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Abstract

One key task of fine-grained sentiment

analysis of product reviews is to extract

product aspects or features that users have

expressed opinions on. This paper fo-

cuses on supervised aspect extraction us-

ing deep learning. Unlike other highly so-

phisticated supervised deep learning mod-

els, this paper proposes a novel and yet

simple CNN model 1 employing two types

of pre-trained embeddings for aspect ex-

traction: general-purpose embeddings and

domain-specific embeddings. Without us-

ing any additional supervision, this model

achieves surprisingly good results, outper-

forming state-of-the-art sophisticated ex-

isting methods. To our knowledge, this

paper is the first to report such double em-

beddings based CNN model for aspect ex-

traction and achieve very good results.

1 Introduction

Aspect extraction is an important task in sentiment

analysis (Hu and Liu, 2004) and has many applica-

tions (Liu, 2012). It aims to extract opinion targets

(or aspects) from opinion text. In product reviews,

aspects are product attributes or features. For ex-

ample, from “Its speed is incredible” in a laptop

review, it aims to extract “speed”.

Aspect extraction has been performed using su-

pervised (Jakob and Gurevych, 2010; Chernyshe-

vich, 2014; Shu et al., 2017) and unsupervised ap-

proaches (Hu and Liu, 2004; Zhuang et al., 2006;

Mei et al., 2007; Qiu et al., 2011; Yin et al., 2016;

He et al., 2017). Recently, supervised deep learn-

ing models achieved state-of-the-art performances

(Li and Lam, 2017). Many of these models use

1The code of this paper can be found at https://www.
cs.uic.edu/˜hxu/.

handcrafted features, lexicons, and complicated

neural network architectures (Poria et al., 2016;

Wang et al., 2016, 2017; Li and Lam, 2017). Al-

though these approaches can achieve better per-

formances than their prior works, there are two

other considerations that are also important. (1)

Automated feature (representation) learning is al-

ways preferred. How to achieve competitive per-

formances without manually crafting features is an

important question. (2) According to Occam’s ra-

zor principle (Blumer et al., 1987), a simple model

is always preferred over a complex model. This is

especially important when the model is deployed

in a real-life application (e.g., chatbot), where a

complex model will slow down the speed of infer-

ence. Thus, to achieve competitive performance

whereas keeping the model as simple as possible

is important. This paper proposes such a model.

To address the first consideration, we propose a

double embeddings mechanism that is shown cru-

cial for aspect extraction. The embedding layer is

the very first layer, where all the information about

each word is encoded. The quality of the em-

beddings determines how easily later layers (e.g.,

LSTM, CNN or attention) can decode useful infor-

mation. Existing deep learning models for aspect

extraction use either a pre-trained general-purpose

embedding, e.g., GloVe (Pennington et al., 2014),

or a general review embedding (Poria et al., 2016).

However, aspect extraction is a complex task that

also requires fine-grained domain embeddings.

For example, in the previous example, detecting

“speed” may require embeddings of both “Its” and

“speed”. However, the criteria for good embed-

dings for “Its” and “speed” can be totally differ-

ent. “Its” is a general word and the general em-

bedding (trained from a large corpus) is likely to

have a better representation for “Its”. But, “speed”

has a very fine-grained meaning (e.g., how many

instructions per second) in the laptop domain,

https://www.cs.uic.edu/~hxu/
https://www.cs.uic.edu/~hxu/
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whereas “speed” in general embeddings or general

review embeddings may mean how many miles

per second. So using in-domain embeddings is im-

portant even when the in-domain embedding cor-

pus is not large. Thus, we leverage both general

embeddings and domain embeddings and let the

rest of the network to decide which embeddings

have more useful information.

To address the second consideration, we use a

pure Convolutional Neural Network (CNN) (Le-

Cun et al., 1995) model for sequence labeling. Al-

though most existing models use LSTM (Hochre-

iter and Schmidhuber, 1997) as the core building

block to model sequences (Liu et al., 2015; Li and

Lam, 2017), we noticed that CNN is also success-

ful in many NLP tasks (Kim, 2014; Zhang et al.,

2015; Gehring et al., 2017). One major draw-

back of LSTM is that LSTM cells are sequentially

dependent. The forward pass and backpropaga-

tion must serially go through the whole sequence,

which slows down the training/testing process 2.

One challenge of applying CNN on sequence la-

beling is that convolution and max-pooling opera-

tions are usually used for summarizing sequential

inputs and the outputs are not well-aligned with

the inputs. We discuss the solutions in Section 3.

We call the proposed model Dual Embeddings

CNN (DE-CNN). To the best of our knowledge,

this is the first paper that reports a double embed-

ding mechanism and a pure CNN-based sequence

labeling model for aspect extraction.

2 Related Work

Sentiment analysis has been studied at document,

sentence and aspect levels (Liu, 2012; Pang and

Lee, 2008; Cambria and Hussain, 2012). This

work focuses on the aspect level (Hu and Liu,

2004). Aspect extraction is one of its key tasks,

and has been performed using both unsupervised

and supervised approaches. The unsupervised ap-

proach includes methods such as frequent pattern

mining (Hu and Liu, 2004; Popescu and Etzioni,

2005), syntactic rules-based extraction (Zhuang

et al., 2006; Wang and Wang, 2008; Qiu et al.,

2011), topic modeling (Mei et al., 2007; Titov

and McDonald, 2008; Lin and He, 2009; Moghad-

dam and Ester, 2011), word alignment (Liu et al.,

2We notice that a GPU with more cores has no training
time gain on a low-dimensional LSTM because extra cores
are idle and waiting for the other cores to sequentially com-
pute cells.

2013) and label propagation (Zhou et al., 2013;

Shu et al., 2016).

Traditionally, the supervised approach (Jakob

and Gurevych, 2010; Mitchell et al., 2013; Shu

et al., 2017) uses Conditional Random Fields

(CRF) (Lafferty et al., 2001). Recently, deep

neural networks are applied to learn better fea-

tures for supervised aspect extraction, e.g., us-

ing LSTM (Williams and Zipser, 1989; Hochre-

iter and Schmidhuber, 1997; Liu et al., 2015)

and attention mechanism (Wang et al., 2017; He

et al., 2017) together with manual features (Poria

et al., 2016; Wang et al., 2016). Further, (Wang

et al., 2016, 2017; Li and Lam, 2017) also pro-

posed aspect and opinion terms co-extraction via

a deep network. They took advantage of the gold-

standard opinion terms or sentiment lexicon for as-

pect extraction. The proposed approach is close

to (Liu et al., 2015), where only the annotated

data for aspect extraction is used. However, we

will show that our approach is more effective even

compared with baselines using additional supervi-

sions and/or resources.

The proposed embedding mechanism is related

to cross domain embeddings (Bollegala et al.,

2015, 2017) and domain-specific embeddings (Xu

et al., 2018a,b). However, we require the domain

of the domain embeddings must exactly match the

domain of the aspect extraction task. CNN (LeCun

et al., 1995; Kim, 2014) is recently adopted for

named entity recognition (Strubell et al., 2017).

CNN classifiers are also used in sentiment analysis

(Poria et al., 2016; Chen et al., 2017). We adopt

CNN for sequence labeling for aspect extraction

because CNN is simple and parallelized.

3 Model

The proposed model is depicted in Figure 1. It

has 2 embedding layers, 4 CNN layers, a fully-

connected layer shared across all positions of

words, and a softmax layer over the labeling space

Y = {B, I,O} for each position of inputs. Note

that an aspect can be a phrase and B, I indicate

the beginning word and non-beginning word of an

aspect phrase and O indicates non-aspect words.

Assume the input is a sequence of word indexes

x = (x1, . . . , xn). This sequence gets its two

corresponding continuous representations x
g and

x
d via two separate embedding layers (or embed-

ding matrices) W g and W d. The first embedding

matrix W g represents general embeddings pre-
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Figure 1: Overview of DE-CNN: red vectors are

zero vectors; purple triangles are CNN filters.

trained from a very large general-purpose corpus

(usually hundreds of billions of tokens). The sec-

ond embedding matrix W d represents domain em-

beddings pre-trained from a small in-domain cor-

pus, where the scope of the domain is exactly the

domain that the training/testing data belongs to.

As a counter-example, if the training/testing data

is in the laptop domain, then embeddings from

the electronics domain are considered to be out-of-

domain embeddings (e.g., the word “adapter” may

represent different types of adapters in electronics

rather than exactly a laptop adapter). That is, only

laptop reviews are considered to be in-domain.

We do not allow these two embedding layers

trainable because small training examples may

lead to many unseen words in test data. If em-

beddings are tunable, the features for seen words’

embeddings will be adjusted (e.g., forgetting use-

less features and infusing new features that are re-

lated to the labels of the training examples). And

the CNN filters will adjust to the new features ac-

cordingly. But the embeddings of unseen words

from test data still have the old features that may

be mistakenly extracted by CNN.

Then we concatenate two embeddings x
(1) =

x
g ⊕ x

d and feed the result into a stack of 4 CNN

layers. A CNN layer has many 1D-convolution fil-

ters and each (the r-th) filter has a fixed kernel size

k = 2c+1 and performs the following convolution

Description Training Testing

#S./#A. #S./#A.

SemEval-14 Laptop 3045/2358 800/654

SemEval-16 Restaurant 2000/1743 676/622

Table 1: Dataset description with the number of

sentences(#S.) and number of aspect terms(#A.)

operation and ReLU activation:

x
(l+1)
i,r = max

(

0, (
c

∑

j=−c

w
(l)
j,rx

(l)
i+j) + b(l)r

)

, (1)

where l indicates the l-th CNN layer. We apply

each filter to all positions i = 1 : n. So each fil-

ter computes the representation for the i-th word

along with 2c nearby words in its context. Note

that we force the kernel size k to be an odd num-

ber and set the stride step to be 1 and further pad

the left c and right c positions with all zeros. In

this way, the output of each layer is well-aligned

with the original input x for sequence labeling

purposes. For the first (l = 1) CNN layer, we

employ two different filter sizes. For the rest 3

CNN (l ∈ {2, 3, 4}) layers, we only use one fil-

ter size. We will discuss the details of the hyper-

parameters in the experiment section. Finally, we

apply a fully-connected layer with weights shared

across all positions and a softmax layer to com-

pute label distribution for each word. The out-

put size of the fully-connected layer is |Y| = 3.

We apply dropout after the embedding layer and

each ReLU activation. Note that we do not apply

any max-pooling layer after convolution layers be-

cause a sequence labeling model needs good rep-

resentations for every position and max-pooling

operation mixes the representations of different

positions, which is undesirable (we show a max-

pooling baseline in the next section).

4 Experiments

4.1 Datasets

Following the experiments of a recent aspect ex-

traction paper (Li and Lam, 2017), we conduct

experiments on two benchmark datasets from Se-

mEval challenges (Pontiki et al., 2014, 2016) as

shown in Table 4.1. The first dataset is from the

laptop domain on subtask 1 of SemEval-2014 Task

4. The second dataset is from the restaurant do-

main on subtask 1 (slot 2) of SemEval-2016 Task

5. These two datasets consist of review sentences

with aspect terms labeled as spans of characters.
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We use NLTK3 to tokenize each sentence into a

sequence of words.

For the general-purpose embeddings, we use the

glove.840B.300d embeddings (Pennington et al.,

2014), which are pre-trained from a corpus of 840

billion tokens that cover almost all web pages.

These embeddings have 300 dimensions. For

domain-specific embeddings, we collect a laptop

review corpus and a restaurant review corpus and

use fastText (Bojanowski et al., 2016) to train do-

main embeddings. The laptop review corpus con-

tains all laptop reviews from the Amazon Review

Dataset (He and McAuley, 2016). The restaurant

review corpus is from the Yelp Review Dataset

Challenge 4. We only use reviews from restaurant

categories that the second dataset is selected from
5. We set the embedding dimensions to 100 and

the number of iterations to 30 (for a small embed-

ding corpus, embeddings tend to be under-fitted),

and keep the rest hyper-parameters as the defaults

in fastText. We further use fastText to compose

out-of-vocabulary word embeddings via subword

N-gram embeddings.

4.2 Baseline Methods

We perform a comparison of DE-CNN with three

groups of baselines using the standard evaluation

of the datasets6 7. The results of the first two

groups are copied from (Li and Lam, 2017). The

first group uses single-task approaches.

CRF is conditional random fields with basic

features8 and GloVe word embedding(Pennington

et al., 2014).

IHS RD (Chernyshevich, 2014) and NLANGP

(Toh and Su, 2016) are best systems in the original

challenges (Pontiki et al., 2014, 2016).

WDEmb (Yin et al., 2016) enhanced CRF with

word embeddings, linear context embeddings and

dependency path embeddings as input.

LSTM (Liu et al., 2015; Li and Lam, 2017) is a

vanilla BiLSTM.

BiLSTM-CNN-CRF (Reimers and Gurevych,

2017) is the state-of-the-art from the Named En-

tity Recogntion (NER) community. We use this

3http://www.nltk.org/
4https://www.yelp.com/dataset/

challenge
5http://www.cs.cmu.edu/˜mehrbod/RR/

Cuisines.wht
6http://alt.qcri.org/semeval2014/task4
7http://alt.qcri.org/semeval2016/task5
8http://sklearn-crfsuite.readthedocs.

io/en/latest/tutorial.html

baseline9 to demonstrate that a NER model may

need further adaptation for aspect extraction.

The second group uses multi-task learning

and also take advantage of gold-standard opinion

terms/sentiment lexicon.

RNCRF (Wang et al., 2016) is a joint model

with a dependency tree based recursive neural net-

work and CRF for aspect and opinion terms co-

extraction. Besides opinion annotations, it also

uses handcrafted features.

CMLA (Wang et al., 2017) is a multi-layer

coupled-attention network that also performs as-

pect and opinion terms co-extraction. It uses gold-

standard opinion labels in the training data.

MIN (Li and Lam, 2017) is a multi-task learn-

ing framework that has (1) two LSTMs for jointly

extraction of aspects and opinions, and (2) a third

LSTM for discriminating sentimental and non-

sentimental sentences. A sentiment lexicon and

high precision dependency rules are employed to

find opinion terms.

The third group is the variations of DE-CNN.

GloVe-CNN only uses glove.840B.300d to

show that domain embeddings are important.

Domain-CNN does not use the general embed-

dings to show that domain embeddings alone are

not good enough as the domain corpus is limited

for training good general words embeddings.

MaxPool-DE-CNN adds max-pooling in the

last CNN layer. We use this baseline to show that

the max-pooling operation used in the traditional

CNN architecture is harmful to sequence labeling.

DE-OOD-CNN replaces the domain embed-

dings with out-of-domain embeddings to show

that a large out-of-domain corpus is not a good

replacement for a small in-domain corpus for do-

main embeddings. We use all electronics reviews

as the out-of-domain corpus for the laptop and all

the Yelp reviews for restaurant.

DE-Google-CNN replaces the glove embed-

dings with GoogleNews embeddings10, which are

pre-trained from a smaller corpus (100 billion to-

kens). We use this baseline to demonstrate that

general embeddings that are pre-trained from a

larger corpus performs better.

DE-CNN-CRF replaces the softmax activation

with a CRF layer11. We use this baseline to

9https://github.com/UKPLab/

emnlp2017-bilstm-cnn-crf
10https://code.google.com/archive/p/

word2vec/
11https://github.com/allenai/allennlp

http://www.nltk.org/
https://www.yelp.com/dataset/challenge
https://www.yelp.com/dataset/challenge
http://www.cs.cmu.edu/~mehrbod/RR/Cuisines.wht
http://www.cs.cmu.edu/~mehrbod/RR/Cuisines.wht
http://alt.qcri.org/semeval2014/task4
http://alt.qcri.org/semeval2016/task5
http://sklearn-crfsuite.readthedocs.io/en/latest/tutorial.html
http://sklearn-crfsuite.readthedocs.io/en/latest/tutorial.html
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
https://github.com/UKPLab/emnlp2017-bilstm-cnn-crf
https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://github.com/allenai/allennlp
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Model Laptop Restaurant

CRF 74.01 69.56

IHS RD 74.55 -

NLANGP - 72.34

WDEmb 75.16 -

LSTM 75.25 71.26

BiLSTM-CNN-CRF 77.8 72.5

RNCRF 78.42 -

CMLA 77.80 -

MIN 77.58 73.44

GloVe-CNN 77.67 72.08

Domain-CNN 78.12 71.75

MaxPool-DE-CNN 77.45 71.12

DE-LSTM 78.73 72.94

DE-OOD-CNN 80.21 74.2

DE-Google-CNN 78.8 72.1

DE-CNN-CRF 80.8 74.1

DE-CNN 81.59* 74.37*

Table 2: Comparison results in F1 score: numbers

in the third group are averaged scores of 5 runs as

in (Li and Lam, 2017). * indicates the result is

statistical significant at the level of 0.05.

demonstrate that CRF may not further improve the

challenging performance of aspect extraction.

4.3 Hyper-parameters

We hold out 150 training examples as validation

data to decide the hyper-parameters. The first

CNN layer has 128 filters with kernel sizes k = 3
(where c = 1 is the number of words on the left

(or right) context) and 128 filters with kernel sizes

k = 5 (c = 2). The rest 3 CNN layers have 256

filters with kernel sizes k = 5 (c = 2) per layer.

The dropout rate is 0.55 and the learning rate of

Adam optimizer (Kingma and Ba, 2014) is 0.0001

because CNN training tends to be unstable.

4.4 Results and Analysis

Table 4.3 shows that DE-CNN performs the best.

The double embedding mechanism improves the

performance and in-domain embeddings are im-

portant. We can see that using general embeddings

(GloVe-CNN) or domain embeddings (Domain-

CNN) alone gives inferior performance. We fur-

ther notice that the performance on Laptops and

Restaurant domains are quite different. Lap-

tops has many domain-specific aspects, such as

“adapter”. So the domain embeddings for Lap-

tops are better than the general embeddings. The

Restaurant domain has many very general aspects

like “staff”, “service” that do not deviate much

from their general meanings. So general embed-

dings are not bad. Max pooling is a bad op-

eration as indicated by MaxPool-DE-CNN since

the max pooling operation loses word positions.

DE-OOD-CNN’s performance is poor, indicating

that making the training corpus of domain embed-

dings to be exactly in-domain is important. DE-

Google-CNN uses a much smaller training corpus

for general embeddings, leading to poorer perfor-

mance than that of DE-CNN. Surprisingly, we no-

tice that the CRF layer (DE-CNN-CRF) does not

help. In fact, the CRF layer can improve 1-2%

when the laptop’s performance is about 75%. But

it doesn’t contribute much when laptop’s perfor-

mance is above 80%. CRF is good at modeling

label dependences (e.g., label I must be after B),

but many aspects are just single words and the ma-

jor types of errors (mentioned later) do not fall in

what CRF can solve. Note that we did not tune

the hyperparameters of DE-CNN-CRF for practi-

cal purpose because training the CRF layer is ex-

tremely slow.

One important baseline is BiLSTM-CNN-CRF,

which is markedly worse than our method. We

believe the reason is that this baseline leverages

dependency-based embeddings(Levy and Gold-

berg, 2014), which could be very important for

NER. NER models may require further adapta-

tions (e.g., domain embeddings) for opinion texts.

DE-CNN has two major types of errors. One

type comes from inconsistent labeling (e.g., for

the restaurant data, the same aspect is sometimes

labeled and sometimes not). Another major type

of errors comes from unseen aspects in test data

that require the semantics of the conjunction word

“and” to extract. For example, if A is an aspect

and when “A and B” appears, B should also be ex-

tracted but not. We leave this to future work.

5 Conclusion

We propose a CNN-based aspect extraction model

with a double embeddings mechanism without

extra supervision. Experimental results demon-

strated that the proposed method outperforms

state-of-the-art methods with a large margin.
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