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Figure 1: A unified framework for image decomposition. An image can be viewed as a mixture of “simpler” layers.

Decomposing an image into such layers provides a unified framework for many seemingly unrelated vision tasks (e.g.,

segmentation, dehazing, transparency separation). Such a decomposition can be achieved using “Double-DIP”.

Abstract

Many seemingly unrelated computer vision tasks can be

viewed as a special case of image decomposition into sep-

arate layers. For example, image segmentation (separation

into foreground and background layers); transparent layer

separation (into reflection and transmission layers); Image

dehazing (separation into a clear image and a haze map),

and more. In this paper we propose a unified framework

for unsupervised layer decomposition of a single image,

based on coupled “Deep-image-Prior” (DIP) networks. It

was shown [38] that the structure of a single DIP genera-

tor network is sufficient to capture the low-level statistics

of a single image. We show that coupling multiple such

DIPs provides a powerful tool for decomposing images into

their basic components, for a wide variety of applications.

This capability stems from the fact that the internal statis-

tics of a mixture of layers is more complex than the statistics

of each of its individual components. We show the power

of this approach for Image-Dehazing, Fg/Bg Segmentation,

Watermark-Removal, Transparency Separation in images

and video, and more. These capabilities are achieved in

a totally unsupervised way, with no training examples other

than the input image/video itself. 1

1. Introduction

Various computer vision tasks aim to decompose an im-

age into its individual components. In image/video segmen-

1Project funded by the European Research Council (ERC) under the

Horizon 2020 research & innovation programme (grant No. 788535)
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Figure 2: Double-DIP Framework. Two Deep-Image-

Prior networks (DIP1 & DIP2) jointly decompose an input

image I into its layers (y1 & y2). Mixing those layers back

according to a learned mask m, reconstructs an image Î≈I .

tation, the task is to decompose the image into meaning-

ful sub-regions, such as foreground and background [1, 5,

17, 24, 31]. In transparency separation, the task is to sep-

arate the image into its superimposed reflection and trans-

mission [37, 32, 26, 14]. Such transparency can be a re-

sult of accidental physical reflections, or due to intentional

transparent overlays (e.g., watermarks). In image dehaz-

ing [6, 23, 18, 30, 8], the goal is to separate a hazy/foggy

image into its underlying haze-free image and the obscur-

ing haze/fog layers (airlight and transmission map). Fig. 1

shows how all these very different tasks can be casted into

a single unified framework of layer-decomposition. What

is common to all these decompositions is the fact that the

distribution of small patches within each separate layer is

“simpler” (more uniform) than in the original mixed image,

resulting in strong internal self-similarity.

Small image patches (e.g., 5x5, 7x7) have been shown

to repeat abundantly inside a single natural image [19, 41].

This strong internal patch recurrence was exploited for solv-

ing a large variety of computer vision tasks [9, 13, 16, 15,

19, 36, 29, 7, 11]. It was also shown that the empirical en-

tropy of patches inside a single image is much smaller than

the entropy in a collection of images [41]. It was further

observed by [5] that the empirical entropy of small image

regions composing a segment, is smaller than the empirical

cross-entropy of regions across different segments within

the same image. This observation has been successfully

used for unsupervised image segmentation [5, 17]. Finally,

it was observed [6] that the distribution of patches in a hazy

image tends to be more diverse (weaker internal patch sim-

ilarity) than in its underlying haze-free image. This obser-

vation was exploited by [6] for blind image dehazing.

In this paper we combine the power of the internal patch

recurrence (its strength in solving unsupervised tasks), with

the power of Deep-Learning. We propose an unsupervised

Deep framework for decomposing a single image into its

layers, such that the distribution of “image elements” within

each layer is “simple”. We build on top of the “Deep Im-

age Prior” (DIP) work of Ulyanov et al. [38]. They showed

that the structure of a single DIP generator network is suf-

ficient to capture the low-level statistics of a single natural

image. The input to the DIP network is random noise, and it

trains to reconstruct a single image (which serves as its sole

output training example). This network was shown to be

quite powerful for solving inverse problems like denoising,

super-resolution and inpainting, in an unsupervised way.

We observe that when employing a combination of mul-

tiple DIPs to reconstruct an image, those DIPs tend to

“split” the image, such that the patch distribution of each

DIP output is “simple”. Our approach for unsupervised

multi-task layer decomposition is thus based on a com-

bination of multiple (two or more) DIPs which we coin

“Double-DIP”. We demonstrate the applicability of this ap-

proach to a wide range of computer vision tasks, includ-

ing Image-Dehazing, Fg/Bg Segmentation of images and

videos, Watermark Removal, and Transparency Separation

in images and videos.

Double-DIP is general-purpose and caters many differ-

ent applications. Special-purpose methods designed for

one specific task may outperform Double-DIP on their own

challenge. However, to the best of our knowledge, this is

the first framework that is able to handle well such a large

variety of image-decomposition tasks. Moreover, in some

tasks (e.g., image dehazing), Double-DIP achieves compa-

rable and even better results than leading methods.

2. Overview of the Approach

Observe the illustrative example in Fig. 3a. Two different

textures, X and Y , are mixed to form a more complex im-

age Z which exhibits layer transparency. The distribution of

small patches and colors inside each pure texture is simpler

than the distribution of patches and colors in the combined

image. Moreover, the similarity of patches across the two

textures is very weak. It is well known [12] that if X and Y

are two independent random variables, the entropy of their

sum Z = X + Y is larger than their individual entropies:

max{H(X), H(Y )} ≤ H(Z). We leverage this fact to

separate the image into its natural “simpler” components.
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Figure 3: The complexity of mixtures of layers vs. the simplicity of the individual components. (See text for explanation).

2.1. Single DIP vs. Coupled DIPs

Let’s see what happens when a DIP network is used

to learn pure images versus mixed images. The graph in

Fig. 3.c shows the MSE Reconstruction Loss of a single DIP

network, as a function of time (training iterations), for each

of the 3 images in Fig. 3.a: (i) the orange plot is the loss

of a DIP trained to reconstruct the texture image X, (ii) the

blue plot – a DIP trained to reconstruct the texture Y, and

(iii) the green plot – a DIP trained to reconstruct their su-

perimposed mixture (image transparency). Note the larger

loss and longer convergence time of the mixed image, com-

pared to the loss of its individual components. In fact, the

loss of the mixed image is larger than the sum of the two in-

dividual losses. We attribute this behavior to the fact that the

distribution of patches in the mixed image is more complex

and diverse (larger entropy; smaller internal self-similarity)

than in any of its individual components.

While these are pure textures, the same behavior holds

also for mixtures of natural images. The internal self-

similarity of patches inside a single natural image tends to

be much stronger than the patch similarity across different

images [41]. We repeated the above experiment for a large

collection of natural images: We randomly sampled 100

pairs of images from the BSD100 dataset [27], and mixed

each pair. For each image pair we trained a DIP to learn

the mixed image and each of the individual images. The

same behavior exhibited in the graph of Fig. 3.c repeated

also in the case of natural images – interestingly, with an

even larger gap between the loss of the mixed image and its

individual components (see graph in the project website).

We performed a similar experiment for non-overlapping

image segments. It was observed [5] that the empirical

entropy of small regions composing an image segment is

smaller than their empirical cross-entropy across different

segments in the same image. We randomly sampled 100

pairs of images from the BSD100 dataset. For each pair we

generated a new image, whose left side is the left side of

one image, and whose right side is the right side of the sec-

ond image. We trained a DIP to learn the mixed image and

each of the individual components. The graph behavior of

Fig.3.c repeated also in this case (see project website).

We further observe that when multiple DIPs train to

jointly reconstruct a single input image, they tend to “split”

the image patches among themselves. Namely, similar

small patches inside the image tend to all be generated by a

single DIP network. In other words, each DIP captures dif-

ferent components of the internal statistics of the image. We

explain this behavior by the fact that a single DIP network is

fully convolutional, hence its filter weights are shared across

the entire spatial extent of the image. This promotes self-

similarity of patches in the output of each DIP.

The simplicity of the patch distribution in the output of

a single DIP is further supported by the denoising experi-

ments reported in [38]. When a DIP was trained to recon-

struct a noisy image (high patch diversity/entropy), it was

shown to generate along the way an intermediate clean ver-

sion of the image, before overfitting the noise. The clean

image has higher internal patch similarity (smaller patch di-

versity/entropy), hence is simpler for the DIP to reconstruct.

Building on these observations, we propose to decom-

pose an image into its layers by combining multiple (two

or more) DIPs, which we call “Double-DIP”. Figs. 3.a,b

show that when training 2 DIP networks to jointly recover

the mixed texture transparency image (as the sum of their

outputs), each DIP outputs a coherent layer on its own.

2.2. Unified Multi­Task Decomposition Architecture

What is a good image decomposition? There are in-

finitely many possible decompositions of an image into lay-

ers. However, we suggest that a meaningful decomposi-

tion satisfies the following criteria: (i) the recovered layers,

when recombined, should yield the input image. (ii) Each

of the layers should be as “simple” as possible, namely, it

should have a strong internal self-similarity of “image ele-

ments”. (iii) The recovered layers should be as independent
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of each other (uncorrelated) as possible.

These criteria form the basis of our general-purpose

Double-DIP architecture, illustrated in Fig. 2. The first cri-

terion is enforced via a “Reconstruction Loss”, which mea-

sures the error between the constructed image and the input

image (see Fig. 2). The second criterion is obtained by em-

ploying multiple DIPs (one per layer). The third criterion

is enforced by an “Exclusion Loss” between the outputs of

the different DIPs (minimizing their correlation).

Each DIP network (DIPi) reconstructs a different layer

yi of the input image I . The input to each DIPi is randomly

sampled uniform noise, zi. The DIP outputs, yi=DIPi(zi),
are mixed using a weight mask m, to form a reconstructed

image Î = m · y1 + (1−m) · y2, which should be as close

as possible to the input image I .

In some tasks the weight mask m is simple and known, in

other cases it needs to be learned (using an additional DIP).

The learned mask m may be uniform or spatially varying,

continuous or binary. These constraints on m are task-

dependant, and are enforced using a task-specific “Regu-

larization Loss”. The optimization loss is therefore:

Loss = LossReconst + α · LossExcl + β · LossReg (1)

where LossReconst = ‖I − Î‖, and LossExcl (the Exclu-

sion loss) minimizes the correlation between the gradients

of y1 and y2 (as defined in [40]). LossReg is a task-specific

mask regularization (e.g., in the segmentation task the mask

m has to be as close as possible to a binary image, while in

the dehazing task the t-map is continuous and smooth). We

further apply guided filtering [22] on the learned mask m

to obtain a refined mask.

Inherent Layer Ambiguities: Separating a superposi-

tion of 2 pure uncorrelated textures is relatively simple (see

Fig. 3.a). There are no real ambiguities other than a con-

stant global color ambiguity c : I = (y1 + c) + (y2 − c).
Similarly, pure non-overlapping textures are relatively easy

to segment. However, when a single layer contains multiple

independent regions, as in Fig. 3.b, the separation becomes

ambiguous (note the switched textures in the recovered out-

put layers of Fig. 3.b). Unfortunately, such ambiguities ex-

ist in almost any natural indoor/outdoor image.

To overcome this problem, initial “hints” are often re-

quired to guide the Double-DIP. These hints are provided

automatically in the form of very crude image saliency [20].

Namely, in the first few iterations, DIP1 is encouraged to

train more on the salient image regions, whereas DIP2 is

guided to train more on the non-salient image regions. This

guidance is relaxed after a few iterations.

When more than one image is available, this ambiguity

is often resolved on its own, without requiring any initial

hints. For example, in video transparency, the superpo-

sition of 2 video layers changes from frame to frame,

Figure 4: Foreground/Background Image Segmentation.

(Please see many more results in the project website)

resulting in different mixtures. The statistics of each layer,

however, remains the same throughout the video (despite its

dynamics) [34, 33]. This means that a single DIP suffices

to represent all the frames of a single video layer. Hence,

Double-DIP can be used to separate video sequences into 2

dynamic layers, and can often do so with no initial hints.

Optimization: The architecture of the individual DIPs is

similar to that used in [38]. As in the basic DIP, we found

that adding extra non-constant noise perturbations to the in-

put noise adds stability in the reconstruction. We gradually

increase noise perturbations with iterations. We further en-

rich the training set by transforming the input image I and

the corresponding random noise inputs of all the DIPs us-

ing 8 transformations (4 rotations by 90◦ combined with 2

mirror reflections - vertical and horizontal). Such an aug-

mentation was also found to be useful in the unsupervised

internal learning of [35]. The optimization process is done

using ADAM optimizer [25], and takes a few minutes per

image on Tesla V100 GPU. In the case of video, the run-

time grows sub-linearly with the number of frames, since

all frames are used to train the same DIP.

3. Segmentation

Fg/Bg segmentation can be viewed as decomposing an

image I into a foreground layer y1 and background layer

y2, combined by a binary mask m(x) at every pixel x:

I(x) = m(x)y1(x) + (1−m(x))y2(x) (2)

This formulation naturally fits our framework, subject to y1
and y2 complying to natural image priors and each being
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Figure 5: Video Decomposition using Double-DIP.

‘simpler’ to generate than I . This requirement is verified by

[5] that defines a ‘good image segment’ as one which can

be easily composed using its own pieces, but is difficult to

compose using pieces from other parts of the image.

The Zebra image in top row of Fig. 1 demonstrates the

decomposition of Eq. 2. It is apparent that the layers y1 and

y2, generated by DIP1 and DIP2, each complies with the

definition of [5], thus allowing to obtain also a good seg-

mentation mask m. Note that DIP1 and DIP2 automatically

filled-in the ‘missing’ image parts in each output layer.

In order to encourage the learned segmentation mask

m(x) to be binary, we use the following regularization loss:

LossReg(m) = (
∑

x

|m(x)− 0.5|)−1 (3)

While Double-DIP does not capture any semantics, it is

able to obtain high quality segmentation based solely on

unsupervised layer separation, as shown in Fig. 4. Please

see many more results in the project website. Other ap-

proaches to segmentation, such as semantic-segmentation

(eg., [21]) may outperform Double-DIP, but these are

supervised and trained on many labeled examples.

Video segmentation: The same approach can be used for

Fg/Bg video segmentation, by exploiting the fact that se-

quential video frames share internal patch statistics [34, 33].

Video segmentation is cast as 2-layer separation as follows:

I(i)(x) = m(i)(x)y
(i)
1 (x)+ (1−m(i)(x))y

(i)
2 (x) ∀i (4)

where i is the frame number. Fig. 5 depicts how a sin-

gle DIP is shared by all frames of a separated video layer:

Figure 6: Video Layer Separation via Double-DIP.

Double-DIP exploits the fact that all frames of a single dy-

namic video layer share the same patches. This promotes:

(a) video transparency separation, and (b) Fg/Bg video seg-

mentation. (See full videos in the project website).

y
(1)
1 , ..., y

(n)
1 are all generated by DIP1, y

(1)
2 , ..., y

(n)
2 are

generated by DIP2, m(1), ...,m(n) are all generated the

mask DIP. The similarity across frames in each separated

video-layer strengthens the tendency of a single DIP to gen-

erate a consistently segmented sequence. Fig. 6.b shows

example frames from 2 different segmented videos (full

videos can be found in the project website).

We implicitly enforce temporal consistency in the seg-

mentation mask, by imposing temporal consistency on

the random noise inputted to the mask DIP in successive

frames:
zm

(i+1)(x) = zm
(i)(x) + ∆z(i+1)

m (x) (5)

where z
(i)
m is the noise input at frame i to the DIP that gen-

erates the mask. These noises change gradually from frame

to frame by ∆z
(i)
m (which is a random uniform noise with

variance significantly lower than that of z
(i)
m ).

4. Transparent Layers Separation

In the case of image reflection, each pixel value in image

I(x) is a convex combination of a pixel from the transmis-

sion layer y1(x) and the corresponding pixel in the reflec-

tion layer y2(x). This again can be formulated as in Eq. 2,

where m(x) is the reflective mask. In most practical cases,

it is safe to assume that m(x) ≡ m is a uniform mask (with
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Figure 7: Watermark removal from a single image. Am-

biguity is mostly resolved by a rough bounding-box around

the watermark. In the tennis image (provided by [14] as a

tough image) part of the ”V” of ”CVPR” remains.

Figure 8: Layer ambiguity is resolved when two differ-

ent mixtures of the same layers are available.

an unknown constant 0 < m < 1). Double-DIP can be used

to decompose an image I to its transparent layers. Each

layer is again constructed by a separate DIP. The constant

m is calculated by a third DIP. The Exclusion loss encour-

ages minimal correlation between the recovered layers.

Fig. 3.a shows a successful separation in a simple case,

where each transparent layer has a relatively uniform patch

distribution. This however does not hold in general. Be-

cause each pixel in I is a mixture of 2 values, the inherent

layer ambiguity (Sec. 2.2) in a single transparent image is

much greater than in the binary segmentation case.

Ambiguity can be resolved using external training, as

in [40]. However, since Double-DIP is unsupervised, we re-

solve this ambiguity when 2 different mixtures of the same

layers are available. This gives rise to coupled equations:
{

I(1)(x) = m(1)y1(x) + (1−m(1))y2(x)
I(2)(x) = m(2)y1(x) + (1−m(2))y2(x)

(6)

Since the layers y1, y2 are shared by both mixtures, one

Double-DIP suffices to generate these layers using I(1), I(2)

simultaneously. The different coefficients m(1),m(2) are

generated by the same DIP using 2 random noises, z
(1)
m , z

(2)
m

See such an example in Fig. 8 (real transparent images).

Video Transparency Separation: The case of a static re-

flection and dynamic transmission can be solved in a similar

way. This case can be formulated as a set of equations:

I(i)(x) = m(i)y
(i)
1 (x) + (1−m(i))y2(x) (7)

where i is the frame number, and y2 is the static reflection

(hence has no frame index i, but could have varying inten-

sity over time, captured by m(i)). Applying Double-DIP

to a separate transparent video layers is done similarly to

video segmentation (Sec. 3). We employ one DIP for each

video layer, y1, y2 and one more DIP to generate m(i)

(but with a modified noise input per each frame, as in the

video segmentation). Fig. 6.a shows examples of video

separation. For full videos see the project website.

Watermark removal: Watermarks are widely-used for

copyright protection of photos and videos. Dekel et al. [14]

presented a watermark removal algorithm, based on recur-

rence of the same watermark in many different images.

Double-DIP is able to remove watermarks shared by very

few images, often only one.

We model watermarks as a special case of image reflec-

tion, where layers y1 and y2 are the clean image and the

watermark, respectively. This time, however, the mask is

not a constant m. The inherent transparent layer ambiguity

is resolved by one of two practical ways: (i) when only one

watermarked image is available, the user provides a crude

hint (bounding box) around the location of the watermark;

(ii) given a few images which share the same watermark

(2-3 typically suffice), the ambiguity is resolved on its own.

When a single image and a bounding box are provided,

the learned mask m(x) is constrained to be zero outside the

bounding box. This hint suffices for Double-DIP to perform

reasonably well on this task. See examples in Fig. 7. In fact,

the Tennis image in Fig. 7 was provided by [14] as an ex-

ample image immune to their watermark-removal method.

When multiple images contain the same watermark are

available, no bounding-box is needed. E.g., if 3 images

share a watermark, we use 3 Double-DIPs, which share

DIP2 to output the common watermark layer y2. Indepen-

dent layers y
(i)
1 , i=1, 2, 3, provide the 3 clean images. The
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Figure 9: Multi-image Watermark removal. Since the 3 images share the same watermark, the layer ambiguity is resolved.

opacity mask m, also common to the 3 images, is generated

by another shared DIP. Example is shown in Fig. 9.

5. Image Dehazing

Images of outdoor scenes are often degraded by a scat-

tering medium (e.g., haze, fog, underwater scattering). The

degradation in such images grows with scene depth. Typi-

cally, a hazy image I(x) is modeled [23]:

I(x) = t(x)J(x) + (1− t(x))A(x) (8)

where A(x) is the Airlight map (A-map), J(x) is the haze-

free image, and t(x) is the transmission (t-map), which ex-

ponentially decays with scene depth. The goal of image de-

hazing is to recover from a hazy image I(x) its underlying

haze-free image J(x) (i.e., the image that would have been

captured on a clear day with good visibility conditions).

We treat the dehazing problem as a layer sepa-

ration problem, where one layer is the haze-free image

(y1(x)=J(x)), the second layer is the A-map (y2(x)=A(x)),
and the mixing mask is the t-map (m(x)=t(x)).

Handling non-uniform airlight: Most single-image blind

dehazing methods (e.g. [23, 28, 18, 6, 8]) assume a uni-

form airlight color A for the entire image (i.e., A(x) ≡
A). This is true also for deep network based dehazing

methods [10, 30], which train on synthesized datasets of

hazy/non-hazy image pairs. The uniform airlight assump-

tion, however, is only an approximation. It tends to break,

e.g. in outdoor images captured at dawn or dusk, when the

sun is positioned close to the horizon. The airlight color is

affected by the non-isotropic scattering of sun rays by haze

particles, which causes the airlight color to vary across the

image. When the uniform airlight assumption holds, esti-

mating a single uniform airlight color A from the hazy I is

relatively easy (e.g., using the dark channel prior of [23], or

the patch-based prior of [6]), and the challenging part re-

mains the t-map estimation. However, when the uniform

Figure 10: Uniform vs. Non-Uniform Airlight recovery.

The uniform airlight assumption is often violated (e.g., in

dusk and dawn). Double-DIP allows to recover a non-

uniform airlight map, yielding higher-quality dehazing.

airlight assumption breaks, this produces dehazing results

with distorted colors. Estimating a varying airlight, on the

other hand, is a very challenging and ill-posed problem. Our

Double-DIP framework allows simultaneous estimation of

a varying airlight-map and varying t-map, by treating the A-

map as another layer, and the t-map as a mask. This results

in higher-quality image dehazing. The effect of estimating

a uniform vs. varying airlight is exemplified in Fig. 10.

In dehazing, LossReg forces the mask t(x) to be smooth
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He [23] Meng [28] Fattal [18] Cai [10] Ancuti [3] Berman [8] Ren [30] Bahat [6] Ours

PSNR 16.586 17.444 15.640 16.208 16.855 16.610 19.071 18.640 18.815

Table 1: Comparison of dehazing methods on O-Haze Dataset.

Figure 11: Comparing Double-DIP’s dehazing to specialized dehazing methods. (many more results in the project page)

(by minimizing the norm of its Laplacian). The internal

self-similarity of patches in a hazy image I(x) is weaker

than in its underlying haze-free image J(x) [6]. This drives

the first DIP to converge to a haze-free image. The A-map,

however, is not a typical natural image. While it satisfies

the strong internal self-similarity requirement, it tends to be

much smoother than a natural image, and should not deviate

much from a global airlight color. Hence, we apply an ex-

tra regularization loss on the airlight layer: ‖A(x)−A‖2,

where A is a single initial airlight color estimated from the

hazy image I using one of the standard methods (we used

the method of [6]). Although the deviations from the initial

airlight A are subtle, they are quite crucial to the quality of

the recovered haze-free image (see Fig. 10).

We evaluated our framework on the O-HAZE dataset [4]

and compared it to unsupervised and self-supervised

dehazing algorithms. Results are presented in Table 1.

Numerically, on this dataset, we ranked second of all

dehazing methods. However, visually, on images outside

this dataset, our results seem to surpass all dehazing

methods (see the project website). We further wanted to

compare to the winning methods of NTIRE’2018 Dehazing

Challenge [2], but only one of them had code available [39].

Our experiments show that while these methods obtained

state-of-the-art results on the tiny test-set of the challenge

(5 test images only!), they seem to severely overfit the

challenge training-set. In fact, they perform very poorly

on any hazy image outside this dataset (see Fig. 11 and

the project website). A visual comparison to many more

methods and on many more images is found in the project

website.

6. CONCLUSION

“Double-DIP” is a unified framework for unsupervised

layer decomposition, applicable for a wide variety of tasks.

It needs no training examples other than the input im-

age/video. Although general-purpose, in some tasks (e.g.,

dehazing) it achieves results comparable or even better than

leading methods in the field. We believe that augment-

ing Double-DIP with semantic/perceptual cues, may lead to

advancements also in semantic segmentation and in other

high-level tasks. This is part of our future work.
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