y
= 0, �10�

�u

�y
= − Re

��

�x
− ReS

�c

�x
. �11�

There are five dimensionless parameters in the above system,

FIG. 1. Schematic of the physical system.

034106-2 Chen, Li, and Zhan Phys. Fluids 22, 034106 �2010�

Downloaded 17 Mar 2011 to 158.132.161.180. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



A =
H

L
, Pr =

�

�
, Le =

�

D
, Re =

�T�TL

	�
, ReS =

�C�CL

	�
,

�12�

which are, respectively, the aspect ratio, the Prandtl number,

the Lewis number, and the thermal and solutal Reynolds

numbers due to Marangoni effects. � denotes thermal diffu-

sivity and D the molecular diffusivity. Equation �11� is the

so-called Marangoni boundary condition, which equates the

change in surface tension due to temperature and concentra-

tion variations across the surface to the shear stress experi-

enced by the fluid at the surface.
13

Re and ReS are related to

the classic thermal and solutal Marangoni numbers by Ma

=Re·Pr and MaS=ReS ·Pr. In analogy with the buoyancy ra-

tio R� in double-diffusive buoyancy convection, the surface

tension ratio in double-diffusive Marangoni convection is de-

fined as

R� =
MaS

Ma
=

�C�C

�T�T
. �13�

A positive value of R� results in augmenting convection �co-

operative Marangoni forces� and a negative value leads to

opposing Marangoni forces. In the present study attention is

restricted to the special case R�=−1, in which these two

forces exactly balance each other and the no-flow equilib-

rium solution can remain stable up to a critical thermal Ma-

rangoni number.

III. LINEAR STABILITY ANALYSIS

The linear stability characteristics of the equilibrium so-

lution u0=v0=0, �0=1−x, and c0=1−x obtained for R�=

−1 is studied. In a standard way infinitesimal disturbances

are applied to the system �2�–�11� and after linearization the

following system is obtained:

�
�u

�x
+

�v

�y
= 0

�u

�t
= −

�p

�x
+ �2u

�v

�t
= −

�p

�y
+ �2

v

��

�t
− u =

1

Pr
�2�

�c

�t
− u =

1

Le · Pr
�2c ,

� �14�

together with boundary conditions

�
x = 0,y � �0,A�:u = v = 0,� = c = 0

x = 1,y � �0,A�:u = v = 0,� = c = 0

y = 0,x � �0,1�:u = v = 0,
��

�y
=

�c

�y
= 0

y = A,x � �0,1�:
�u

�y
= − Re� ��

�x
−

�c

�x
� ,

v = 0,
��

�y
=

�c

�y
= 0.

� �15�

The independent variables u, v, p, �, and c now denote small

disturbances. In order to eliminate the pressure terms, the

stream function 
��
 /�y=u , −�
 /�x=v� is introduced and

the system becomes

�
�

�t
�
 = �2


��

�t
=

�


�y
+

1

Pr
��

�c

�t
=

�


�y
+

1

Le · Pr
�c ,
� �16�

with boundary conditions

�
x = 0,1,y � �0,A�:

�


�x
=

�


�y
= 0,� = c = 0

y = 0,x � �0,1�:
�


�x
=

�


�y
= 0,

��

�y
=

�c

�y
= 0

y = A,x � �0,1�:
�


�x
= 0,

��

�y
=

�c

�y
= 0,

�2


�y2
= − Re� ��

�x
−

�c

�x
� .

� �17�

The eigenvalue problem defined by Eqs. �16� and �17� is

solved by the Tau spectral method.
23

The time dependence of

disturbances is assumed to be of exponential form with a

complex growth factor � while the spatial distributions are

represented by series of Chebyshev polynomials. Thus the

variables are written as


�t,x,y� = e�t	
n=0

N

	
m=0

M

anmTn�x�Tm�y� , �18�

��t,x,y� = e�t	
n=0

N

	
m=0

M

bnmTn�x�Tm�y� , �19�

c�t,x,y� = e�t	
n=0

N

	
m=0

M

cnmTn�x�Tm�y� , �20�

where Tk�x� ,k=0,1 ,2¯ are Chebyshev polynomials of the

first kind. Depending on the dimensionless parameters, N

and M vary in the range of 20–60 in order for the series to

converge. By substituting Eqs. �18�–�20� into Eqs. �16� and

�17�, a generalized eigenvalue problem with a matrix size of

3�N+1��M +1��3�N+1��M +1� is obtained. The complex

eigenvalue � can be determined when the parameters Re, Le,

Pr and A are specified. Then one of the parameters, say Re, is

034106-3 Double-diffusive Marangoni convection in a rectangular cavity Phys. Fluids 22, 034106 �2010�

Downloaded 17 Mar 2011 to 158.132.161.180. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



increased until the real part of � vanishes. The corresponding

value of Re is the critical condition for neutral stability and

the imaginary part of �, Im���, indicates whether the insta-

bility evolves into steady convection or growing oscillation.

When the onset is oscillatory, the critical dimensionless os-

cillation frequency can be determined by fc=Im��� /2.

Before applying this method to the complete problem,

the Tau spectral method and the eigenvalue solving tech-

nique are used to solve the systems derived by Nield
24

and

McTaggart
14

and validated by their known results. The re-

sults produced by the present methods are identical to those

tabulated by Nield. The comparison with McTaggart’s results

is shown in Table I. It is noted that the factor Le was inad-

vertently left out of Eq. �2.1c� in McTaggart’s paper, there-

fore the solutal Marangoni number BS defined by her is re-

lated to our MaS by MaS=BS /Le. Again the agreement is

excellent.

IV. DIRECT NUMERICAL SIMULATION

Direct numerical simulation is also performed near the

onset of instability to verify the linear stability results and to

provide some additional information. Equations �2�–�6� to-

gether with the boundary conditions �7�–�11� are discretized

using nonuniform control volumes. Finer grids cluster near

the four boundaries in order to improve the numerical accu-

racy. Colocated variable arrangement is used and the

SIMPLE algorithm is adopted to couple momentum and con-

tinuity equations. Details of the implementation of the nu-

merical procedures can be found in Ferziger and Peric.
25

In order to validate the code, the benchmark solution by

Hortmann et al.
26

of natural convection of air in a square

cavity is selected for comparison. These authors used very

sophisticated numerical techniques including the full multi-

grid procedure, which allowed very fine grids �640�640� to

be used, and finally the Richardson extrapolation was used to

obtain grid-independent solutions. With 122�122 nonuni-

form grids, which have been verified to be able to produce

grid-independent solution, all the present simulation results

for Rayleigh number Ra equals to 104, 105, and 106 differ

from the benchmark solutions by less than 0.05%.

V. RESULTS AND DISCUSSIOINS

A. Oscillatory flow regime

1. Variations of leading eigenvalues with Re

As the dynamic parameter Re increases, the eigenvalues

in the complex plane move and it is the crossing of the

rightmost eigenvalues with the imaginary axis that deter-

mines the onset of convection. Steady or oscillatory modes

may be induced, depending on whether the crossing eigen-

values are real or complex. Thus it is interesting to see how

the leading eigenvalues vary with Re. Following Bergman
20

we first consider the case Pr=5, Le=100, and A=1 /2. For

the range of Re considered in the present study, all the pri-

mary bifurcations are Hopf ones and we observe no steady

onset of convection. The variations of the real and imaginary

parts of the most unstable eigenvalues with Re are shown in

Fig. 2. The equilibrium solution loses stability to the first

oscillatory mode �Mode I� at H1 �Rec=48� with a character-

TABLE I. Comparison of the present results with those of McTaggart �Ref.

14�.

Mas=−5 Mas=0 Mas=10

McTaggart

� 1.99 1.99 1.99

Ma 129.6 79.6 �20.4

Chebyshev-Tau

� 1.99 1.99 1.99

Ma 129.607 79.607 �20.393

FIG. 2. Variation of �a� real parts and �b� imaginary parts of the most unstable eigenvalues with Re for Pr=5, Le=100 and A=1 /2. H1, H2, and H3 denote the

onsets of the Mode I �thick solid line�, Mode II �dashed line�, and Mode III �dot line� oscillatory flows.
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istic frequency fc=2.51. It is interesting that the growth rate

of this mode first increases and then decreases. With the

increase in Re, the second �Mode II� and third �Mode III�
oscillatory modes appear successively. It is only near the

threshold H1 that Mode I dominates the other modes. The

corresponding frequencies of the three modes increase al-

most linearly with Re, as shown in Fig. 2�b�.
It is well known that near a supercritical Hopf bifurca-

tion, the amplitude of the periodic solution is O�
Re

−Rec
1/2�,27
where Rec is the critical Reynolds number at

which a Hopf bifurcation occurs. Using the equilibrium so-

lution as the initial fields, we start direct numerical simula-

tions at Re=80, where the Mode I oscillation is dominant

�Fig. 2�a��. Then successive runs are performed for decreas-

ing Re with a step of �Re=5, with the result of the last run

as the initial fields of the next run. The square of the satura-

tion amplitude of u�t ,0.5,0.5� versus the threshold departure

�Re−Rec� is plotted in Fig. 3. The linear fit passes very close

by the origin, which means that the direct simulation result

agrees very well with the linear stability result and indeed

the first critical point is a supercritical Hopf bifurcation.

In order to see clearly the flow structure of the Mode I

oscillation, the flow fields at the end of eight successive

equal time intervals totaling a full oscillation period at Re

=50 are extracted and plotted in Fig. 4. Clockwise �dashed�
and counterclockwise �solid� rotating vortices are periodi-

cally generated, traveling from right to left, and then

squeezed into the upper left corner. As many as three vortices

exist simultaneously in the flow field. In order to get the flow

structure of the Mode II oscillation for comparison, direct

simulation is performed at Re=150, where Mode II domi-

nates Mode I �Fig. 2�a��. The flow field shown in Fig. 5 again

consists of clockwise and counterclockwise rotating vortices

traveling from right to left, but with as many as five vortices

exist simultaneously. The oscillation frequency is 7.81,

which agrees quite well with the linear stability analysis re-

sult 7.69. At the same Re value, Mode II oscillates at a

FIG. 4. Snapshots of the flow field at the end of eight successive equal time

intervals totaling a full oscillation period at Re=50. Dashed and solid lines

designate clockwise and counterclockwise rotations, respectively.

FIG. 5. The same as Fig. 4 but for Re=150.

FIG. 3. Square of the amplitude of u�t ,0.5,0.5� vs �Re−Rec�, where Rec

=48 as predicted by linear stability analysis. Square points are obtained by

direct numerical simulations while the solid line is the linear fit.
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higher frequency than Mode I does, as is clear from Fig.

2�b�. One more different feature of Mode II is that the domi-

nant vortex in the flow field can be so strong that it occupies

almost the whole cavity, confining other counter-rotating

vortices to the near-surface region �Figs. 5�d� and 5�h��. This

situation never occurs during the Mode I oscillation.

The variations of the real parts of the leading eigenval-

ues with Re when Le is changed to 5 and 2 are shown in

Figs. 6�a� and 6�b�, respectively. When Le=5 Mode I oscil-

lation dies out quickly after its onset at H1. Then the equi-

librium solution regains its stability and the fluid becomes

quiescent again until at H2 where Mode II oscillation starts to

grow. This strange behavior of returning to the pure conduc-

tion state as Re increases is quite unexpected and will be

further discussed later. When Le=2 the growth rate of Mode

I oscillation decreases before it becomes positive. Thus

Mode I does not induce onset of convection and the equilib-

rium solution remains stable until H2. In this case the flow

that first appears is the Mode II oscillation. This situation is

quite different from those when Le=100 and Le=5. In the

next section we will investigate systematically the influences

of A, Le, and Pr on the onsets of Mode I and Mode II.

2. Influences of A, Le, and Pr,

The influence of A on the onset of Mode I and Mode II

when Pr=5 and Le=100 is shown in Fig. 7�a�. The two

curves qualitatively have the same shape. When A decreases

from 0.5 the critical Re increases dramatically. When A is

larger than 1 the two modes approach different asymptotic

FIG. 6. The same as Fig. 2�a� but for �a� Le=5 and �b� Le=2.

FIG. 7. Pr=5 and Le=100: �a� onset of Mode I �solid line� and Mode II �dashed line� with the variation of A and �b� the corresponding characteristic

frequencies of the two modes vs the critical Re values.
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states. The flow structures of the eigenfunctions for A=1 /4,

A=1 /2, and A=2 are shown in Fig. 8. It is clear that for A

=1 /2, the flow fields of Mode I and Mode II at the onset are

similar to Figs. 4�f� and 5�d�, respectively, which are ob-

tained by direct simulations. When A=1 /4 more vortices si-

multaneously exist in the flow field. Because for even

smaller A the assumed condition of a nondeformable liquid

surface is questionable, A=1 /4 is the smallest aspect ratio

we have investigated. When A=2 flow only occurs in the

upper half of the cavity while in the lower half the fluid is

almost stagnant for both modes. For large aspect ratios the

near surface flow structure decouples from what goes close

to the bottom wall. This is why the flows approach

asymptotic states when A�1 as shown in Fig. 7�a�. The

corresponding characteristic frequencies of the two different

modes are shown in Fig. 7�b� as functions of Rec. It is clear

that fc varies linearly with Rec.Thus at smaller A where Rec

is higher, the flow oscillates with a higher frequency.

Usually with the increase in A in a confined cavity, neu-

tral curves of the first two primary bifurcations will cross

each other successively at codimension-two bifurcation

points.
8,10,28–30

Thus the convective mode at the onset de-

pends on the aspect ratio. However in our present case, the

two curves in Fig. 7�a� are so well separated that they never

cross each other in the range of parameters studied. The con-

vective mode at the onset is always Mode I oscillation as

shown in Fig. 8�a�.
The influence of Le on the onset of Mode I and Mode II

oscillations when Pr=5 and A=1 /2 is shown in Fig. 9�a�.
The critical Re values for both modes decrease as Le in-

creases, which means that at higher Le the modes are more

unstable. This is reasonable and characteristic of double-

diffusive instability because it is the difference of the diffu-

sivity rates of the two components in the fluid that triggers

the instability and Le denotes how large this difference is.

When the difference vanishes �Le=1�, the equilibrium is in-

finitely stable, as is apparent from Fig. 9�a� when Le de-

creases toward 1. The flow structures of the eigenfunctions

of both modes for Le=5 and Le=100 are shown as insets. It

is clear that the flow structures do not change qualitatively

along the neutral curves. The corresponding characteristic

frequencies of the two modes are shown in Fig. 9�b� as func-

tions of Rec. Unlike the situation in Fig. 7�b�, fc varies qua-

dratically with Rec in this case.

The influence of Pr on the onset of Mode I and Mode II

oscillations when Le=100 and A=1 /2 is shown in Fig.

10�a�. This is plotted on a log-log scale since we are explor-

ing low Pr number effect down to Pr=0.01. Because the ratio

of the diffusivities of heat and solute has been fixed at 100,

smaller Pr value means that heat and solute diffuse faster.

Then infinitesimal disturbances of the temperature and con-

FIG. 8. Flow structures of the eigenfunctions for A=1 /4, A=1 /2, and A

=2 when Pr=5 and Le=100: �a� Mode I and �b� Mode II.

FIG. 9. Pr=5 and A=1 /2: �a� onset of Mode I �solid line� and Mode II �dashed line� with the variation of Le �insets are the flow structures of the

eigenfunctions at Le=5 and Le=100; lower ones are Mode I and upper ones are Mode II� and �b� the corresponding characteristic frequencies of the two

different modes vs the critical Re values.
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centration field can be dissipated faster, rendering the equi-

librium solution more stable. The most distinctive difference

between Figs. 10�a� and 7�a� or Fig. 9�a� is that Mode I

oscillation disappears for low Pr values. This mode disap-

pearance is the situation described in Fig. 6�b�. Because the

growth rate of Mode I remains negative, Mode II oscillation

is responsible for the first onset of convection. For the

present parameter combination of Le=100 and A=1 /2,

Mode I oscillation exists down to roughly Pr=0.2 and the

solid curve in Fig. 10�a� terminates at this point. The insets

show the flow structures of the eigenfunctions for both

modes at Pr=0.2 and Pr=35. As in Fig. 9�a�, the flow struc-

tures do not change qualitatively along the two neutral

curves, except that the vortices at low Pr number are more

inclined toward the left vertical wall. The corresponding

characteristic frequencies of the two modes are shown in Fig.

10�b�. They vary almost linearly with Rec in this log-log

scale.

Now it is clear that it is not always Mode I that is re-

sponsible for the first onset of convection. Mode II is some-

times responsible for the first onset. This is not because the

neutral curves representing the onset of these two modes

cross each other at codimension-two points, but that the

growth rate of Mode I does not get positive. The missing of

Mode I at low Pr values in Fig. 10�a� necessitates the need to

derive a more complete picture showing the mode type of the

first onset of convection in a more complete parameter space.

By selecting A=1 /2 as the representative case, Fig. 11 shows

the Le-Pr plane separated by a curve, above and below which

the first onset of convection is Mode I and Mode II, respec-

tively. It is clear that for a fixed Pr value, the Le value needs

to be large enough for Mode I to onset. This is also the

situation we have seen in Figs. 2�a� and 6. More important is

that from Fig. 11 we can easily assess the mode type at the

first onset of convection when the fluid properties are known.

For example in a heat and mass transfer system, the Le value

is typically 100. Then if the fluid is a water-based solution

whose Pr value is O�10�, the first onset of convection is

Mode I; if the fluid is a semiconductor crystal melt whose Pr

value is O�0.01�, the first onset of convection is Mode II.

This piece of information has very useful engineering appli-

cations.

3. Instability mechanism

It has been seen in Figs. 4 and 5 that for the two different

oscillatory modes, counter-rotating vortices are generated al-

ternately near the liquid surface. These vortices grow in size

first and then decay as they move toward the left vertical

wall. Finally they are all squeezed into the upper-left corner

of the cavity and disappear. The physical mechanism of the

onset of instability is described below.

FIG. 10. Le=100 and A=1 /2: �a� onset of Mode I �solid line� and Mode II �dashed line� with the variation of Pr �insets are the flow structures of the

eigenfunctions at Pr=0.2 and Pr=35; lower ones are Mode I and upper ones are Mode II� and �b� the corresponding characteristic frequencies of the two

oscillatory modes vs the critical Re values.

FIG. 11. Determination of the different modes of the first onset of convec-

tion in the Le-Pr plane for A=1 /2.
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In the present study, Re is positive while ReS is negative,

which means that liquid surface tension decreases with tem-

perature and increases with solute concentration. For the

boundary conditions specified, the temperature gradient

tends to drag the surface liquid from left to right while the

concentration gradient tends to act in the opposite direction.

R�=−1 means that these two effects exactly balance each

other, resulting in the equilibrium solution. Since small dis-

turbance is always present and heat has a greater diffusivity

over that of solute, it is easier for the uniform solute concen-

tration gradient to be disturbed. Suppose a fresher spot s1

appears on the liquid surface, as shown in Fig. 12, then lo-

cally the concentration gradient on its left-hand side is in-

creased and that on its right-hand side is decreased. Surface

flows, SF1 and SF2, leaving s1 in opposite directions are thus

generated, inducing the corresponding bulk flow BF1 and

BF2 by viscosity. SF1 points in the direction of the base

concentration gradient, bringing relatively fresh fluid into

contact with denser fluid, and thus the enhanced concentra-

tion gradient region moves leftwards. This surface flow can

reach the left vertical wall. SF2, however, points in the op-

posite direction of the base concentration gradient and thus

brings relatively denser fluid into contact with fresher fluid.

The dense fluid front s2 will in turn induce another surface

flow SF3 and bulk flow BF3, since the concentration gradient

on the right hand side of s2 is locally enhanced. Thus SF2

cannot reach the right vertical wall because of the opposing

flow SF3. Similarly, if a denser spot s2 first appears on the

liquid surface, the same surface and bulk flows will be gen-

erated. Additionally, s1 and s2 cannot remain stationary. They

are in locally enhanced concentration gradients because of

the bulk flows, BF1 and BF2, and surface flows, SF2 and SF3.

Thus s1 and s2, together with the counter-rotating vortices,

move toward the left vertical wall. This whole scenario

matches the development of the flow fields shown in Figs. 4

and 5. The gradient of the solute concentration together with

the sign of ReS determine the traveling direction.

The above physical illustration clearly explains the insta-

bility mechanism of the onset of oscillatory flows. We might

expect an even more destabilizing mechanism when Re in-

creases and thus the reverse transition from Mode I oscilla-

tory flow to quiescent equilibrium at Re=512 in Fig. 6�a�
appears to be counterintuitive. Although the linear stability

analysis procedure was carefully verified before being used

and it produces results that agree very well with direct nu-

merical simulations, as discussed in the preceding sections,

we are particularly careful about this puzzling reverse tran-

sition and further direct numerical simulations were per-

formed to verify the scenario presented in Fig. 6�a�, where

Re is 325 and 766 at H1 and H2, respectively. As shown in

Fig. 13, direct numerical simulation is started from the equi-

librium solution with Re=300. The fluid remains motionless

and at t=10 Re is increased to 350. Then oscillation starts to

grow and saturates at about t=40. At t=50 Re is increased to

410 and the flow starts to oscillate with a larger amplitude.

As predicted in Fig. 6�a�, when Re is increased to 500 at t

=60 the oscillation amplitude decreases, and when Re is fur-

ther increased at t=75 to 540, which is larger than the re-

verse transition threshold 512, the oscillation exponentially

decays and finally the equilibrium solution is regained. The

flow fields of the oscillations in the interval 20� t�80 for

different Re values were carefully investigated and they all

correspond to Mode I oscillation, as shown in Fig. 4. The

fluid remains motionless after Re is increased to 730 at t

=90. Finally, when Re is further increased to 780 at t=100

Mode II oscillation starts to grow. This whole transition sce-

nario is exactly as that predicted in Fig. 6�a�. Also, the oscil-

lation frequencies in Fig. 13 for different Re values all agree

very well with those predicted by linear stability analysis

�Table II�. The transition scenario in Fig. 2�a� will be later

further verified in Fig. 16 by showing the maximum stream

function value.

For Rayleigh–Bénard convection in small aspect ratio

enclosure, reverse transition from two-frequency quasiperi-

odic flow to steady flow with the increase in Rayleigh num-

ber �Ra� was observed experimentally by Gollub and

Benson.
31

This counterintuitive transition was later repro-

duced numerically by Mukutmoni and Yang,
32

where it was

found that the transition was accompanied by a change of the

flow field to a more complex spatial form. Then it was ar-

gued that the overall complexity of the system increases,

even though the temporal complexity reduces, and so there

was no paradox or anomaly. In our present study, the spatial

form of Mode II oscillation �Fig. 5� is obviously more com-

FIG. 12. Physical illustration of the instability mechanism. SF1, SF2, and

SF3 denote surface flows; BF1, BF2, and BF3 denote bulk flows; s1 and s2

denote the relatively fresh and dense spots, respectively.

FIG. 13. Direct numerical simulation starting from the equilibrium solution

with Re=300 for Pr=5, Le=5 and A=1 /2. Then Re is changed to 350 at

t=10, to 410 at t=50, to 500 at t=60, to 540 at t=75, to 740 at t=90, and

finally to 780 at t=100. For the long evolution time shown, the oscillations

are so closely packed that only the envelope can be discerned.
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plex than that of Mode I �Fig. 4�, five vortices versus three

vortices. As shown in Figs. 2�a� and 6, even though the

growth rate of Mode I first increases and then decreases, the

growth rates of Mode II and Mode III keep increasing. Thus

it might be argued that the overall complexity of the system

increases.

One more argument that might be helpful for under-

standing the reverse transition is as follows. In the present

double-diffusive Marangoni problem, R� is always equal to

�1. This is very different from the case when R��−1, say

when R�=−0.5 and the overall forcing of the system is Re

+ReS=0.5Re, or from the Rayleigh–Bénard problem, where

Ra is the only external forcing parameter. In these two cases

when Re or Ra increases, the overall external forcing of the

respective system increases and the system should become

more and more complex. In our present problem, however,

when Re increases, the overall forcing of the system always

remains zero. Thus there is no guarantee that the overall

complexity of the system should keep increasing monotoni-

cally.

Figure 12 illustrates qualitatively the formation and

propagation of counter-rotating vortices. It is difficult to use

such qualitative illustration to differentiate the onset of Mode

I and Mode II oscillations, which depends quantitatively on

the physical properties of the fluid �Fig. 11�. Especially it is

difficult to assess the influence of the lateral walls and deter-

mine the number of vortices confined in the cavity. Also, the

damping of Mode I might involve the interaction with even

higher order modes, like Mode III and so on, which are not

investigated in the present work. Thus the physical mecha-

nism for the damping of Mode I is not clear in the present

study.

Linear stability analysis and direct simulation, together

with the physical illustration in Fig. 12, clearly show that the

onset of instability is oscillatory. However, Bergman
20

stud-

ied the case Pr=5, Le=100, and A=1 /2 by direct simulation

and obtained steady flow with Ma=1000, which corresponds

to Re=Ma /Pr=200 and is larger than the critical value Rec

=48 by linear stability analysis. This is quite contradictive

and in the next section we will discuss in detail how the

onset of steady flow arises.

B. Steady flow regime

So far the direct numerical simulations have been per-

formed with the equilibrium solution as the initial field. The

resultant flows are oscillatory, which agree well with the lin-

ear stability analysis. When direct simulation starts from the

all-zero initial field u=v= p=�=c=0, a totally different flow

regime is obtained. This is shown in Fig. 14 using these two

different initial fields while keeping all the control param-

eters the same. The oscillatory flow in Fig. 14�a� oscillates in

Mode II since this is the fastest growing mode at Re=200, as

is clear from Fig. 2�a�. The corresponding flow field is quali-

tatively the same as that in Fig. 5. In Fig. 14�b�, after the

initial transition stage, the flow finally approaches steady

state. The steady state flow fields are presented in Fig. 15.

This is the steady solution obtained by Bergman
20 �refer to

TABLE II. Comparison of the oscillation frequencies obtained by direct numerical simulation �DNS, Fig. 13�
and linear stability analysis �LSA�.

Re

350 410 500 540 780

DNS 6.84 7.82 9.26 10.02 15.58

LSA 6.80 7.78 9.21 9.98 15.53

FIG. 14. Time series of u�t ,0.5,0.5� for Re=200, Le=100, Pr=5, and A=1 /2, with �a� the equilibrium solution �b� u=v= p=�=c=0 as the initial field.
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his Fig. 2�. Since the simulation starts from the all-zero ini-

tial field and heat diffuses 100 times faster than solute does,

the temperature gradient is quickly established across the

surface and the clockwise rotating vortex is generated. This

happens in an extremely short time, which can be seen from

the position of the peak in Fig. 14�b�. As solute slowly dif-

fuses, a small counterclockwise rotating vortex in the upper

left corner of the cavity develops. However finally it cannot

compete with the fully established clockwise rotating vortex

and is thus confined to the upper-left corner.

Using the maximum stream function as the measure, the

simultaneous existence of the two different flow regimes,

oscillatory and steady flows, is shown in Fig. 16 for Le

=100, Pr=5, and A=1 /2. The direct simulation of the oscil-

latory flow continues from the results shown in Fig. 3, using

the result obtained as the initial field of the next run for

increasing Re. The magnitude of 
max increases first and then

decreases, as predicted in Fig. 2�a�. At Re=150 the flow

starts to oscillate in Mode II, since this is the fastest growing

mode at this Re value �Fig. 2�a��. The steady flows are cal-

culated starting from Re=200 �Fig. 15� with decreasing and

increasing Re. Time stepping is switched off for fast conver-

gence. This steady flow branch terminates at Re=55, below

which convergence fails. With the all-zero initial field, the

time stepping at a slightly smaller value Re=52 confirms that

the flow finally reaches the pure conductive equilibrium so-

lution �Fig. 17�.
As is seen from Fig. 16, the oscillatory flow bifurcating

from the equilibrium solution arises from small disturbances

while the steady flow is induced by finite amplitude distur-

bance. The steady flow is much more vigorous than the os-

cillatory one at the same Re value. In the present study, the

origin of the steady flow branch and its relation with the

oscillatory flow branches are unclear. For the eigenvalue

problem, usually the complex pair of eigenvalues splits into

two real eigenvalues for larger Re. One of the emerging real

eigenvalues keeps increasing with Re while the other one

decreases, producing a steady subcritical bifurcation respon-

sible for the existence of subcritical steady flow

branches.
30,33

Unfortunately this scenario does not hold here,

at least in the range of Re values investigated �Fig. 2�a��.

FIG. 16. Maximum stream function vs Re, showing the simultaneous exis-

tence of the steady and oscillatory flow regimes �Le=100, Pr=5, A=1 /2�.

FIG. 17. Time series of u�0.5,0.5� for Re=52, Le=100, Pr=5, and A

=1 /2 with u=v= p=�=c=0 as the initial field.

FIG. 18. Onset of steady �dashed line� and Mode I oscillatory �solid line�
flows as Le increases for Pr=5 and A=1 /2.

FIG. 15. Contours of �a� stream function, �b� temperature, and �c� solute

concentration for Re=200, Le=100, Pr=5, and A=1 /2 �steady flow

regime�.
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Otherwise the coexistence of steady and oscillatory states is

an obvious consequence. We are currently developing a con-

tinuation method to generate a more complete bifurcation

diagram to fully explore the different solution branches.

The onset of the steady flow with the variation of Le is

shown in Fig. 18, together with the neutral curve in Fig. 9�a�
for the onset of the Mode I oscillatory flow. These two

curves separate the Re-Le plane into four parts: below AOD,

the equilibrium is stable and the fluid is in a pure conductive

state; above AO and below CO when starting from the all-

zero initial field, steady flows are obtained; above OD and

below OB when starting from the equilibrium solution, os-

cillatory flows are obtained; and above COB, both steady

and oscillatory flows are possible, depending on the initial

field. The critical point O is located at Le=73. For Le�73

the first onset of convection is steady flow while for Le

�73 the first onset of convection is oscillatory flow.

Finally the steady flow fields near the onset of steady

state convection for different cavity aspect ratios are shown

in Fig. 19. While the thermal Marangoni effect is dominant

over most part of the upper surface, creating the large clock-

wise rotating vortices, the solutal Marangoni effect is only

dominant near the vertical walls, generating the much

smaller counterclockwise rotating vortices. As in the oscilla-

tory flow regime �Fig. 8�, the steady flow field approaches an

asymptotic state as A becomes large, since the near-surface

flow structure separates from what goes close to the cavity

bottom �Fig. 19�c��. For aspect ratios in the range 1 /4�A

�4 studied in the present work, we only observed one steady

solution type �Fig. 19�. This is very different from the coun-

terpart buoyant convection problem,
6

in which many stable

subcritical steady state solutions exist for the same aspect

ratio: a phenomenon known as homoclinic snaking.
34,35

VI. CONCLUSIONS

In the present paper the onset of double-diffusive Ma-

rangoni convection in a rectangular cavity with horizontal

temperature and concentration gradients is studied. The op-

posing case R�=−1 in which the equilibrium solution can

remain stable up to a critical thermal surface tension Rey-

nolds number Rec is considered. Direct numerical simula-

tions using the full nonlinear governing equations as well as

linear stability analysis are used to study the problem. The

main results of the present study are summarized as follows:

�1� Variations of the leading eigenvalues with Re for differ-

ent Le values are shown. The increase in Re can first

destabilize and then stabilize the Mode I oscillatory

flow, the growth rate of which can sometimes never get

positive. The first three most unstable modes are all os-

cillatory.

�2� Neutral stability curves for the onset of the first two

oscillatory modes, showing the influences of A, Le, and

Pr, are obtained, together with the flow fields of the bi-

furcating eigenfunctions. The first onset of convection

can be Mode II oscillatory flow, not because that the

neutral stability curves of the two modes cross each

other, but that the Mode I oscillatory flow does not get

onset.

�3� A simple physical illustration is provided to demonstrate

the instability mechanism when Re�Rec. The formation

of counter-rotating vortices traveling from right to left in

the present configuration is explained.

�4� Steady and oscillatory flow regimes simultaneously exist

in the Re range studied. The oscillatory flow resulting

from a supercritical Hopf bifurcation point is generated

by small disturbance, while the steady flow is induced

by finite amplitude disturbance. Only one type of steady

state solution is observed in the present study.

Bergman’s original work
20

left many unsolved issues

and the present work tries to resolve some of them. The

present double-diffusive Marangoni problem can be consid-

ered a prototype configuration relevant to materials process-

ing, e.g., crystal growth in a low-gravity environment. When

growing crystals from melts and aqueous solutions, convec-

tive flow is in general beneficial, since it serves to reduce the

diffusional barrier; while it has been found experimentally

that when the flow is oscillatory there are marked impurity

striations in the resultant crystals.
14

The present study shows

that the initial field can be used to control the nature of the

flow, steady or oscillatory, while other conditions remain the

same.
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