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DOUBLE FORMS, CURVATURE STRUCTURES
AND THE (p,q)-CURVATURES

M.-L. LABBI

ABSTRACT. We introduce a natural extension of the metric tensor and the
Hodge star operator to the algebra of double forms to study some aspects
of the structure of this algebra. These properties are then used to study
new Riemannian curvature invariants, called the (p, g)-curvatures. They are a
generalization of the p-curvature obtained by substituting the Gauss-Kronecker
tensor to the Riemann curvature tensor. In particular, for p = 0, the (0, q)-
curvatures coincide with the H. Weyl curvature invariants, for p = 1 the (1, q)-
curvatures are the curvatures of generalized Einstein tensors, and for ¢ = 1
the (p, 1)-curvatures coincide with the p-curvatures.

Also, we prove that the second H. Weyl curvature invariant is nonnegative
for an Einstein manifold of dimension n > 4, and it is nonpositive for a con-
formally flat manifold with zero scalar curvature. A similar result is proved
for the higher H. Weyl curvature invariants.

1. INTRODUCTION

Let (M, g) be a smooth Riemannian manifold of dimension n. We denote by
AM = EBp>0 A*PM the ring of differential forms on M. Considering the ten-
sor product over the ring of smooth functions, we define D = A*M ® A*M =
EBp,qZO DP:1 where DP?1 = A*PM @ A*IM. 1t is a graded associative ring, and it is
called the ring of double forms on M.

The ring of curvature structures on M is the ring C = -, C?, where C? denotes
the symmetric elements in DPP.

These notions have been developed by Kulkarni [3], Thorpe [7] and other math-
ematicians.

The object of this paper is to investigate some properties of these structures in
order to study generalized p-curvature functions.

The paper is divided into 5 sections. In section 2, we study the multiplication
map by ¢’ in DP9, In particular we prove that it is one-to-one if p+q+1 < n. This
result will play an important role in simplifying complicated calculations, as shown
in section 5. We also deduce some properties of the multiplication map by g.

In section 3, we introduce a natural inner product (,) in D and we extend
the Hodge operator * in a natural way to D. Then, we prove two simple relations
between the contraction map and the multiplication map by g, namely for all w € D,
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we have

gw = *C * w.
Also, we prove that the contraction map is the adjoint of the multiplication by g.
Precisely for all wy,ws € D, we have

(gwi,w2) = (w1, cwa),
and we deduce some properties of the contraction map c.

At the end of this section, we deduce a canonical orthogonal decomposition of
DP-1 and we give explicit formulas for the orthogonal projections onto the different
factors.

In section 4, we concentrate on the ring of symmetric double forms satisfying
the first Bianchi identity which shall be denoted by C;. We prove in this context a
useful explicit formula for the Hodge star operator. Also, we emphasize its action
on the different factors of the previous orthogonal decomposition of double forms.

In section 5, we define new Riemannian curvature invariants, namely the (p, q)-
curvature tensors 2, oy and their sectional curvatures s, 4. Note that these cur-
vatures include many of the well-known curvatures.

For ¢ = 1, the (p, 1)-curvature coincides with the p-curvature [4]. In particular,
5(0,1) is half of the scalar curvature and s(, 5 1y is the sectional curvature of (M, g).
For p = 0 and 2¢q = n, S(0,2) is, up to a constant, the Killing-Lipshitz curvature.
More generally, s(,_24,q)(P) is, up to a constant, the Killing-Lipshitz curvature of
Pt

For p =0, 5(9,9) are scalar functions which generalize the usual scalar curvature.
They are, up to a constant, the H. Weyl curvature invariants, that is, the integrands
in the Weyl tube formula [g].

Finally, for p = 1, R(1 4) are generalized Einstein tensors. In particular, for ¢ = 1
we recover the usual Einstein tensor.

This section also contains several examples and properties of these curvature
invariants. In particular, by using the (p, 1)-curvatures we prove a characterization
of Einstein metrics and conformally flat metrics with constant scalar curvature.
Also, a generalization of the previous result to the higher (p, ¢)-curvatures is proved.

In the last section, section 6, we prove under certain geometric hypothesis on the
metric, a restriction on the sign of the H. Weyl curvature invariants that are the
integrands in his well-known tube formula [§]. In particular we prove the following
results:

If (M, g) is an Einstein manifold with dimension n > 4, then hy > 0 and hy =0
if and only if (M, g) is flat.

If (M, g) is a conformally flat manifold with zero scalar curvature and dimension
n >4, then hy <0 and hy =0 if and only if (M, g) is flat.

Here hy is the second H. Weyl curvature invariant, which can be defined by

1
ha =R ~ (R + IR,
where R denotes the Riemann curvature tensor of (M, g).

2. THE ALGEBRA OF DOUBLE FORMS

Let (V,g) be a Euclidean real vector space of dimension n. In the following,
we shall identify whenever convenient (via their Euclidean structures) the vector
spaces with their duals. Let A*V = @ o APV (resp. AV =P, -, APV) denote
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the exterior algebra of p-forms (resp. p-vectors) on V. Considering the tensor
product, we define the space of double forms D = A*V@A*V = @p,qzo DP:1 where
DP9 = A*PV @ A*1V . Tt is a bi-graded associative algebra, where the multiplication
is denoted by a dot. We shall omit it whenever it is possible.

For w1 = 01 ® 63 € DP7 and wy, = 03 ® 04 € D™, we have

(1) w1.Wy = (91 X 02)(03 (%9 94) = (91 A 93) (%9 (02 A 94) € prtmats,

Recall that each element of the tensor product DP9 = A*PV QA*1V can be identified
canonically with a bilinear form APV x A?V — R. That is, a multilinear form which
is skew symmetric in the first p-arguments and also in the last g-arguments. Under
this identification, we have

wW1.wo (21 A oo ATptry Y1 A oo A Ygts)

= (01 A03) (X1 Ao AZpyr) (B2 A1) (Y1 A oo A Ygs)
@ - p,%,q, S DD @) A ATty Up(r) A )

TESp4r,PESqts
X W2 (To(pt1) A s ATo(pir)i Yp(a+1) N A Yp(gts))-

A similar calculation shows that

Wiz A A Thps Y1 A oo A Ykq)

=01 A NO) (1 A e Axgp) (B2 Ao AB2) (Y1 A oo A Yiep)

3 1
(3) = = €(@)e(P)wi(To) A oos A Zo(p)s Yp(1) N - AN Yp(q))
(p")*(a")
’ ' 0€Skp,pESkq

WL (T o (p(k=1)41) A o A To(kp)s Yp(a(h—1)+1) A+ A Yp(kg))-
In particular, if w; € D! we have
(4) WE (@1 A e ATgyyr A e Ayg) = Kl det[wy (24, 9]
We now introduce a basic map on D:

Definition 2.1. The contraction ¢ maps DP+¢ into DP~ 1471, Let w € DP9, and
set cw = 0 if p =0 or ¢ = 0. Otherwise set

n

Ww(T1 A e ATp—1, Y1 A e AYg—1) = Zw(ej ANTIA o Tp_1,65 NYL A oo AYg—1),
j=1

where {ey, ..., e, } is an orthonormal basis of V.

The contraction map ¢ together with the multiplication map by g (which shall
be denoted also by g) play a very important role in our study.
Letting w € DP-7, the following formula was proved in [3]:

(5) c(gw) = gew + (n — p — Qw.
After consecutive applications of the previous formula, we get
(gw) = gfw + k(m + k — 1)c*'w, wherem =n —p — ¢,
F(gPw) = g*Fw 4+ 2k(m + k — 2)g* rw - k(k —1)(m+k —3)(m + &k —2)c* 2w,
F(PPw) = g3cFw + 3k(m + k — 3)g2 T w3k(k — 1) (m+k — 3)(m+k — 4)gc* 2w
+Ek(k—1)(k—=2)(m+k—-3)(m+k—4)(m+k—5)c">w.
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More generally, we have

Lemma 2.1. For all k,1 > 1 and w € DP?, we have

! min{k,l} r—1 I—r
k9 9 x k g k—r
(6) C(F w) = l'cw—l— ;1 C’Jlon p_Q+k_l_Z)(l—r) .

Corollary 2.2. If n =p+ q and w € DP9, then for all k we have
F(g*w) = gF(Fw).
Proof. After taking k =1 and n = p + ¢ in formula (@]), we get

k kfr k

g . —r g
Ck(k:' w) = cmrZCkH —r)!Ck w= yckw

=0

O

As a second consequence of the previous lemma, we get the following result which
generalizes another lemma of Kulkarni [3].

Proposition 2.3. The multiplication by g' is injective on D1 whenever p+q+1 <
n+ 1.

Proof. This property is true for I = 0. Suppose that ¢ 'w = 0 = w = 0 for
p+qg+l—1<n+1,andlet gw =0and p+q+1 < n+ 1. Then the contractions
*(g'.w) = o for all k.

Taking k = 1,2,...,k,...,min{p, ¢}, min{p, ¢} + 1 and after a simplification (if
needed) by ¢'~1, ¢! 72, ..., g7k, ..., gt~ min{p.a} 1 pegpectively, we get (using the pre-
vious lemma)

—gew=Iln—p—q+1—-1w

—gtw=>14+1)n-p—q+2—1cw
—g.cfwo=>1+k-1n—-p—q+k—Dc"'w,

_g.cmin{P;‘Z}w — (l + min{p’ q} _ ].)(TL _ max{p, q} _ Z)cmin{pﬂ}*lw

0= (I + min{p, g})(n — max{p,q} + 1 - NP2y

Consequently, we have ¢™Mpaty = | cFw... =w = 0. (]

Remark 2.1. 1) The previous proposition cannot be obtained directly from Kulka-
rni’s Lemma [3], since consecutive applications of that lemma show that the multi-
plication by ¢' is 1-1 only if p+ ¢+ 21 — 2 < n.

2) We deduce from the previous proof that more generally we have

Juw=0=cfw=0 for l+p+g<n+1+k.

Corollary 2.4. 1) Let p+q=mn—1. Then for each i > 0, the multiplication
map by g*" 1,
92i+1 . pPTha—i Derz'JquJriJrl7
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is an isomorphism. In particular, we have

pptitlatitl 2i+1 pp—t,9—1i_

=9
2) Let p+q=n. Then for each i > 0, the multiplication map by g,
gQi . pP—ha—i _, Deri,qui7
is an isomorphism. In particular, we have
DPtiati — g2iDp—i,q—i.

Proof. From the previous proposition it is 1-1, and for dimension reasons (since
CriCyi = CphinCripn iftp+q=n—1,and C)_,Cp; = Cp Ol it p+q = n)
it is an isomorphism. O

The following proposition gives more detail about the multiplication by g.

Proposition 2.5. The multiplication map by g on DP'? is
1) one-to-one if and only if p+q<n-—1,
2) bijective if and only if p+q=mn—1,
3) onto if and only if p+q>n—1.

Proof. The “only if” part of the proposition is due simply to dimension reasons, so
that parts 1) and 2) are direct consequences of Kulkarni’s Lemma.
Now let i > 0, pg + go = n — 1 for some pg, go > 0, and
g: ppotigoti _, ppotitl,go+itl
Remark that the restriction of the map g to the subspace g2 DPo—#0—i of Dro+isqo+i
is onto. This is because its image is exactly g2*+1DPo—5%~% — protitlaotitl Ly

the previous proposition. The proof is similar in case where there exists pg, go > 0
such that pg + go = n. This completes the proof of the proposition. O

3. THE NATURAL INNER PRODUCT AND THE HODGE STAR OPERATOR ON DP:4

3.1. The natural inner product on DP9. The natural metric on A*’V induces
in a standard way an inner product on DP9 = A*PV @ A*?V. We shall denote it

by (,).
We extend (,) to D by declaring that DP? | D™ if p = r or if ¢ # s.

Theorem 3.1. If wi,ws € D, then
(7) (gwi,wa) = (w1, cwz).
That is, the contraction map c is the adjoint of the multiplication map by g.
Proof. Let {eq,...,e,} be an orthonormal basis of V*. Since the contraction map ¢
and the multiplication by g are linear, it suffices to prove the theorem for

wy=¢ey N Nej,,, Qejy Ao Nej,, and wy =ep, Ao Aeg, Qe Ao Ney,

where i1 < ... <ipp1;01 < .o <Jgt13k1 < ... <kpand l; < ... <, Since

n
gwy = Zei Neg N Nep, Qe Nepy N Neyp,
i=1
it follows that

n

(gw1, wa) = Z(ei Negy Ao Newy, e A Neg, ) (eiNey A ANey e N Nej ).

i=1
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Therefore, it is zero unless
ey Ao Neg, =€ Ny Nejy s
e N Ney, =ejy N8 Nejoy,

and 4,, = js for some 7, s, so that in this case we have

n

(gw1,we) = Z(ei Neiy Ny Neg, e N Neg )
i=1
X <6¢ A €5, A\ éjs N €jg+15 €41 VARAN €jq+1>
— (71)T+s'
On the other hand, we have

cwy = 0 if {ila "'7ip+1} N {jlv ~"7iq+l} - ®7

otherwise,
_ r+s ~ N
cwy = E (1) ey, A Neg, ®@ej Ay Nej -
ir=js
1<r<p+1
1<s<g+1
Therefore
_ r+s ~
(w1, cwa) = g (1) ex, Ao New, e Ay Nei )
ir=Js
1<r<p+1
1<s<q+1

X (e, N Ney €5, Ny Nej L),
which is zero unless
ey Nee Neg, =€ Ny Nejy s
e N Ney, =ejy N8 Nejo
and i, = js for some r,s. In such case it is (—1)""*. This completes the proof. [
3.2. Hodge star operator. The Hodge star operator * : APV* — A" PVx ex-

tends in a natural way to a linear operator % : DP9 — D" P~ [f w = 0, ® 05,
then we define

*W = *91 ® *92.

Note that *w(.,.) = w(*.,*.) as a bilinear form. Many properties of the ordinary
Hodge star operator can be extended to this new operator. We prove some of them
below:

Proposition 3.2. For all w,0 € D7, we have
(8) (w,0) = *(w. * 0) = *(xw.0).
Proof. Let w = w; ® wy and 6 = 6; ® H5. Then
w. %0 = (w1 A1) ® (wa A x63)
= (w1,61) * 1 ® (wa,02) x 1
= (w,0) * 1 ® *1.
This completes the proof. ([
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The proof of the following properties is similar and straightforward.
Proposition 3.3. 1) For all p,q, on DP9 we have
% — (_1)(p+Q)(n*p*q)[d’

where 1d is the identity map on DP-1.

2) For all wy € DP9 wy € D™ P9 we have
(wy, *wsy) = (_1)(p+q)(nfpfq)<*wl7w2>.
3) If w: AP — AP denotes the linear operator corresponding to w € DPP, then
xwx : AP — A"TP
is the linear operator corresponding to xw € D" P"P,

Using the Hodge star operator, we can provide a simple formula relating the
multiplication by ¢ and the contraction map ¢, as follows.

Theorem 3.4. For every w € DP9, we have
9) Jw = *C* w.
That is, the following diagram is commutative for all p,q:
pra 9 . pptlgtl
! [+

pr—pn—q ¢ | pn—p—ln—g-1
Proof. The proof is similar to the one of Theorem BIl Let {ey,...,e,} be an or-
thonormal basis of V*, and let

w=ej N...Nej, Dej N...N\ej,.
Then

n

quw = Zei/\eil /\.../\eip Qe Nej /\.../\ejq.
On the other hand, we ﬁai/e
*w = e(ple(a)eg, ., N Nej, @ej . N Nej,,
so that
cHkw = Z (=1 e(p)e(o)€ippy A wibiyo Neiy, @€y N by N,
p—ﬁgzsén
q+1<s3n
Therefore
*C kW = Z (=1 e(p)e(o) * €ippy Aoy Neg, @€, Ny Nej,

r=Js
p+1<r<n
q+1<s<n

= E ei,. N e, /\.../\eip®ejs/\ej1 /\.../\qu
ir=Js
p+1<r<n
q+1<s<n
= gw.

This completes the proof. [l
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As a direct consequence of the previous theorem and Proposition 2.5 we have
the following corollaries:

Corollary 3.5. The contraction map ¢ on DP9 is

1) onto if and only if p+q<n-—1,
2) bijective if and only if p+q=mn—1,
3) one-to-one if and only if p+q >n— 1.

Corollary 3.6. For all p,q > 0 such that p+q < n — 1, we have the orthogonal
decomposition

ppPtLatl — Kere o) gDpwz7

where ¢ : DPTLa+L . DP9 s the contraction map.
Proof. First note that if w; € ker ¢ and gws € gDP*?, then by formula (@), we have
(w1, gwe) = (cwr,wsz) = 0.
Next, since g is one-to-one and c is onto, we have
dim(gD??) = dim D¢ = dim(image c).
This completes the proof. O

Remark 3.1. 1) If p+¢q > n—1, then we have ker ¢ = 0 and DP*1:9%! is isomorphic
to some g"D**? with s +t < n — 1 by Corollary 24l
2) Note that in general Ker ¢ is not irreducible; see [3] for the reduction matter.

3.3. Orthogonal decomposition of DP9. Following Kulkarni we call the ele-
ments in ker ¢ C DP9 effective elements of DP'4, and are denoted by EP-9.

So if we apply Corollary several times, we obtain the orthogonal decomposi-
tion of DP-1:

(10) DP9 = EP9 ngfl,qfl @ gQEp72,qf2 ®..®grDPITT

where r = min{p, ¢}.

In this section, we show how double forms decompose explicitly under this or-
thogonal decomposition. To simplify the exposition, we shall consider only the case
where p = q.

First, note that formula (@) for w € EP*P becomes

kg =l g\
I ) = o — 14
¢ (“w) zl;ll(n D l—H)(l—k)!

(glw) =0 it I<k.

k

w if 1>k,

(11)

With respect to the previous orthogonal decomposition, let w = f:o g'wy_; € DPP
where w,_; € EP~%P~% Then using the previous formula (1], we have

P 2
cFw) =D M g'wp—i) = D e (g'wp—i)

=0 i=k
= n—2 —i)—i+7j) TWp—i-
i=k (i = k)"

j=

—
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Therefore, we get

P Jj=k i—k
(12) Ck(w):ZZ'H ”*QT’*ZJFJ)ﬁWp—i.
i=k j=1 :

Taking in the previous formula k = p,p—1,p—2, ..., k, ..., 0 respectively, and solving
for wy we get

In!
o = ¢

e = 1(0) - o)

—2)!(n—4 ! p—2 1 p—1 1 2. p
“’(an),) i = 2 0) = 00 0) 4 g )
(=R —20) N (—1)" vy ki

(n—p—k)! " )+ — i 0(n—2k—|—2—|—z)g @),

1)T gTCT(w).

wp—w+zr'n
1=

Note that w, = conw is the conformal component defined by Kulkarni.
We have therefore proved the following theorem (it generalizes a similar classical
result in the case where w is the Riemann curvature tensor).

o Y(n—2p+241)

Theorem 3.7. With respect to the orthogonal decomposition (), each w € DPP
is decomposed as follows:

w=wp~+ gwp—1+ ...+ g".wo,

where wy = (Zfﬁ)lcp(w), and for 1 < k < p we have

k T T
(nfpfk)! Cpik(W)*F (71) g Cp k+r( )

(p— F)(n — 2k)! S22k +2+0)r

WE =

In particular, for w = R, we recover the well-known decomposition of the Rie-
mann curvature tensor

1 1 1

n72@Uﬂ—E93Umg+§J;jﬁ

R=W+ Z(R).¢°.

4. THE ALGEBRA OF CURVATURE STRUCTURES
Note that from the definition of the product (see formula (), we have
Wwi.Wy = (71)pr+qsu&.wl.

Then, following Kulkarni, we define the algebra of curvature structures to be the
commutative sub-algebra C = @ >0 CP, where CP denotes the symmetric elements
of DP'P. That is, the sub-algebra of symmetric double forms.
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Another basic map in DP-? is the first Bianchi sum, denoted B. It maps DP9
into DPTL4~1 and is defined as follows. Let w € DP4 and set Bw = 0 if ¢ = 0.
Otherwise set

p+1

Bw(zi A ATpi1, Y1 Ao AYg—1) = Z(—l)jw(xl/\.../\fcj/\...mpH,xj AYIA - AYg—1),
j=1

where ~ denotes omission.
It is easy to show that for w € DP7,0 € D™*, we have [3]

B(w.0) = Bw.f + (—1)P9w.B6.

Consequently, ker/3 is closed under multiplication in D.
The algebra of curvature structures satistying the first Bianchi identity is defined
to be C; = C NkerB.

4.1. Sectional curvature. Let G, denote the Grassmann algebra of p-planes in
V, and let w € CP. We define the sectional curvature of w to be

K,(P)=w(e1 A... Nep,e1 N ... Nep),

where {e1, ..., e,} is any orthonormal basis of V.
Using formula (2]), we can evaluate the sectional curvature of the tensors gPw.
For w € C" and {eq, ..., ¢y, } orthonormal, we get

gPwler A .. Aepir €1 Ao A epir)

(13) =p! Z wley, Ao Nej e A Aej, ) = pltracew|zrp,

1<i1<i9<...<ip <p+r

where P denotes the plane spanned by {e1,...,epir}.

The sectional curvature K, generically determines w. Precisely, for w,0 € C?,
the equality K, = Kp implies w = 6 (cf. prop. 2.1 in [3]). In particular, we
have the following characterization of curvature structures w € C! with constant
sectional curvature:

gP

(14) K,=c if and only if  w=c>.
p!

Next, we shall prove a useful explicit formula for the Hodge star operator.
Theorem 4.1. For w € Cf and 1 < p <k <n we have

n—k—p+r

1 o : (=)t g .
(15) m*(‘qk w) = Z 7! (n—k—p+r)!cw

r=max{0,p—n+k}

In particular, for k =mn and k = n — 1 respectively, we get

1 g P lw cPw Pt
= —cP d AL N P S
) plo *((n—p—l)!) T -

g Pw

R ]
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Proof. 1t is not difficult to check that

Z wley AN Nej, e N Aeg,)

1< ig,onsip<n

= E wley, N Neg, e A Neg,)
1<iy,i9,..,ip <k

p—1
+ptl -
+ E (—1)rtrtioe E cw(es N Negy,ei N Neg).
r=0 kA 1<ip g 1sesip<n

Then using formula (I3]), the previous formula becomes

gkfp p—1
Pw :p!mw(ei1 Ao Neg e N ANeg, ) + Z (—1)rtPrice
p): r=max{0,p—n+k}
(p B T)' n—k—p+r r

m—k—p+r)? Wl N Nei iy N Neq).

Finally, note that the general term of the previous sum is cPw if r = p. This
completes the proof, since both sides of the equation satisfy the first Bianchi iden-
tity. ([l

The following corollary is a direct consequence of the previous theorem.

Corollary 4.2. 1) Forw e Cf and 1 < p <n we have
P r n—2p+r
(,1) +p g P
17 = E "
(17) et 7! (n—2p-i—r)!cau

r=max{0,2p—n}
2) For all 0 < k <n we have

gk: 7 gnfk

K~ (n—k)

Theorem 4.3. With respect to the decomposition ([[0), we have

min{p,n—p} _ 1 '
(18) oW = ; (p—Z)!(—l)ngn P

forw=3""_ gP " w;. In particular if n = 2p, we have

p

*w = Z(—l)igp_iwi.

=0
Proof. First, let w € E! be effective. Then formula (I5) shows that

1 ) 0 ifi—n+k>0,
(19) *(g" W) = {

(k —d)! g i n k<0,
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Next, let w = Y7, g?"‘w;, where w; € E}. Then

P
k= Z (g7 'wi)
i=0
min{p,n—p} ;
1)t ,
1P i e,
2 (n—p— 1)
O
Corollary 4.4. With respect to the decomposition (I0), we have
min{p’nfpfl} (_l)z )
(20 *(g'w) = (p—i+ ) ————g" ",
) iz:; (n—p—1-—1)!
forw=">3" ) g" w;.
Proof. First, formula (I8) implies that
min{p+i,n—p—1} (_1)1 .
*(g'w) = p—i+ ) ——————g" " (glw);
) ; ( ) (n—p—1-—1)!
Next, note that
P
glw _ ngﬂ*iwi.
i=0

Consequently,

0 ifi>p,

(g'w)i = .

w; if i <p.

This completes the proof of the corollary. O

5. THE (p, q)-CURVATURES

Let (M, g) be an n-dimensional Riemannian manifold and let T,, M be its tangent
space at a point m € M. Let DP4,CP CY ... also denote the vector bundles over M
having as fibers at m the spaces DP4(T,,, M), CP(T,, M), C¥(T,, M).... Note that all
the above algebraic results can be applied to the ring of all global sections of these
bundles.

Remark that, since the metric g and the Riemann curvature tensor R both satisfy
the first Bianchi identity, then so are all the tensors g? R? and *(gP R?).

The aim of this section is to study some geometric properties of these tensors.
First we start with the case ¢ = 1.

5.1. The p-curvature. Recall that the p-curvature [4], defined for 0 < p <n —2
and denoted by s,, is the sectional curvature of the tensor

1 2

(g™ 2PR).

m—2—m!(g )

For a given tangent p-plane at m € M, s,(P) coincides with half of the scalar
curvature at m of the totally geodesic submanifold exp,, P+. For p = 0, it is half

of the usual scalar curvature, and for p = n — 2 it coincides with the usual sectional
curvature.
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In this subsection, using the p-curvature and the previous results, we shall give
a short proof for the following properties. Similar results were proved by a long
calculation in [6] and [4].

Theorem 5.1. 1) For each 2 < p < mn — 2, the p-curvature is constant if and
only if (M, g) has constant sectional curvature.
2) For each 1 <p < n — 1, the Riemannian manifold (M, g) is Einstein if and
only if the function P — s,(P) — s,,_,(PL) = X is constant. Furthermore,
in such a case we have A = "27—112”021%.
3) Foreach2 <p<n-2andp# %, the function P — s,(P)+s,_p(P) = Xis
constant if and only if the manifold (M, g) has constant sectional curvature.

Furthermore, in such a case we have \ = QP(p_léjl'EZ:ff)("_l)cQR.

4) Let n = 2p. Then the Riemannian manifold (M, g) is conformally flat with
constant scalar curvature if and only if the function P — s,(P)+sp(P+) = A

is constant. Furthermore, in such a case we have A = ﬁcQR.

Proof. First we prove 1). Let s, = ¢; then the sectional curvature of the tensor
g" 27PR € C]'"? is constant. Therefore we have ﬁg”*Q’pR = c%, and

so by Proposition we have (n — p)(n —p — 1)R = cg?. That is, R has constant
sectional curvature.
Next we prove 2). Suppose s,(P) — s,_,(P+) = ¢ for all P. Then

1 o 1 9
——— " TPR(xP,xP) — g *R(P, P) = ¢ for all P.
(n—2-p)! ( ] ()
Hence using formula ([IH), we get
2
(=" g, 1 2
P, P)— ——¢° P, P)=c for all P.
2 o2 B P) - mgye" TR P) = c fora

r=0
The left-hand side is the sectional curvature of a curvature tensor which satisfies
the first Bianchi identity. Then

gPt g°
- cR+
(p—1)! 2(p!)

Using Proposition [2Z3], we get

1
R = c—'gp.
p!

—cR + I 2R = clg7
2p P

and therefore
2R —2c

2p '
Then (M, g) is an Einstein manifold. Furthermore, after taking the trace we get
c= ";—jpch.

Finally we prove 3) and 4). Suppose s,(P) + sp_p,(P1) = ¢ for all P. Then as
in part 2) we have

cR =

gP? gt T
2o o ) T
Then using Proposition [2.3] we get
2
g g 2 1 2
2R — cR + c“R=c——g".
(p—1) 2p(p— 1) p(p—1)
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This implies that

n— 2 (n—2p)(n—1) ¢

N — 9

p-1 pp—1) pp—1)
where R = wy + gw; + g%wo. Then if n # 2p we have wy = w; = 0 and therefore
the sectional curvature of (M, g) is constant. In the case n = 2p, we have wy =0
and ¢ = 2wop(p — 1) = 4(’;;21)021% so that (M, g) is conformally flat with constant
scalar curvature. O

2wy — g+ (2+ )g*wo =

5.2. The (p,q)-curvatures. The (p,q)-curvatures are the p-curvatures of the
Gauss-Kronecker tensor R? (that is, the product of the Riemann tensor R with
itself g-times in the ring of curvature structures). Precisely, they are defined as
follows.

Definition 5.1. The (p, g)-curvature, denoted s, ), for 1 < ¢ < 5 and 0 < p <
n — 2gq, is the sectional curvature of the following (p, ¢)-curvature tensor:

1
(21) R R P T

(P) is the sectional curvature of the tensor ——s-—— g™~ 247P R4
(n—2q—p)!

% (gn—2q—qu).

In other words, s, )

at the orthogonal complement of P.

These curvatures include many of the well-known curvatures.

Note that for ¢ = 1, we have 5, 1) = s;, which coincides with the p-curvature. In
particular, s(q 1) is half of the scalar curvature and s(,,_ 1) is the sectional curvature
of (M, g).

For p =0 and 2¢ = n, s@,2) = *R™? is, up to a constant, the Killing-Lipshitz
curvature. More generally, s(,_24,4)(P) is, up to a constant, the Killing-Lipshitz
curvature of P*. That is, the (2p)-sectional curvatures defined by A. Thorpe in [7].

For p = 0, s(0,q) = *ﬁg"”ﬂ%q = @c%Rq are scalar functions which
generalize the usual scalar curvature. They are, up to constants, the integrands in
the Weyl tube formula [§].

For p =1, s5(1,4) are the curvatures of generalized Einstein tensors. Precisely, let
us define the following;:

Definition 5.2. 1) The 2g-scalar curvature function, or the 2¢-H. Weyl cur-
vature invariant, denoted hag, is the (0, ¢)-curvature. That is,
1
hog = S(0.q) = ——c*IRY.
q (0,9) (29)!

2) The 2¢-Einstein tensor, denoted Tb,, is defined to be the (1, ¢)-curvature
tensor. That is,

1
Toy = n20- R,
2 (n—2q—1)!g
By formula ([I6), we have
1 1 1
T, — 29 pq _ 20-1pa —p, 2¢-1pa.
7 7 T 7R

For ¢ = 1, we recover the usual Einstein tensor T, = %CQR— cR. Note that ¢?9— 1 R4
can be considered as a generalization of the Ricci curvature. In a forthcoming
paper [5], we prove that the 2¢-Einstein tensor is the gradiant of the total 2¢-scalar
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curvature function seen as a functional on the space of all Riemannian metrics
with volume 1, which generalizes the well-known classical result about the scalar
curvature.

Finally, note that in general s, )(P) also coincides with the 2¢-scalar curvature
of P+,

5.3. Examples. 1) Let (M, g) be with constant sectional curvature A\. Then

g and R? = g%,

Therefore

n72q7qu — x Al n—p _ )‘q(n p) gp

24(n — 2q — p)!” 24(n — 2 — p)! p!’

so that the (p, ¢)-curvature is also constant and equal to %.

The converse will be discussed in the next section.

2) Let (M, g) be a Riemannian product of two Riemannian manifolds (M, g1)
and (Ma, g2). If we index by ¢ the invariants of the metric g; for ¢ = 1,2, then

1
“(n—2q—p)?

q
R=Ri+Ry, and R'=(Ri+Ry)?=) CI{RIR]".
1=0

Consequently, a straightforward calculation shows that
c2a Rq kl

haq = Z f— i gii)

2q— QzRq %

(2
zq: Qsz
— 2¢)! (2¢ — 2i)!

q
= ZOZ. (h2:i)1(hag—2i)2,

=0

where we used the convention hg = 1.
3) Let (M, g) be a hypersurface of the Euclidean space. If B denotes the second
fundamental form at a given point, then the Gauss equation shows that

fl 2 qfl 2q

Consequently, if Ay < Ay < ... < )\, denote the eigenvalues of B, then the eigenval-
ues of RY? are (22?,)!)\1'1)\1‘2-“)\1'2(1, where i1 < ... < iyq. Therefore all the tensors g? R?
are diagonalizable, and their eigenvalues have the following form:

p!'(29)! 2 :

P pa - = . . .

g R (61...€p+2q,€1...€p+2q) = % All"')\bq’
1<i1 <. <igq <p+2¢q

where {eq,...ep,} is an orthonormal basis of eigenvectors of B. In particular, we
have

(29)!
h2q = 8(07q) = 24 Z >\’L1"')\i24'

1<i1<...<i2g<n
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So the invariants ho, are, up to a constant, the symmetric functions in the eigen-
values of B. More generally, we have

2q)!
S(p,q) (en,erl, ceey €n) = (2?1) Z )‘i1"'>‘i2q'
1<i1 <. <igg<n—p

4) Let (M, g) be a conformally flat manifold. Then it is well known that at each
point of M, the Riemann curvature tensor is determined by a symmetric bilinear
form h, precisely we have R = g.h. Consequently, R? = g?h9.

Let {ei,...,en} be an orthonormal basis of eigenvectors of h and let A\; < Ay <
... <\, denote the eigenvalues of h.

Then it is not difficult to see that all the tensors gP R? are also diagonalizable.
The eigenvalues are given by

gPRI(e1...eprag, €1...€ptr2q) = (D + @)lq! Z iy Niy -
1<is <...<ig<p+2q

In particular, the (p, ¢)-curvatures are determined by

(n—q-p)q
5(p,q) (En—pi1, - €n) = m E iy Aiy -
T7PF 1< < Kig<n—p

5.4. Properties. The following theorem generalizes a similar induction formula [4]
for the p-curvature:

Theorem 5.2. For1 <q< % and 1 < p <n —2q we have

n

> s (Prer) = (n—2¢ = p+1)s_1,9(P),
k=p

where P is an arbitrary tangent (p — 1)-plane and {e,, ..., en} is any orthonormal
basis of P*. In particular, we have

Zqu(ei, e;) = (n — 2q)ha,.
i=1

Proof. Using (@), we have

1 ag— 1 _og_
- % gn quq :7*9.9” quq
(n—2q—p)! ( ) (n —2q —p)! ( )
gn72q7p+1
=Mn—2¢g—p+1)x RY).
(n—2¢-p+1) ((n—2q—p—|—1)! )
To finish the proof just take the sectional curvatures of both sides. O

The following proposition is the only exception in this paper where one needs
the use of the second Bianchi identity; see [5] for the proof.

Proposition 5.3 (Schur’s theorem). Letp > 1 and g > 1. If at every point m € M
the (p, q)-curvature is constant (that is on the fiber at m), then it is constant.

The following can be seen as the converse of a Thorpe’s result [7].

Proposition 5.4. If R® and R*'" are both with constant sectional curvature \
and p respectively, such that A # 0 and s + 2r < n, then R" is also with constant

. : ps!r!
sectional curvature and is equal to e
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Proof. Suppose that

s (s+7)
RE=X2 and Rt =p L .
s! (s+7)!
Then
s (s+7)
g g
A=RT = :
s! K (s+7)!
Since s + 2r < n, Proposition [Z3] shows that
Ay g
| (8 + fr‘)'
This completes the proof. (I

As in the case of R®, it is not true in general that if ho, is constant, then the
higher scalar curvatures are constants. Nevertheless, we have the following result.

Proposition 5.5. If for some s, the tensor R® has constant sectional curvature A,

then for all r > 0, we have

(n—2r)!
(28)!(n — 2s — 2r)!

h25+2r = )‘hQT :

In particular, if n is even, the Gauss-Bonnet integrand is determined by
hn = Ahn—2s-

Proof. Suppose R® = /\%. Then

1 N—2L8—2ar STT
h25+2r:m*( 2 2R+)
_ 1 n—2s—2r g2s T
_(n—25—2r)!*( A(Qs)!R)
A 9 (n —2r)IA
— n T T — h -
(28)!(n — 2s — 2r)! # (g ) (28)!(n — 25 — 2r)! 2
O

Theorem 5.6. 1) For every (p,q) such that 2¢ < p < n — 2q, the (p,q)-
curvature s, o) = A is constant if and only if the sectional curvature of

A(29)!(n—p—2q)!

q
R s constant and equal to h—p)!

2) For every (p,q) such that p < 2q, the (p, q)-curvature s, q) = c is constant
if and only if c23~P(RY) is proportional to the metric. That is, ¢*4~P(R9) =
const.gP.

Proof. Recall that s, 4y = A if and only if

gn—2q—p Rq _ gn—p
(n—2q —p)! (n—p)V’
that is,
R4 29
gn72q7p( _ g ) =0
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Now, let 2g < p < n — 2q. Then by Proposition [Z3] the last equation is equivalent

to
A U et O
(n —p)!
Next, if p < 2¢, then by Remark 2.1 in section 2, our condition is equivalent to
q 2q
Czqu( i P A 9 ')20,
(n—2¢-p)! ~(n—p)
that is,
27 P(RY) = const.gP,
which completes the proof of the theorem. O

The following lemma provides a characterization of the previous condition on RY
and generalizes a similar result in the case of Ricci curvature (p = g = 1).

Lemma 5.7. For p < 2q, the tensor c2~P(R?) is proportional to the metric gP if
and only if
w; =0 for 1 <i < min{p,n— p},

9 i
where R =Y -2 g% w;.

Proof. Formula ([I2) shows that

) 2q 29—p gi—2q+p
cTP(RY) = Z Z'(H (n—4q+i+j)> quﬂ',
i=2q—p j=1 ’

and therefore c2=P(R?) = \g? if and only if

Z(Qqs)!< 1:[ (n2qs+j)>(gp$'wS = Ag%,

5=0 j=1 p—s)!
where we changed the index to s = 2¢ — ¢. Consequently,

s (20)! T ‘
g’ fws =0forl < s <p,and A = —‘( H (n72q+j))w0.
j=1
By Proposition [Z3] this is equivalent to ws =0 for 1 < s <n —p and s < p. Note
that gP"*ws = 0 if s > n — p. This completes the proof of lemma. O

Theorem 5.8. 1) Let 2¢ < r < n—2q, n # 2r, and R? Z?io g* ;.
Then:

(a) The function P — s(y.q)(P) = S(n_rq)(P) = X is constant if and only

ifw; =0 for1<i<2¢—1 and ((n(f;qi)!r)! — (Tféq)!)wo =\

(b) The function P — $(;.4)(P) + S(n—r,q(PL) = X is constant if and only
ifwi =0 for1 <i<2q and ((TL@QZT_);)! + (r_réq)!)wo = \. That is, RY
has constant sectional curvature.

2) Let 2q <r <n—2q and n =2r. Then:

(a) The function P — $(;q)(P) — S(r.q)(P) = X is constant if and only if
w; =0 fori odd such that 1 <i<2¢—1and A=0

(b) The function P — $(.q)(P) 4 $(r.q)(P) = X is constant if and only if

w; =0 fori even and 2 <1 < 2q and Q(T,—éq);wo =\
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Proof. Let k,1 >0 be such that k+p=n—Il—pandw = > , g? 'w; € CP. Then

k I & min{p,n—p—1}

g_ _ g_ _g_ _ (p—l—f—l)'(—].)l n—p—Il—i, .
e ) = e ; Nn—p—1—i” i
1 u (p—i+Dn—2p-D . .
— 17 71 K3 n—p K3 i
(n—2p—l)!;[ O T ey gy g “
Therefore,
k l n—Il—p
g g _ g
(22) P STl oy psy
if and only if
p
.(p—z—l—l)!(’n—Qp—l) p—l—
1 1)¢ n—p i, .
;[ (=1) Mn—p—1-1)! ] !
I(n — 2p — ! —op— )
+ [wo — (p+ Dn — 2p — D)! )\("27171)'] n=l-p _ (.

Mn—p-=10)! wo (n—101-p)!
For 1 <i <p,let
=it Dn—2p-0! (_1)1-(84—1)! k!

UNn—p—1-—1)! B I (s+k)!
where s = p —7 < p— 1. It is clear that as;41 > 0, and it is not difficult to check
that a; # 0 for i even, 1 <¢ <p—1and k # . Also, note that o, =1 —(—1)? =
since p is even.

Therefore, in the case where k # [, condition (22)) is equivalent to

— _ | |
wi=0 forl<i<p—1 and A{(g_gﬁ,_ll))}(p;l)'}wo-

In the case k = [, we have a; = 1 — (—1)%. Condition (22) is therefore equivalent to
wi=0 foriodd, 1<i:<p and A=0.

o = 1—(—1)

In a similar way, we have

k l n—Il—p
g g g
2 e bt = —_—
(23) e ) = AT
if and only if
P .
p—i+D(n—=2p-0D' ,_ 1,
14 (=1) : n—p=l=iy,
;[ (=1) Un—p—1-14)! Jo
(p+ D (n—2p—1)! (n=2p-0' ., ,
+ [wo + Mn—p-—1)! 0 )\(n—l—p)!]g =0

In the case k # [, this is equivalent to

(n—p-=1) (p+l)!}w
(n—2p—1)! il 0

and in the case k = [, we have a; = 1+ (—1)". Hence condition (Z3)) is then
equivalent to

wi=0for1<i<pand A={

N
(p; )wo.

w; =0 forieven, 1<i<p and =2
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To complete the proof of the theorem, just note that, for 2¢ < r < n — 2q, the
condition s(, 4 £ S(n—rq) = A is equivalent to

n—2q—r r—2q T
(2 y T _pi_ L
(n—2q—r)! (r —2q)! 7!
Next, apply the previous result after taking [ = n —2¢ —r and k = r — 2¢ and
p=2q. O

Remark. If r < 2q, then s¢,_, 4 = 0. So our condition implies that s, 4 = A is
constant, and such a case was discussed above.

6. GENERALIZED AVEZ-TYPE FORMULA

The following theorem generalizes a result due to Avez [1] in the case when n = 4
and w =0 = R.
Theorem 6.1. Let n=2p and w,0 € CY'. Then
P

o) = Y EB o)

2
=0 )

In particular if n = 4q, then the Gauss-Bonnet integrand is determined by

2q
-1
h4q:Z ( ) |Cqu|2.

N2
= (r!)
Proof. Let 6 € C! and w € C{'"?. Then using formula (8)) and Corollary [£2] we get

: (~1)+

*x(wl) = (w, *0) = E e (w, g TTErg).
N(n — |
r=max{0,2p—n} (’I“)(TL 2p+ T).
To complete the proof, we just take n = 2p and use Theorem BTl O

The following corollary is an alternative way to write the previous formula.
Corollary 6.2. Let n=2p and w,0 € CY. Then
P (pyr

*x(wl) = Z W

r=0
Proof. The proof is a direct consequence of the previous formula and Corollary
2.2 (|

(9w, g"0).

The following result is of the same type as the previous one

Theorem 6.3. With respect to the decomposition [ let w = > 17 g" P 'w; €
C P and §=3"_  gP "0, € CY. Then

min{p,n—p}

*(wh) = Z (=1)"(n — 2r)Yw;, ;).

r=0

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



DOUBLE FORMS, CURVATURE STRUCTURES AND (p, q)-CURVATURES 3991

Proof. By formula (I8) we have

min{p,n—p} . .
*(wh) = (w, x0) = w w. a"Pig,
(w8) = (w, D) ; (np i) "),

and therefore using Lemma [6.4] below, we get

min{p,n—p} ; .
—1i(p — i) , .
*(we) — § ( ) (p 7’) <gn—p—zwi’gn—p—zei>.

—~  (n—p—i)
After separately considering the cases p <n —p,p=n—p and p > n — p and the
lemma below, one can complete the proof easily. O

Lemma 6.4. Let wy € E],wy € EY be effective. Then
(gPwi,g%w) =0 if (p#q) or (p=q and r#s).

Furthermore, in the case p=q > 1 and r = s, we have

p—1

(9Pw1, gPws) = p!(H(n —2r — 7)) {wy, ws).

Proof. Recall that (see formula (1)) P(g%ws2) = 0 if p > ¢, and ¢?(gPwy) = 0 if
p < q. This proves the first part of the lemma. Also by the same formula and
formula (7]) we have

p—1

(gPw1, gPws) = (w1, ¢P(g"ws)) = (wi, ([ [ (n = 2r — i))wa).
1=0

Corollary 6.5. Let g =s+t. Then

min{2s,n—2s}

1 .
hy = gy 1) (0 — 20)(R")i. (R):).
% = [ ag)] ; (—1)'(n = 20)4(R*);, (R"):)
In particular, we have
1 min{2q,n—2q} -
= — ~1)* — 29! q) . a).
h4q (n_4Q)! ; ( ) (’I’L Z) <(R )za (R )z)
Proof. Note that
— ; n—=2q9pqy — ___~ ks | pt
h2q_(n—2q)!*(g R>_(n—2q)!*(gRgR)’

where k + 1 =n — 2q and s+t = ¢q. Then we apply the previous theorem to get
min{k+2s,l4+2t}

1 )
hoy = ———— —1)"(n = 20){(¢*R*);, (¢'RY),).
= pmay X (VOS2 RGRY)
Recall that (¢* R®); = Rg if i < 2s; otherwise it is zero. The same is true for (g R?);.
This completes the proof. O

The case ¢ = 1 is of special interest. It provides an obstruction to the existence
of an Einstein metric or a conformally flat metric with zero scalar curvature in
arbitrary higher dimensions, as follows.
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Theorem 6.6. 1) If (M,g) is an FEinstein manifold with dimension n > 4,
then hy > 0 and hy =0 if and only if (M, g) is flat.
2) If (M, g) is a conformally flat manifold with zero scalar curvature and di-
mension n > 4, then hy <0 and hy =0 if and only if (M, g) is flat.

Proof. Straightforward using the previous corollary and Theorem O

The previous theorem can be generalized as below. Its proof is also a direct
consequence of the previous corollary and Theorem [5.8]

Theorem 6.7. Let (M, g) be a Riemannian manifold with dimension n = 2r > 4q,
for some q > 1.
1) If s(rq)(P) = s(w)(PJ-) for all r-planes P, then hyq > 0 and hyqg = 0 if and
only if (M, g) is flat.
2) If s(r,q)(P) = fs(w)(Pl) for all r-planes P, then hayg < 0 and hyg = 0 if
and only if (M, g) is flat.

The previous two theorems generalize similar results of Thorpe [7] in the case
n = 4q.
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