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A double Dirac cone is realized at the center of the Brillouin zone of a two-dimensional phononic

crystal (PC) consisting of a triangular array of core-shell-structure cylinders in water. The double

Dirac cone is induced by the accidental degeneracy of two double-degenerate Bloch states. Using a

perturbation method, we demonstrate that the double Dirac cone is composed of two identical and

overlapping Dirac cones whose linear slopes can also be accurately predicted from the method.

Because the double Dirac cone occurs at a relatively low frequency, a slab of the PC can be mapped

onto a slab of zero refractive index material by using a standard retrieval method. Total transmis-

sion without phase change and energy tunneling at the double Dirac point frequency are unambigu-

ously demonstrated by two examples. Potential applications can be expected in diverse fields such

as acoustic wave manipulations and energy flow control.VC 2014 AIP Publishing LLC.

[http://dx.doi.org/10.1063/1.4890304]

Many of graphene’s interesting properties, including its

integer quantum Hall effect, originate from its unique linear

dispersion relations at the corner of the Brillouin zone (BZ),

the so-called Dirac point.1 Not restricted to quantum sys-

tems,1–4 this special kind of linear dispersion relation is also

found in classical periodic systems including photonic and

phononic crystals (PCs), where interesting wave transport

phenomena like pseudo-diffusion, cloaking of an object, and

classical analogs of the Zitterbewegung have been stud-

ied.5–20 The linear dispersion relations in classical systems at

high symmetry points in the BZ can be categorized into two

types.20 One is located at the corner of the BZ, and the other

is located at the center. The first type usually comes from a

double-degenerate state, and there are two bands touching

linearly at the Dirac point. The second type is called a Dirac-

like cone, which is a result of accidental degeneracy of a

double-degenerate state and a single state. Thus, in addition

to two bands touching linearly, there is a flat band intersect-

ing the two linear bands at the Dirac-like point. Many studies

of Dirac points in classical systems have been devoted to

these two types of linear dispersion relations.

Recently, Sakoda21 predicted the existence of a different

type of linear dispersion relation called the double Dirac

cone in electromagnetic metamaterials and pointed out that

the double Dirac point occurs at the BZ center, meaning that

the effective refractive index is zero at that point. A double

Dirac cone consists of a pair of two identical and overlap-

ping Dirac cones. Thus, it requires a four-fold degenerate

state at the double Dirac point, which makes the realization

of a double Dirac cone in real systems extremely difficult.

Until now, there has been only one report on realizing a dou-

ble Dirac cone in an acoustic crystal with a honeycomb array

of iron cylinders in water.22 That double Dirac cone was

found when the wavelength was comparable to the lattice

constant, deeming the effective medium description

inappropriate.

In this work, we propose an acoustic system that pos-

sesses a double Dirac cone at a relatively low frequency. To

understand the underlying physics and verify the dispersion

of the double Dirac cone, we employ a perturbation method,

which not only offers a link between the eigenstates and the

linear dispersion but also accurately predicts the slopes of

the dispersion relations. Different from the previously

designed system,22 where the fields are concentrated in the

host at resonances, the fields in our systems are concentrated

in the scatterers, which lower the resonance frequency and

make it possible to describe our system using effective me-

dium theory. Around the double Dirac point frequency, we

reveal that a slab of our acoustic system can be mapped onto

an acoustic zero-index medium (ZIM) by using a standard

retrieval method. ZIMs23–32 have spectacular applications,

such as beam self-collimation, energy squeezing, and tunnel-

ing. Here, we demonstrate with two examples the interesting

wave transport behaviors in our systems. These examples

unambiguously show that zero phase change and total trans-

mission of plane waves can be simultaneously achieved,

both in a straight waveguide and in a U-shaped narrow neck

waveguide channel.

The acoustic system considered in our work is a two-

dimensional (2D) PC consisting of a triangular array of core-

shell cylinders embedded in a water host, as shown in the

center of Fig. 1(a). The inner cores are iron rods with radii

R2 ¼ 0:2822a, and the shells are made of silicone rubber

with outer radii R1 ¼ 0:3497a, where a is the lattice con-

stant. The mass densities of water, rubber, and iron are

q0 ¼ 1000 kg=m3, q1 ¼ 1300 kg=m3, and q2 ¼ 7670 kg=m3,

respectively. The longitudinal wave velocities in water, rub-

ber, and iron are c0 ¼ 1490m=s, c1 ¼ 489:9m=s, and

c2 ¼ 6010m=s, respectively. We ignore the shear wave

modes in the solid components in the simulation, as we will

show later that this simplification does not alter the essential

physics of the system. The band structures of the PC are
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calculated by using COMSOL Multiphysics, a commercial

package based on the finite element method, and the results

are plotted in Fig. 1(a), which exhibits a four-fold degenerate

point, marked as “A”, at the BZ center at frequency

x0 ¼ 0:6092ð2pc0=aÞ. In the vicinity of Point “A” the four

bands collapse into two linear bands, as shown in Fig. 1(b),

an enlarged view of the band structures near Point “A”.

In Figs. 1(e)–1(h), we plot the pressure fields for the

four degenerate Bloch states at Point “A”, where a dipolar

field pattern is seen in Figs. 1(e) and 1(f), and a quadrupolar

pattern is recognized in Figs. 1(g) and 1(h). In a PC consist-

ing of a triangular lattice of circular cylinders, the point

group at the BZ center is C6v, which has two 2D irreducible

representations: E1 and E2. In this case, the dipolar states

correspond to E1 representation, and the quadrupolar states

correspond to E2 representation. If we alter the inner and

outer radii of the core-shell structure, the four-fold degener-

acy will be lifted, and the dipolar states will be separated

from the quadrupolar states, which are shown in Figs. 1(c)

and 1(d). This indicates that the four-fold degeneracy at

Point “A” is a result of accidental degeneracy of a double-

degenerate dipolar state and a double-degenerate quadrupo-

lar state.

The band structures shown in Fig. 1 are obtained with-

out considering the shear modes in the solid components of

the cylinders. As noted in Ref. 33, for a PC consisting of iron

cylinders embedded in a water host, due to the large contrast

between the longitudinal wave velocities of iron and water,

the shear modes inside the solid cylinders can be safely

ignored. Even though we have a layer of rubber coating

around the iron in our PC system, we demonstrate in Fig. 2

that when the shear modes in the solid components are fully

taken into account, the double Dirac cone still exists, and its

main properties remain unchanged. Figure 2(a) shows the

band structures around the C point when the shear wave

velocities are set to c1t ¼ 200m=s for rubber and c2t ¼
3231m=s for iron. The radii of the iron cores and the coated

cylinders are chosen as R2 ¼ 0:2696a and R1 ¼ 0:3416a,
respectively. Despite of the slight changes in the geometric

parameters and the resulting frequency, the existence of a

double Dirac point is manifest in Fig. 2(a). The pressure field

distributions for the eigenstates at the double Dirac point are

plotted in Figs. 2(b)–2(e), which, indeed, exhibit similar

behaviors as those shown in Figs. 1(e)–1(h). Both the band

FIG. 1. Band structures of a two-

dimensional PC composed of a

triangular array of rubber-coated iron

cylinders embedded in a water host,

where R1 denotes the radii of the iron

cores, and R2 denotes the radii of

the coreþshell cylinders. The blue

dots present the full-wave calculations

obtained by using COMSOL

Multiphysics. The red curves show the

bands predicted by Eq. (2). (a) Band

structures for R1 ¼ 0:3497a and

R2 ¼ 0:2822a, with a being the lattice

constant. Four-fold degeneracy at

Point A is seen. (b) Enlarged view of

(a) around Point A. (c) and (d) Band

structures for different radii of iron

cores, with R2 ¼ 0:28a in (c) and R2 ¼
0:285a in (d), where the four-fold

degenerate state splits into two double-

degenerate states, marked as E1 and

E2, respectively. (e)-(h) The pressure

field distributions of the four degener-

ate eigenstates at Point A, where dark

red and dark blue denote the positive

and negative maxima, respectively.

The patterns in (e) and (f) are dipolar

modes, and those in (g) and (h) are

quadrupolar modes.

FIG. 2. Band structures and pressure field distributions for a PC that is

nearly the same as the one shown in Fig. 1(b), except that the shear modes in

iron and rubber are fully taken into account. (a) Band structures around the

C point, with R2 ¼ 0:2696a and R1 ¼ 0:3416a. Four-fold degeneracy at

Point B is seen. (b)–(e) Pressure field distributions in water for the four

degenerate eigenstates at Point B. The pressure field patterns are very similar

to those shown in Fig. 1, with (b) and (c) corresponding to the dipolar modes

and (d) and (e) corresponding to the quadrupolar modes.
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structures and the field patterns of the eigenstates show that

it is possible to neglect the shear mode. Thus, for simplicity

but without losing the essential physics, we ignore the shear

mode contributions in the following calculations.

The double Dirac cone possesses many interesting fea-

tures. First, different from the previously studied Dirac-like

cones at the BZ center, there is no flat band. Second, there

seems to be only two bands touching linearly rather than

four. Does this suggest that a double Dirac cone is composed

of two identical Dirac cones or two different but very close

Dirac cones? To answer this question and to gain deeper

insight into the origin of the unusual linear dispersions, we

adopt a perturbation method to study the double Dirac cone.

The perturbation method18–20 is similar to the ~k �~p method

in quantum mechanics and can accurately predict the linear

slopes of the bands. We assume that the four degenerate

Bloch eigenstates shown in Figs. 1(e)–1(h) are known and

denoted by u1, u2, u3, and u4, respectively. Taking these

ui s as the unperturbed basis to expand the Bloch eigenfunc-

tions at a point near Point “A”, we can then obtain the dis-

persion relations after solving the following secular equation

(see Refs. 18–20 for details):

det

xþ P11 P12 P13 P14

P21 xþ P22 P23 P24

P31 P32 xþ P33 P34

P41 P42 P43 xþ P44

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

¼ 0; (1)

where x ¼ ðx2
~k
� x2

0Þ=c
2
0, x0 is the frequency of the double

Dirac point, and Pljðl; j ¼ 1; 2; 3; 4Þ represents the mode-

coupling integrals between the degenerate eigenstates, which

may be calculated numerically. In the vicinity of Point “A”,

where Dk ¼ jk
*

� k
*

0j (k
*

0 ¼ 0 is the Bloch wave vector at

Point “A”), the solution to Eq. (1), to the first order in Dk,

can be written as

Dx~k ¼ x~k � x0 ¼ cbDk: (2)

Two double roots, cb ¼ 60:2037c0, are found. These roots

are the linear slopes of the bands predicted by the perturba-

tion method. The results given by Eq. (2) are plotted as red

curves in Fig. 1(b), while the results of the full-wave calcula-

tion obtained by using COMSOL Multiphysics are plotted as

blue dots. They agree with each other very well, suggesting

that the perturbation method is accurate. We emphasize the

following two points. First, the double roots to Eq. (1) unam-

biguously suggest that there are two identical cones coincid-

ing with each other and forming a double cone. Second, as

predicted by Eq. (2), the linear slopes of the bands are

exactly the same in all directions, meaning that the cone is

isotropic.

In the vicinity of the double Dirac point, the Bloch wave

vector, ~k, is very small in magnitude, which means that,

inside the PC, the accumulated phase change of the acoustic

wave should be small even after it travels a long distance. In

other words, the effective refractive index of the PC should

be near zero (because n / k). Figure 1 shows that within the

whole BZ, the eigenstates at the double Dirac point are the

only Bloch states that can be excited by an externally inci-

dent wave at that frequency, which is relatively low

(k0 � a=0:61) so that diffraction of waves is avoided.

Therefore, in the frequency region around the double Dirac

point, the PC should behave like a ZIM. In the following, we

will study the wave transport behaviors associated with the

double Dirac cone and reveal its connection to the ZIM. We

put a slab of PC into a straight waveguide channel, as shown

in Fig. 3(a), with sound hard boundary conditions on the

upper and lower walls of the channel. The surface normal of

the PC slab is along the CM direction.

When a plane wave at a frequency below the double

Dirac point is impinging on the PC slab from the left, the

accumulated phase change of the wave inside the slab is eas-

ily observed, as illustrated in Fig. 3(a). However, when the

frequency of the incident wave is very close to the double

Dirac point, the phase change becomes almost invisible, as

shown in Fig. 3(b), where only 40% of the incident wave

energy transmits through the PC slab. Zero phase change

implies that the refractive index is near zero; low transmis-

sion indicates that the impedance does not match the back-

ground. To enhance the transmission, we use a simple

technique. By truncating the cylinders in the first/last row of

the PC slab, we can effectively tune the surface impedance

of the slab, and it will influence and determine, to a large

extent, the total transmission coefficient of the PC slab.

Figure 3(c) shows that total transmission is achieved, where

FIG. 3. (a) The pressure field distributions when a CM-direction plane wave

is incident on a PC slab, whose structure is the same as that shown in Fig.

1(a). The PC slab is put inside a straight waveguide with sound hard bound-

ary conditions on the upper and lower walls of the waveguide. The fre-

quency of the incident wave is x ¼ 0:5906ð2pc0=aÞ below the double Dirac

point frequency. Substantial phase change can be observed inside the PC

slab. (b) The same as (a), except that the frequency of the incident wave is

x0 ¼ 0:6092ð2pc0=aÞ, exactly at the double Dirac point frequency. No

phase change is observed, although only 40% of the incident wave transmits

through the slab. (c) The same as (b), except that a straight-cut truncation is

introduced at the two surfaces of the PC slab. The inset of (c) gives a sche-

matic picture of the core-shell cylinders in the first row after truncation, with

the cut parameter, L ¼ 1:609R1.
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the cutting parameter, L (the height of the circular segment

shown in Fig. 3(c)), is 1:609R1.

To obtain the effective parameters of the PC slab, we

adopted a standard retrieval method as follows. Assuming

that the PC slab shown in Fig. 3(c) is replaced by a homoge-

neous material that gives the same scattering characteristics,

the effective refractive index, nef f , and the effective relative

impedance, Zr, of the PC slab can be retrieved from the com-

plex transmission and reflection coefficients for a normally

incident plane wave34–37

Zr ¼
Zef f

Z0
¼ 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ rð Þ2 � t2

1� rð Þ2 � t2

s

; (3)

eikef f d ¼ einef f k0d ¼
t

1� r
Zr � 1

Zr þ 1

; (4)

where Z0 (k0) and Zef f (kef f ) are, respectively, the impedan-

ces (wave numbers) of water and the PC slab and d is the

equivalent thickness of the hypothetical continuous material.

t and r represent the complex transmission and reflection

coefficients, respectively. With a passive medium, the sign

ambiguity of Eq. (3) can be eliminated by requiring that

ReðZrÞ � 0. Once Zr is known, nef f can be obtained accord-

ing to Eq. (4). We note that the real part of nef f has multiple

branches. The natural choice is to let jReðnef f Þj or jReðkef f Þj
be as small as possible.31,38 On the other hand, the pressure

field distributions shown in Fig. 3(c) indeed exhibit zero

phase change inside the PC slab, which also suggests that

nef f is very small or near zero.

Figure 4(a) shows the retrieved relative impedance, Zr,

as a function of the frequency, which is close to 2 except that

near the double Dirac point frequency; it contains a

Lorentzian-like feature. This Lorentzian-like artifact is

caused by the close-to-one behavior of t accompanied by the

close-to-zero behavior of r in the vicinity of the double

Dirac point frequency, as can be easily inferred from the

right-hand side of Eq. (3), and this artifact is an inherent

characteristic of the retrieval procedure, which was observed

in Ref. 37. The effective refractive index, nef f , demonstrated

in Fig. 4(b), is very close to zero around the double Dirac

point frequency, which coincides with our expectation and

means that the PC slab can be effectively described as a

ZIM. With a ZIM, one can achieve many interesting trans-

port properties. In what follows, we demonstrate an anoma-

lous tunneling effect achieved by our PC.

We construct a U-shaped waveguide channel by shrink-

ing the middle part of the waveguide we used previously, at

a ratio of H2=H1 � 0:3. Sound hard boundary conditions are

imposed on all the walls of the waveguide. At the double

Dirac point frequency, the incident plane wave can totally

transmit through the U-shaped channel with zero phase

change inside the channel and then exit from the right-side

surface as a plane wave with little phase distortion. We

emphasize that this tunneling effect is conceptually different

from the usual Fabry-Perot (FP) resonance. First, with a

U-shaped narrow neck waveguide, tunneling and total trans-

mission of wave energy can be realized at different neck

lengths at the same frequency, while the FP resonant fre-

quency is highly dependent on the horizontal length of the

neck. Second, inside the narrow neck, substantial phase

change can be observed for the FP resonance, e.g., the phase

in the middle of the neck is usually different from that at the

boundary of the neck. In our PC, on the contrary, no phase

change is observed throughout the neck.

To conclude, we designed a 2D PC in which a double

Dirac cone is realized at the center of the BZ. The PC con-

sists of a triangular array of rubber-coated iron cylinders em-

bedded in a water host, and the double Dirac cone is created

by the accidental degeneracy of two double-degenerate

eigenstates. The double Dirac cone contains two identical

Dirac cones, whose linear slopes and isotropic features can

be accurately predicted and verified by a first-principles per-

turbation method. The effective refractive index and relative

impedance of a PC slab can be obtained by using a standard

retrieval method, which shows the equivalence between the

PC slab and an acoustic ZIM around the double Dirac point

frequency. Total transmission of wave energy and zero phase

change inside the PC slab are unambiguously demonstrated

in two examples, and these phenomena are robust regardless

of whether or not the shear wave modes inside the solid com-

ponents are included. In addition to these features, our find-

ings suggest diverse possibilities for potential applications in

multiple fields such as cloaking of an object, directional

emission, the Zitterbewegung effect associated with a four-

fold degenerate state,22 and the phase matching effect on the

enhancement of nonlinearity.32

The authors wish to thank Dr. Min Yang for helpful

discussions. This research reported here was supported by

the National Natural Science Foundation of China (Grant

No.11274120), the Fundamental Research Funds for

the Central Universities (Grant No. 2014ZG0032), and

King Abdullah University of Science and Technology

(KAUST).

FIG. 4. (a) The relative impedance, Zr , as a function of the frequency.

(b) The effective refractive index, nef f , as a function of the frequency. nef f is

very close to zero around the double Dirac point frequency, which is marked

with magenta dashed lines. (c) The pressure field distributions when a plane

wave is impinging on a U-shaped narrow channel filled with our PC at the

double Dirac point frequency. Sound hard boundary conditions are imposed

on all walls of the channel. H2=H1 � 0:3. The incident wave can transmit

through the U-shaped narrow channel.
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