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FOR TRANSPORT DOMINATED PROBLEMS ∗

Wolfgang Dahmen1, Christian Plesken1 and Gerrit Welper1

Dedicated to Dietrich Braess on the occasion of his 75th birthday.

Abstract. The central objective of this paper is to develop reduced basis methods for parameter
dependent transport dominated problems that are rigorously proven to exhibit rate-optimal perfor-
mance when compared with the Kolmogorov n-widths of the solution sets. The central ingredient is
the construction of computationally feasible “tight” surrogates which in turn are based on deriving a
suitable well-conditioned variational formulation for the parameter dependent problem. The theoretical
results are illustrated by numerical experiments for convection-diffusion and pure transport equations.
In particular, the latter example sheds some light on the smoothness of the dependence of the solutions
on the parameters.
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1. Introduction

Over the past few years model order reduction has become an indispensable constituent of large scale de-
sign or optimization problems. In particular, the Reduced Basis Method (RBM) is perhaps by now one of the
most important paradigms for highly complex frequent query problems involving parameter dependent PDEs,
see e.g. [25, 28, 32]. Among other things, at least under certain circumstances, modeling errors are rigorously
controlled and can be upgraded if necessary.

While the development of RBMs has been a very active area with impressive success stories in by now a
variety of important application fields, it is fair to say that a theoretical underpinning of what one might call
“near-optimal performance” – in a sense to be made precise later – is still confined to a relatively narrow
problem class. The central purpose of this paper is therefore to extend the scope of problems for which RBMs
can be developed and rigorously proven to perform in that near optimal sense. The focus of the present work is
on performance in terms of the accuracy offered by the reduced model, roughly speaking, centering around the
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question how to ensure any certified target tolerance of the reduced model by a possibly small number of reduced
basis functions, of course, always insisting on the standard offline-online division of the overall computational
work.

1.1. General framework

Suppose that Bµ : X → Y ′, μ ∈ P , is a family of (linear) operators from a Hilbert space X onto the dual Y ′ of
another Hilbert space Y , depending on parameters μ from a compact set P ⊂ R

p. Under appropriate conditions
on {Bµ}µ∈P the solution set

M := {p(μ) = B−1
µ f : μ ∈ P} ⊂ X (1.1)

for the family of operator equations
Bµp(μ) = f, μ ∈ P , (1.2)

is a compact subset of X . In the context of frequent query problems, like steering a functional ℓ(p(μ)) of the
solution towards a target value, RBMs try to exploit the fact that M may be a very thin subset of X . In fact,
compactness of M means that the Kolmogorov n-widths

dn(M)X := inf
dim V ≤n

max dist (M, V )X , (1.3)

tend to zero as n → ∞, where V is taken from the set of all n-dimensional subspaces of X and

max dist (M, Xn)X := sup
p∈M

inf
q∈Xn

‖p − q‖X .

The objective is then to construct (problem dependent) subspaces Xn ⊂ X of possibly small dimension n such
that for a given target accuracy tol, say,

max dist (M, Xn)X ≤ tol (1.4)

is guaranteed to hold. In particular, this implies that for any p ∈ M and any bounded linear functional ℓ ∈ X ′,
a trivial estimate immediately gives |ℓ(p) − ℓ(PX,Xn

p)| ≤ ‖ℓ‖tol (which could even be improved by duality
arguments, see e.g. [32]), where PX,Xn

is the X-orthogonal projection onto Xn.
Of course, a key question is how to practically construct spaces Xn warranting (1.4) for possibly small n. A

common strategy of essentially all RBMs is the following. Given Xn, find a surrogate R(μ, Xn), μ ∈ P , such
that

‖p(μ) − PX,Xn
p(μ)‖X ≤ CRR(μ, Xn) (1.5)

holds for some constant CR independent of μ and n. Here it is crucial that the evaluation of R(μ, Xn) is
sufficiently efficient so that the maximization of R(μ, Xn) over μ ∈ P is computationally feasible. Then perform
the greedy algorithm GA based on this surrogate, as described in Algorithm 1.

We have ignored for the moment the fact that the snapshots p(μn) can, of course, not be computed exactly
but only approximately within some sufficiently large but finite dimensional “truth space”.

To see whether such a greedy space search produces good reduced models one can compare them with the
“best possible” spaces. Clearly, the n-width dn(M)X from (1.3) is a lower bound for the accuracy attainable by
any RBM, i.e.,

dn(M)X ≤ σn(M)X := sup
µ∈P

‖p(μ) − PX,Xn
p(μ)‖X . (1.7)

Unfortunately, in general it seems to be impossible to compute the precise optimal subspaces for which the
n-width is attained. Nevertheless, the closer σn(M)X is to dn(M)X the better the choice of Xn.

To see what can be achieved in this regard, recall from [1,3] that even when R∗(μ, Xn) := ‖p(μ)−PX,Xn
p(μ)‖X

is the ideal surrogate, in a direct comparison σn(M)X ≤ Kndn(M)X the constant Kn can be as large as 2n.
Nevertheless, the following more favorable results in terms of convergence rates hold for surrogates that are
tight, i.e., if in addition to the upper bound (1.5) it uniformly sandwiches the exact distance.
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Algorithm 1. Greedy algorithm

1: function GA

2: Set X0 := {0}, n = 0,
3: while argmaxµ∈P R(µ, Xn) ≥ tol do

4:
µn+1 := argmax

µ∈P

R(µ, Xn),

pn+1 := p(µn+1),

Xn+1 := span
{

Xn, {p(µn+1)}
}

= span {p1, . . . , pn+1}

(1.6)

5: end while

6: end function

Definition 1.1. We call the surrogate R(μ, Xn), tight if there exist positive constants cR, CR such that

cRR(μ, Xn) ≤ ‖p(μ) − PX,Xn
p(μ)‖X ≤ CRR(μ, Xn), (1.8)

uniformly in μ ∈ P . Moreover, we call

κ(R) := inf {CR/cR : cR, CR satisfiy (1.8) for all μ ∈ P , n ∈ N}, (1.9)

the condition of the surrogate R.

Remark 1.2. As already observed in [1] whenever the surrogate is tight, i.e. (1.8) holds, then the snapshots
pn = p(μn) from (1.6) satisfy the weak greedy condition

‖pn − PX,Xn
pn‖X ≥ κ(R)−1 max dist (M, Xn)X , n ∈ N, (1.10)

where κ(R) is given by (1.9).

The following statements are then readily derived from the results in [1, 11].

Theorem 1.3. Assume that the spaces Xn are obtained through a greedy algorithm GA, (1.6) based on tight
surrogates. Then, if dn(M)X = O(n−α), for some α > 0 or if dn(M)X = O(e−cnα

), for some c, α > 0, one has

max dist (M, Xn)X = O(n−α), max dist (M, Xn)X = O(e−c̃nα

), n → ∞, (1.11)

respectively, where the constants depend on α, c, and κ(R) with exact specification given in [1, 11]. Moreover,
these bounds remain valid up to the tolerance tol∗ when all computations are carried out within this accuracy.

We call an RBM rate-optimal if the generated spaces Xn satisfy “Kolmogorov optimal” bounds of the type (1.11).
There are two important points to be drawn from these results that guide the subsequent developments. The

first one is: although dispensing with the (infeasible) ideal surrogate R∗(μ, Xn) := ‖p(μ)−PX,Xn
p(μ)‖X , a tight

surrogate still ensures that the accuracy provided by the reduced bases is in terms of rates still essentially as
good as that of the “Kolmogorov-best” subspaces. The second point is quantitative. It is absolutely vital to
make sure that the condition κ(R) stays as small as possible. In fact, a look at the dependence of the constants
in (1.11) on κ(R) (see [1, 11]) reveals that the closer κ(R) is kept to one, the better is the accuracy of the
reduced spaces, in comparison with the best spaces, already for a small reduced dimension, which is at the heart
of model reduction.

Hence, the central objective of this paper is to develop a rigorous conceptual framework to obtain practically
feasible tight surrogates whose condition κ(R) ≤ CR/cR is as close to one as possible, in particular, for problem
classes for which this is currently not known.
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1.2. Objectives and layout

To provide an orientation for subsequent developments the corresponding ideal scenario and the correspond-
ing basic mechanisms are briefly recalled in Section 2.2. It is by and large confined to problems that are uniformly
elliptic with respect to the parameters. The perhaps next best understood case is the reduction of a parabolic
problem to a sequence of elliptic problems [15–17], where however, the lower bound in (1.8) – and hence tight-
ness – seems to be missing. This has been recently significantly improved in [24] using a space-time variational
formulation. Moreover, important progress has been made in [13, 14, 27, 29] developing RBMs for specific sad-
dle point – hence indefinite – problems such as the Stokes system. In particular, in the present terminology
stability and, as a consequence, tight surrogates are obtained by enriching the velocity spaces by supremizers.
More precisely, there are two approaches. For standard affine parameter dependence of the involved bilinear
forms one can determine a priori an enrichment, depending on the number of terms in the bilinear forms, that
ensures that the infinite dimensional inf-sup-constant is preserved, see [14, 27, 29]. Since the number of these
supremizers is possibly quite large, as an alternative, it is proposed in [13] to adaptively add supremizers until
a desired inf-sup-stability is reached. It is observed experimentally that in the tested examples this adaptive
enrichment results in an overall much smaller number of stabilizing functions although the actual guaranteed
termination of such a procedure has apparently not been discussed. Although termination in the context treated
in [13,14,27,29] is apparent, we shall encounter situations where this is no longer the case. Nevertheless, relating
also the stabilizing enrichments to greedy approximations allows us to treat this case as well, see Section 4.4.

Although the present paper addresses a rather different problem class the treatment of saddle point problems
turns out to be an important point of contact. In fact, the stabilizing enrichment of the reduced velocity
spaces by adding supremizers can be viewed as a special instance of the interior loop of what we call here
double greedy schemes, presented first at a workshop in Paris, 2011 [6]. The central objective of this paper
is in fact to develop rate-optimal RBMs – viz. identify well-conditioned tight surrogates – for a much wider
scope of problems, including indefinite, unsymmetric and singularly perturbed problems, in particular, transport
dominated problems. The development of RBMs for problems of this latter type, even in nonlinear and time
dependent formulations, have been recently addressed in [10, 23]. Resorting to the concept of natural norms
(see [32]) the deficiencies of standard H−1-based surrogates are shown to be mitigated but apparently not
cured.

Although we employ an analog to the notion of “natural norm” we present in this paper a different approach
based on deriving well-conditioned, possibly unsymmetric variational formulations for such problems. An es-
sential difference from [10, 23, 32] lies in guaranteeing inf-sup constants close to one not only for the infinite
dimensional problem but also for the reduced problems. In fact, in contrast to [10, 23, 32] our method can be
interpreted as (implicitly) generating for a given reduced space a “near-optimal test space” in a Petrov−Galerkin
sense which gives rise to inf-sup constants that can be driven towards one, see Section 3.2. In addition to just
using natural norms for X these controlled inf-sup constants allow one to approximately realize the projector
PX,Xn

p(μ) in the Definition (1.1) of tight surrogates as well as to stably approximate the solution in the online
phase. The starting point is an “optimal pair” of norms for the infinite dimensional problem, one of which can
be prescribed, such that the operator induced by the corresponding variational formulation is even an isometry.

For the sake of orientation, we formulate in Sections 2.3.1, 2.3.2, two simple model problems that nevertheless
exhibit increasing levels of obstructions. In particular, the case of pure transport plays an extreme role in
several respects. There is no viscosity that can be used for stabilization. Moreover, depending on the data, the
dependence of the solution on the parameter, here the convection field, may become very unsmooth which, in
spite of perfect stability, hints at a principal limitation of the RBM-concepts in such scenarios. We emphasize
though that the general methodology presented below is not restricted to those problems at all. The main
features of this approach, can be summarized as follows:

(i) Tight a posteriori bounds for the truth spaces as well as reduced spaces warrant certification. In particular,
truth and reduced spaces can be upgraded without discarding prior computations, see the robustness results
in [1].
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(ii) While remaining feasible in the sense of an online/offline decomposition through a built in stabilization
loop, the scheme automatically gives rise to stability constants that can, in principle, be made arbitrarily
close to one, see also (5.7) and Section 6.

(iii) Viewing time as an additional “spatial” variable, the results can be applied to time dependent problems
through corresponding space-time discretizations, which is one reason to focus on transport problems,
see [7].

In summary, the particular variational formulations presented in Section 3 combined with certain stabilization
techniques optimally inherits the analytic structure of the underlying infinite dimensional problem to the reduced
model.

Section 5 is then devoted to the algorithmic development and analysis of a double greedy scheme giving rise
to rate-optimal RBMs.

The theoretical findings are then applied in Section 6 to the two model problems concerning convection-
diffusion and pure transport equations. First numerical experiments quantify the results and highlight several
particular obstructions.

In Section 7 we apply the (slightly modified) scheme to other types of saddle point problems not necessarily
stemming from the generation of well-conditioned variational formulations. As a simple consequence we obtain
rate-optimality also for the problems considered in [13, 14, 29].

To simplify the exposition we write a <∼ b to express that a is bounded by some constant multiple of b
independent on any parameters a, b may depend on. Likewise a ∼ b means a <∼ b and b <∼ a.

2. Conceptual preview

2.1. Feasibility

In all subsequent developments we will be dealing exclusively with affine parameter dependence, see e.g. [28].
Under this assumption we insist on the usual division of the computational work into an offline and online
mode. Solving a problem in the full space X , which is typically computationally very intense, happens only in
offline mode where it is understood that actual computations take place in some sufficiently large but finite
dimensional subspace XN of X which is commonly referred to as the “truth space”. Typically XN is chosen so
as to guarantee

sup
p∈M

inf
v∈XN

‖p − v‖X ≤ tol∗, (2.1)

for some tolerance tol∗ that is sufficiently small for the application at hand. The subscript N refers to the
truth space and is sometimes suppressed when there is no risk of confusion. The greedy search for the reduced
basis functions falls therefore into the offline mode. This requires evaluating the surrogate for a sufficiently large
training set of parameters which for simplicity we also denote by P . In what follows, we call the surrogate feasible
if each evaluation of the surrogate requires solving only a problem in the small current reduced space Xn. We
sometimes say then that the offline mode is (computationally offline) feasible.

Likewise, the online evaluation is called feasible if each reduced basis approximation of some p(μ) requires
solving only a “small” problem of dimension n in the reduced space Xn. In this mode solving a “large” problem
in XN is prohibited.

Note that a feasible surrogate is not allowed to explicitly contain the true solution p(μ) (in the truth space).
This is why one is essentially forced to resort to residuals to estimate the true error, which in turn requires a
tight error-residual relation.

2.2. The ideal setting

To clearly identify the mechanisms leading to residual based tight surrogates, we briefly revisit in this sub-
section elliptic problems. This will later guide the realization of the essential ingredients also for unsymmetric
and transport dominated problems.
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To this end, let bµ(·, ·) : X × X → R be a symmetric uniformly X-elliptic bilinear form and ℓ ∈ X ′, i.e.

ca‖q‖2
X ≤ bµ(q, q), bµ(p, q) ≤ Ca‖p‖X‖q‖X , p, q ∈ X, μ ∈ P , (2.2)

holds uniformly in μ ∈ P . For compact P one obtains a compact solution set M ⊂ X for: given ℓ ∈ X ′, find
p(μ) ∈ X such that

bµ(p(μ), q) = 〈ℓ, q〉, q ∈ X.

There are two key properties that ensure rate-optimality in this setting:

(MP) Mapping property. The operator Bµ, defined by 〈Bµp, q〉 = bµ(p, q), p, q ∈ X , is for each μ ∈ P an
isomorphism from X onto X ′, i.e.

ca‖p‖X ≤ ‖Bµp‖X′ ≤ Ca‖p‖X, uniformly in μ ∈ P . (2.3)

In other words, errors measured in the “energy norm” ‖ · ‖X are equivalent to residuals in the dual norm ‖ · ‖X′ .

(BAP) Best Approximation Property. The Galerkin projection to the current reduced space, which can
be done in online mode, produces, up to constants, a best approximation with respect to the X-norm, i.e.

‖p(μ) − Πµ,Xn
p(μ)‖X ≤

√

Ca

ca
inf

ϕ∈Xn

‖p(μ) − ϕ‖X

where Πµ,Xn
denotes the Galerkin-projector onto Xn defined by

bµ(p(μ), q) = bµ(Πµ,Xn
p(μ), q), q ∈ Xn.

Note that (BAP) is a direct consequence of Cea’s Lemma for symmetric problems. Now the mapping property
MP yields for pn(μ) := Πµ,Xn

p(μ)

‖p(μ) − PX,Xn
p(μ)‖X ∼ sup

q∈X

〈ℓ, q〉 − bµ(pn(μ), q)

‖q‖X
:= R(μ, Xn). (2.4)

Thus, MP and BAP imply that the residual based surrogate, defined by (2.4), is tight, while the computation
of p(μ) is completely avoided but traded against the cheap computation of the Galerkin projection in Xn.
However, the condition κ(R) of the surrogate (see (1.9)) depends on the condition number κX,X(Bµ) ≤ Ca/ca

(see (2.2)) of the operator Bµ, which should therefore be of moderate size.
Finally, feasibility of the surrogate in (2.4) is well-known (see e.g. [28]) to be ensured when the parameter

dependence of bµ(·, ·) is affine, see (3.43) below.
Note that for unsymmetric problems, treated later, the validity of (BAP) is in general not automatic even

when MP holds and therefore plays a pivotal role in subsequent discussions.

2.3. Two model problems

As soon as one leaves the elliptic setting MP, BAP, and tightness of residual based surrogates, are no
longer for free. In particular, so far well-conditioned tight surrogates do not seem to be available yet for many
unsymmetric PDEs like convection dominated or pure transport problems. We shall discuss two model problems
that bring out several principal obstructions. The first example concerns convection-diffusion equations for
which, in principle, classical variational formulations are available. The second example concerns pure transport
for which a “natural” variational formulation is less obvious and for which the parameter dependence of the
solutions turns out to be less regular. Perhaps more importantly, the two examples represent two different
scenarios regarding the spaces associated with the bilinear form bµ(·, ·), an issue that has apparently not been
addressed in the RBM context.
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2.3.1. Convection-diffusion equations

As a first example we consider the linear convection-diffusion equation

−div(ǫ∇u) + b(μ) · ∇u + cu = f, in Ω, u = 0 on ∂Ω, (2.5)

where for simplicity we assume for now that only the convection b(μ) depends on a parameter μ while ǫ could
be arbitrarily small. We could as well include the viscosity and the reaction term varying in suitable regimes.
Its classical weak formulation is

bµ(p, q) := ǫ(∇p,∇q) + (b(μ) · ∇p, q) + (cp, q) = 〈f, q〉 , q ∈ X = H1
0 (Ω). (2.6)

It is well-known that b(μ) ∈ W 1,∞(Ω)d, c ∈ L∞(Ω), μ ∈ P , such that

−1

2
div b(μ) + c ≥ 0, (2.7)

implies well-posedness of (2.6) in the sense that the induced operator Bµ : H1
0 (Ω) → (H1

0 (Ω))′ is an isomorphism,
i.e., there exists for each μ ∈ P a unique solution p(μ) to (2.6) in H1

0 (Ω). However, although (2.2) is still valid,
the condition number κH1

0 (Ω),H1
0 (Ω)(Bµ) behaves like the Péclet number |b(μ)|∞/ǫ and hence is unacceptably

large for strongly dominating convection. As a consequence, in this case the condition κ(R) of the corresponding
surrogate (2.4) based on the H−1(Ω)-residual grows with the Péclet number. Hence, although such a surrogate
is theoretically tight, as long as ǫ ≥ ǫ0 where ǫ0 > 0 is fixed, the condition κ(R) (see (1.9)) is so large, that, due
to the constants in (1.11), one can expect essentially no control of the quality of the reduced spaces for very
small ǫ0 and moderate n.

Therefore, we are mainly interested here in a robust treatment of arbitrarily large Péclet numbers |b(μ)|∞/ǫ
which to our knowledge is currently not well covered by RBM methodology.

Unfortunately, an easy cure based on the standard (mesh-dependent) stabilization methods such as SUPG
(see e.g. [26] for a survey) does not give rise to an error-residual relation that stays independent of the Péclet
number |b|∞/ǫ either.

Instead we pursue here a different line based on stabilizing the problem on the infinite dimensional level
which, in particular, involves unsymmetric variational formulations, i.e., bµ(·, ·) is viewed as a bilinear form on
a pair of (possibly) different and parameter dependent Hilbert spaces Xµ, Yµ, μ ∈ P .

2.3.2. Linear transport equations

In some sense the situation is even aggravated when the diffusion vanishes completely as in pure parametric
transport equations forming the core ingredient of Boltzmann equations and related kinetic models as well as
kinetic formulations of conservation laws. Already the simplest version of a (stationary) linear transport equation

μ · ∇p + cp = f, in Ω, p = pb, on Γ−(μ), (2.8)

will be seen to represent the “worst scenario” from the RBM perspective, where, denoting by n(x) the outward
normal at the point x,

Γ−(μ) := {x ∈ ∂Ω : n(x) · μ < 0},
is the inflow boundary for the given convection vector μ. An example of a parameter domain would be the sphere
Sd−1 appearing in radiative transfer models, see [19,31]. It will be seen that the two examples differ in a subtle
but essential way, in particular, regarding smoothness of the dependence of the solutions on the parameter.

A possible variational formulation of (2.8) can be found in [12]. In order to eventually apply the n-width
benchmark, it is preferable to measure all parameter dependent solutions in a single reference norm. Therefore
we employ here a slightly different variational formulation from [7]: multiplying (2.8) by a test function and
integrating by parts, yields

(p,−μ · ∇q + cq) +

∫

∂Ω\Γ−

n · μpq = 〈f, q〉 −
∫

Γ−

n · μpq.
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If we now take test functions q that vanish on ∂Ω \ Γ− the boundary integral on the left hand side is zero.
Furthermore, we may replace the function p in the boundary integral on the right hand side by the boundary
condition pb so that we obtain

bµ(p, q) := 〈p,−μ · ∇q + cq〉 = 〈f, q〉 −
∫

Γ−

n · μpbq. (2.9)

For this variational formulation it is natural to define the function spaces

Yµ := clos‖·‖Yµ

{

q ∈ C∞(Ω) : q|∂Ω\Γ−
= 0

}

, Xµ := L2(Ω) (2.10)

endowed with the norms
‖q‖Yµ

:= ‖B∗
µq‖L2 , ‖p‖Xµ

:= ‖p‖L2. (2.11)

It is shown in [7] that the operator Bµ induced by bµ(·, ·), is an isomorphism Bµ : Xµ → Y ′
µ so that (2.11)

indeed defines a norm.

Remark 2.1. Notice that the spaces Yµ differ even as sets for different μ. Moreover, in contrast to the previous
example we must have Xµ = Yµ here.

3. Robust error-residual mappings for unsymmetric problems

3.1. The basic principle for MP

In the following, we consider general bilinear forms bµ(·, ·) : Xµ × Yµ → R for possibly parameter dependent
Hilbert spaces Xµ and Yµ giving rise to what one may call an infinite dimensional Petrov−Galerkin formulation
where the trial space Xµ generally differs from the test space Yµ. Thus, the operator Bµ given by 〈Bµq, v〉 =
bµ(q, v), q ∈ Xµ, v ∈ Yµ, is now viewed as a mapping from Xµ to Y ′

µ. In accordance with the preceding examples,
we shall assume that this operator is actually an isomorphism, i.e., the operator equation

Bµp(μ) = f, (3.1)

has for any f ∈ Y ′
µ a unique solution in Xµ. It is well-known that the mapping properties of Bµ are quantified

by Babuska’s Theorem: if there exist constants 0 < β(μ), Cb(μ) < ∞ such that

inf
q∈Xµ

sup
v∈Yµ

bµ(q, v)

‖q‖Xµ
‖v‖Yµ

≥ β(μ), sup
q∈Xµ

sup
v∈Yµ

|bµ(q, v)|
‖q‖Xµ

‖v‖Yµ

≤ Cb(μ) (3.2)

and for every v ∈ Yµ there exists a q ∈ Xµ such that bµ(q, v) = 0, then one has κXµ,Yµ
(Bµ) ≤ Cb(μ)/β(μ).

Let us stress that, as mentioned before, the subscript μ indicates that spaces and norms may depend on the
parameter but need not do so. Specifically, the generic notational convention adopted here covers the following
scenarios.

(s1) The norms ‖ · ‖Xµ
‖ · ‖Yµ

(possibly independent of μ) correspond to a given variational formulation for
which Cb(μ)/β(μ) is known to have moderate size uniformly in μ ∈ P . Examples are (2.6) with small
Peclet number or saddle point problems like the Stokes system. In the latter case, while (MP) may be
satisfactory, still additional care must be taken to ensure BAP with small constants.

(s2) As in the case of convection dominated convection-diffusion equations κXµ,Yµ
(Bµ) could be very large,

severely degrading a greedy selection of snapshots in an RBM. In this case the pair of norms ‖ · ‖Xµ
‖ · ‖Yµ

has to be modified. The first goal of this subsection is to describe how to “stabilize” the problem on the
infinite dimensional level which could be viewed as preconditioning (3.1). The underlying basic principle
has been used before in several works for different purposes, see e.g. [8, 9, 22, 34] and is also a point of
contact with the concept of natural norms from [32]. Here our main orientation is taken from [5,7,34]. We
briefly rehash the essential facts in order to bring in an additional new element, namely the interrelation of
Petrov−Galerkin schemes and associated saddle point problems, which plays an essential role for eventually
constructing uniformly well-conditioned tight surrogates.
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(s3) There may initially be no “natural” initial variational formulation as in the example of the transport
equation. The procedure applied in (s2) can be used to create for each μ a pair of spaces Xµ, Yµ with
norms ‖ · ‖Xµ

‖ · ‖Yµ
so that κXµ,Yµ

(Bµ) = 1 and no need for further modifying the norm arises.

This section is devoted to developing the conceptual tools for coping with (s1)–(s3). We proceed with collect-
ing a few useful preliminaries. It will be useful to identify for a given q ∈ Xµ the supremizer vq for which
supv∈Yµ

bµ(q, v)/‖v‖Yµ
is attained, see e.g. [14, 25].

Remark 3.1. For every q ∈ Xµ the optimal test function is given by

vq := argmax
v∈Yµ

bµ(q, v)

‖v‖Yµ

= R−1
Yµ

Bµq, (3.3)

where RYµ
: Yµ → Y ′

µ is the Riesz-map defined by

〈RYµ
v, w〉 = (v, w)Yµ

, v, w ∈ Yµ, ‖ · ‖2
Yµ

= (·, ·)Yµ
. (3.4)

Hence, in particular, one has

inf
q∈Xµ

‖R−1
Yµ

Bµq‖Yµ

‖q‖Xµ

= inf
q∈Xµ

sup
v∈Yµ

bµ(q, v)

‖q‖Xµ
‖v‖Yµ

·

For convenience we recall the simple argument. Written in variational form, the supremizer is defined by
(vq , w)Yµ

= bµ(q, w) for all w ∈ Yµ, which yields

sup
v∈Yµ

bµ(q, v)

‖v‖Yµ

= sup
v∈Yµ

(vq, v)Yµ

‖v‖Yµ

= ‖vq‖Yµ
,

which readily confirms the claim.

Although for most of the following considerations the dependence of the involved bilinear forms on the
parameter μ ∈ P is irrelevant it will be convenient for later purposes to retain the generic parameter dependence
in the notation.

Renormation. The possible ill-conditioning reflected by a very large κX,Y (B) ≤ Cb/β in (3.2) can be remedied
by properly modifying one of the two norms ‖ · ‖Yµ

or ‖ · ‖Xµ
while keeping the other one fixed. Specifically, we

wish to choose an equivalent but possibly different norm ‖ · ‖X̂µ
for X so that ideally Cb(μ) = β(μ) = 1, which

then means that

‖p(μ) − q‖X̂µ
= ‖f − Bµq‖Y ′

µ
, q ∈ Xµ, μ ∈ P . (3.5)

In this event the residual of a best approximation would be an ideal surrogate even sparing one the computation
of stability constants for the error certification.

Our starting point is exactly this latter ideal error-residual relation. Specifically, given ‖ · ‖Yµ
, we endow now

Xµ with a new norm ‖ · ‖X̂µ
, defined by

‖p‖X̂µ
:= sup

v∈Yµ

bµ(p, v)

‖v‖Yµ

= ‖Bµp‖Y ′
µ

= ‖R−1
Yµ

Bµp‖Yµ
, p ∈ Xµ, μ ∈ P , (3.6)

which corresponds to the concept of natural norms in [32]. Note that this is indeed a well-defined norm because
R−1

Yµ
Bµ : Xµ → Yµ is an isomorphism, hence injective, and that because of ‖R−1

Yµ
Bµq‖2

Yµ
= 〈B∗

µR−1
Yµ

Bµq, q〉,
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the corresponding Riesz map RX̂µ
: Xµ → X ′

µ is given by RX̂µ
:= B∗

µR−1
Yµ

Bµ. In addition, this shows that the

X̂µ-norm is equivalent to the original norm, i.e., there are cM , CM > 0 such that

cM‖q‖Xµ
≤ ‖q‖X̂µ

≤ CM‖q‖Xµ
, q ∈ Xµ, μ ∈ P . (3.7)

Note also that (2.11) is a special case of (3.6), where

RYµ
= BµB∗

µ, (3.8)

and thus ‖ · ‖X̂µ
= ‖(BµB∗

µ)−1Bµ · ‖Yµ
= ‖ · ‖L2 = ‖ · ‖Xµ

.

Remark 3.2. For the ‖ · ‖X̂µ
norm one has optimal continuity and stability constants Cb(μ) = β(μ) = 1,

μ ∈ P , i.e.

sup
q∈X̂µ

sup
v∈Yµ

bµ(q, v)

‖v‖Yµ
‖q‖X̂µ

= inf
q∈X̂µ

sup
v∈Yµ

bµ(q, v)

‖v‖Yµ
‖q‖X̂µ

= 1. (3.9)

Hence, κX̂µ,Yµ
(Bµ) = 1, i.e., Bµ is an isometry for these norms, which is the desired robust – in fact optimal –

error-residual relation (3.5) MP. We call a pair of norms for which (3.9) holds optimal.

Proof. The first relation follows from

|bµ(q, v)| = |〈R−1
Yµ

Bµq, RYµ
v〉| ≤ ‖R−1

Yµ
Bµq‖Yµ

‖RYµ
v‖Y ′

µ
= ‖q‖X̂µ

‖v‖Yµ
.

On the other hand, note that for any q ∈ Xµ its supremizer vq := R−1
Yµ

Bµq ∈ Yµ gives by (3.6), (3.4), bµ(q, vq) =

〈Bµq, R−1
Yµ

Bµq〉 = ‖q‖2
X̂µ

and ‖vq‖Yµ
= ‖q‖X̂µ

so that

inf
q∈Xµ

sup
v∈Yµ

bµ(q, v)

‖q‖X̂µ
‖v‖Yµ

≥ inf
q∈Xµ

〈Bµq, R−1
Yµ

Bµq〉
‖q‖2

X̂µ

= 1, (3.10)

which completes the proof. �

Remark 3.3. Likewise one can choose a particular test-norm and adapt the trial norm for obtaining an isometry
by setting

‖v‖Ŷµ
:= sup

q∈Xµ

bµ(q, v)

‖q‖Xµ

· (3.11)

Hence, one can also prescribe a desirable Xµ-norm while now a properly adapted Ŷµ-norm ensures that Bµ is
an isometry. Since both versions are mathematically equivalent (see [5,34]) we continue to express renormation
by (3.6).

3.2. Petrov−Galerkin and saddle point problems

Even when MP holds the validity of BAP is no longer automatic for unsymmetric or indefinite problems.
In principle, it can be guaranteed through contriving suitable Petrov Galerkin discretizations. This is where our
approach differs in an essential way from the use of the natural norms in [10,32]. A central issue in this section is
to show that such Petrov−Galerkin schemes are equivalent to certain saddle-point problems. On the one hand,
this avoids the explicit computation of the respective test spaces which could be parameter dependent and
hence render the scheme infeasible in the RBM sense. On the other hand, the stability of the Petrov−Galerkin
scheme is tantamount to the inf-sup stability of the saddle point formulation which in the end turns out to be
constructively realizable in a feasible way.
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To this end, let W ⊂ Xµ be a “generic” trial space which will play several different roles. It may stand for
the full infinite dimensional space, or for the truth space, or eventually for the reduced space. Notice first that
the best approximation pW (μ) ∈ W for p(μ) = B−1

µ f is

pW (μ) := argmin
q∈W

‖p(μ) − q‖X̂µ
= argmin

q∈W
‖f − Bµq‖Y ′

µ
, (3.12)

which is therefore given by the normal equation: find pW (μ) ∈ W such that

(f − BµpW (μ), Bµq)Y ′
µ

= 0, q ∈ W. (3.13)

What keeps us from using this as the basis for a variational discretization, is the fact that the Y ′
µ-scalar product

is usually hard to evaluate numerically. Noting that RY ′
µ

= R−1
Yµ

the last equation is equivalent to

〈

R−1
Yµ

(f − BµpW (μ)) , Bµq
〉

= 0, q ∈ W. (3.14)

Introducing the auxiliary variable u(μ) := R−1
Yµ

(f − BµpW (μ)), or rather

〈

RYµ
u(μ), v

〉

= 〈f − BµpW (μ), v〉 , v ∈ Yµ, (3.15)

in weak form, the relation (3.14) and hence (3.12) can be equivalently written as

〈RYµ
u(μ), v〉 + bµ(pW (μ), v) = 〈f, v〉, v ∈ Yµ,

bµ(q, u(μ)) = 0, q ∈ W,
(3.16)

which now just involves standard L2-inner products. Of course, in particular for W = Xµ

〈RYµ
u(μ), v〉 + bµ(p(μ), v) = 〈f, v〉, v ∈ Yµ,

bµ(q, u(μ)) = 0, q ∈ Xµ,
(3.17)

is equivalent to the original problem (3.1), which now takes the form of a saddle point problem. Bijectivity of Bµ

readily shows that
u(μ) = 0, μ ∈ P . (3.18)

Hence, the solution manifold of the saddle point problem (3.17) in
⋃

µ∈P Xµ ×Yµ can be identified according to

M = MX × {0}, MX := {p(μ) : p(μ) solves (3.1)}, (3.19)

as it should, with the one for the original problem (1.1).

Remark 3.4. Even when the spaces Yµ differ as sets when μ varies, as e.g. in (2.11) for the transport equation,
the solution manifold is still compact as long as the norms ‖ · ‖Xµ

are all equivalent to a reference norm.
Hence, the greedy errors are guaranteed to tend to zero and the n-widths benchmark is applicable. The issue
of parameter dependence of the involved spaces will be taken up in Section 3.3 again.

Now given a finite dimensional subspace W , we cannot treat (3.16) yet, since we cannot test by all v ∈ Yµ.
The following interpretation of this idealized situation is immediate from the normal equation (3.14).

Remark 3.5. The problem (3.16) is equivalent to the Petrov−Galerkin scheme: find pW (μ) such that

bµ(pW (μ), v) = 〈f, v〉, v ∈ YW , (3.20)

where
YW := R−1

Yµ
BµW, (3.21)

is the optimal test space associated with W and pW (μ) is the best Xµ-approximation to p(μ) in Xµ.



634 W. DAHMEN ET AL.

Since (3.20) is practically infeasible a natural strategy is to replace Yµ by a sufficiently large finite dimensional
subspace V ⊂ Yµ that inherits “sufficient” stability. The following observation, which plays a crucial role in what
follows, explains the interrelation between a practically feasible version of (3.20) and a fully finite dimensional
version of (3.16).

Proposition 3.6. The solution component pW,V (μ) of the saddle point problem

〈RYµ
uV,W (μ), v〉 + bµ(pW,V (μ), v) = 〈f, v〉, v ∈ V,

bµ(q, uV,W (μ)) = 0, q ∈ W.
(3.22)

solves the Petrov−Galerkin problem (3.20) with the optimal test space YW replaced by ỸW = PYµ,V (R−1
Yµ

Bµ(W ))
where PYµ,V denotes the Yµ-orthogonal projection.

Proof. For any q ∈ W , consider vq := PYµ,V (R−1
Yµ

Bµq) ∈ V and note that, by the first equation (3.22),

bµ(pW,V (μ), vq) = 〈BµpW,V (μ), vq〉 = 〈f, vq〉 − 〈RYµ
uV,W , vq〉.

Since

〈RYµ
uV,W (μ), vq〉 = (uV,W (μ), vq)Yµ

= (uV,W (μ), R−1
Yµ

Bµq)Yµ
= bµ(q, uV,W (μ)) = 0,

where we have used the second equation in (3.22). �

Clearly, the larger V the closer ỸW is to YW so that the choice of V can be viewed as a stabilization. To
quantify this observation, we call V δ-proximal for W if

‖(I − PYµ,V )R−1
Yµ

Bµq‖Yµ
≤ δ‖R−1

Yµ
Bµq‖Yµ

, q ∈ W, (3.23)

holds for some fixed 0 ≤ δ < 1, see [7, 34].

Proposition 3.7. Assume that for given W × V ⊂ Xµ × Yµ the test space V is δ-proximal for W , i.e. (3.23)
is satisfied. Then, one has

‖p(μ) − pW,V (μ)‖X̂µ
≤ 1

1 − δ
inf

q∈W
‖p(μ) − q‖X̂µ

. (3.24)

and

‖p(μ) − pW,V (μ)‖X̂µ
+ ‖u(μ) − uV,W (μ)‖Yµ

≤ 2

1 − δ
inf

q∈W
‖p(μ) − q‖X̂µ

. (3.25)

Moreover, one has

inf
q∈W

sup
v∈V

bµ(q, v)

‖v‖Yµ
‖q‖X̂µ

≥
√

1 − δ2. (3.26)

Proof. Let pW (μ) denote the best X̂µ-approximation to the exact solution p(μ) of (3.17). Then, for any q ∈ W
one has, on account of Remark 3.2,

(pW (μ) − pW,V (μ), q)X̂µ
= (p(μ) − pW,V (μ), q)X̂µ

= (Bµ(p(μ) − pW,V (μ)), Bµq)Y ′
µ

= 〈Bµ(p(μ) − pW,V (μ)), R−1
Yµ

(Bµq)〉 = bµ(p(μ) − pW,V (μ), R−1
Yµ

(Bµq))

= bµ(p(μ) − pW,V (μ), (I − PYµ,V )R−1
Yµ

(Bµq)),
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where we have used Petrov−Galerkin orthogonality, asserted by Proposition 3.6, in the last step. By duality,
Remark 3.2, (3.5), respectively (3.6), and (3.23), we conclude that

‖pW (μ) − pW,V (μ)‖X̂µ
= sup

q∈W

bµ(p(μ) − pW,V (μ), (I − PYµ,V )R−1
Yµ

(Bµq))

‖q‖X̂µ

≤
‖p(μ) − pW,V (μ)‖X̂µ

δ‖R−1
Yµ

(Bµq)‖Yµ

‖q‖X̂µ

= δ‖p(μ) − pW,V (μ)‖X̂µ
,

from which (3.24) follows by triangle inequality.
Next recall from (3.18) that, in view of the first relation in (3.22),

‖u(μ) − uV,W (μ)‖2
Yµ

= ‖uV,W (μ)‖2
Yµ

= (uV,W (μ), uV,W (μ))Yµ
= 〈f − BµpW,V (μ), uV,W (μ)〉

≤ ‖f − BµpW,V (μ)‖Y ′
µ
‖uV,W (μ)‖Yµ

= ‖p(μ) − pW,V (μ)‖X̂µ
‖u(μ) − uV,W (μ)‖Yµ

,

which together with (3.24) confirms (3.25).
Finally, the inf-sup estimate (3.26) is an immediate consequence of the more general Proposition 3.8

below. �

We shall use the saddle point formulations to contrive rate-optimal RBMs, namely, on one hand, for computing
truth snapshots in W = XN with a suitable δ-proximal test space YN , and on the other hand, for computing
Galerkin projections in reduced spaces W = Xn again with an associated δ-proximal test space Yn, whose
construction will be discussed in the next section.

To put this into proper perspective, given any W ⊂ Xµ, the condition (3.23) on a V ⊂ Yµ implies the
best approximation property BAP for the Galerkin solution component pW,V (μ) of (3.22) with a constant
that becomes the closer to one the smaller the relative error becomes in (3.23). Moreover, (3.25) says that the
accuracy of the second “auxiliary” component uV,W (μ) is automatically completely governed by the accuracy
of the first component pW,V (μ). Finally, (3.23) implies inf-sup stability of (3.22). It will be shown below (for
later purposes in a little more generality) that conversely inf-sup stability (3.26) implies δ-proximality. In fact,
since the bilinear form aµ(v, w) := 〈RYµ

v, w〉 = (v, w)Yµ
is trivially Yµ-elliptic with coercivity and continuity

constants ca(μ) = Ca(μ) = 1 (see (2.2)), we could have derived the best approximation property BAP (3.25)
directly from a uniform inf-sup condition from standard facts about general saddle point problems, see e.g. [2].
We have presented the relatively short self-contained derivation in order to identify the precise constants and to
bring out the particular role of the δ-proximality condition (3.23). As we shall show later both conditions (3.23)
and (3.26) can be used algorithmically to ensure stability of the saddle point problem and hence tightness of
corresponding residual based surrogates.

The above discussion, especially the notion of δ-proximality, draws essentially on the use of an optimal pair of
norms given by (3.6) or (3.11). In the scenario (s1) when there is no need for renormation from a stability point
of view as in the context of classical saddle point problems, such as the Stokes system, it is more convenient to
work with the “original” Xµ-norm related to ‖ · ‖X̂µ

by (3.7). The following proposition clarifies the announced
interrelation between an inf-sup condition and δ-proximality.

Proposition 3.8. As before assume that V ⊂ Yµ and let W ⊂ Xµ, 0 ≤ δ < 1, and λ > 0. Consider the two
conditions:

‖(I − PYµ,Yn
)R−1

Yµ
Bµq‖Yµ

≤ δ‖R−1
Yµ

Bµq‖Yµ
, ∀ q ∈ W, (3.27)

inf
q∈W

sup
v∈V

bµ(q, v)

‖v‖Yµ
‖q‖Xµ

≥ λ. (3.28)

Then (3.27) implies (3.28) with constant λ = cM

√
1 − δ2. Conversely, (3.28) implies (3.27) with constant

δ =
√

1 − C2
Mλ2 i.e., λ = C−1

M

√
1 − δ2, where cM and CM are the constants from the norm equivalence (3.7).



636 W. DAHMEN ET AL.

Note that when cM = CM = 1, e.g. in case we use the X̂µ-norm for Xµ, both stability conditions are
equivalent.

Proof. We reformulate (3.27) and (3.28) in terms of equivalent conditions that can be more easily compared.
First, squaring (3.27) and using that PYµ,V is the Yµ-orthogonal projector, we obtain

‖R−1
Yµ

Bµq‖2
Yµ

− ‖PYµ,V R−1
Yµ

Bµq‖2
Yµ

≤ δ2‖R−1
Yµ

Bµq‖2
Yµ

, ∀q ∈ W,

which is equivalent to
√

1 − δ2‖R−1
Yµ

Bµq‖Yµ
≤ ‖PYµ,V R−1

Yµ
Bµq‖Yµ

, ∀q ∈ W.

By the definition (3.6) of the graph norm ‖ · ‖X̂µ
, this is equivalent to

‖PYµ,V R−1
Yµ

Bµq‖Yµ
≥

√

1 − δ2‖q‖X̂µ
, ∀q ∈ W. (3.29)

Next, to reformulate (3.28), obviously the inf-sup condition is equivalent to

sup
v∈V

bµ(q, v)

‖v‖Yµ

≥ λ‖q‖Xµ
, ∀q ∈ W. (3.30)

From (3.3) in Remark 3.1 we know that the left hand side is maximized by the function v = PYµ,V R−1
Yµ

Bµq
which yields

sup
v∈V

bµ(q, v)

‖v‖Yµ

=
〈PYµ,V R−1

Yµ
Bµq, Bµq〉

‖PYµ,V R−1
Yµ

Bµq‖Yµ

=
〈RYµ

PYµ,V R−1
Yµ

Bµq, R−1
Yµ

Bµq〉
‖PYµ,V R−1

Yµ
Bµq‖Yµ

= ‖PYµ,V R−1
Yµ

Bµq‖Yµ
. (3.31)

Substituting the right hand side in the left hand side of the condition (3.30), yields

‖PYµ,V R−1
Yµ

Bµq‖Yµ
≥ λ‖q‖Xµ

, ∀q ∈ W.

We see that this condition is identical to (3.29) up to an equivalence of the ‖ · ‖Xµ
and ‖ · ‖X̂µ

norms, which
proves the assertion. �

In summary, given a trial space W ⊂ Xµ, a suitable V ⊂ Yµ such that the Galerkin problem (3.22) has
the best approximation property BAP, thereby warranting tight residual based surrogates, can be obtained by
realizing

inf
q∈W

sup
v∈V

bµ(q, v)

‖v‖Yµ
‖q‖Xµ

≥ β, (3.32)

where β := minµ∈P β(μ) > 0, see (3.2).

3.3. Parameter dependence, truth spaces, and feasibility

Before applying the above findings to the construction of well-conditioned tight surrogates, we need to be a
bit more precise about the parameter dependence in order to distinguish eventually several relevant scenarios.
Notice that the spaces Yµ, Xµ are allowed to depend on μ ∈ P in a way that they even differ as sets and no
parameter independent reference norm may exist, see Remark 2.1. Let

Y :=
⋂

µ∈P

Yµ, X :=
⋂

µ∈P

Xµ, (3.33)

where the intersection is understood in the sense of sets. It is clear that Y and X are linear spaces. Although
in general, we do not insist, that Y and X are endowed with norms that are equivalent to all ‖ · ‖Yµ

and ‖ · ‖Xµ
,



DOUBLE GREEDY ALGORITHMS FOR REDUCED BASIS METHODS 637

respectively. However, we do assume in what follows that Y, X are dense in Yµ, Xµ, respectively, for all μ ∈ P .
Moreover, on account of the compactness of P , we can always define (possibly stronger) norms

‖v‖Y := sup
µ∈P

‖v‖Yµ
, ‖q‖X := sup

µ∈P
‖q‖Xµ

(3.34)

for Y, X , respectively. Moreover, since Y =
⋂

µ∈P Yµ is assumed to be dense in Yµ, for the inf-sup condition (3.2)
it suffices to take for V = Yµ the supremum over Y instead of Yµ, i.e., there exist subspaces V ⊂ Y for which
the discrete inf-sup condition (3.28) holds uniformly in the parameter μ.

Of course, this setting covers, in particular, the special situation – usually considered in the RBM context –
that all the spaces Yµ, Xµ, μ ∈ P , agree as sets, respectively, and where the respective norms are uniformly
equivalent, i.e., there exist constants 0 < c◦, C◦ < ∞ such that

c◦‖v‖Y ≤ ‖v‖Yµ
≤ C◦‖v‖Y , μ ∈ P , v ∈ Y, (3.35)

and

c◦‖q‖X ≤ ‖q‖Xµ
≤ C◦‖q‖X , μ ∈ P , q ∈ X. (3.36)

Recall from Remark 2.1 that for parametric transport equations (3.36) is valid but (3.35) does not hold.

At any rate, due to the denseness of X and Y , we can find sufficiently large but finite dimensional truth
spaces YN ⊂ Y, XN ⊂ X , typically finite element spaces, that can provide a desired target accuracy of the truth
model. Since we are dealing here with problems for which standard tight a posteriori bounds are not available,
we comment first on the truth certification. Note that this is particularly important for convection dominated
convection diffusion equations when a complete resolution of very steep layers is prohibitively expensive even
for the truth solution. We know that ‖p(μ) − q‖X̂µ

= ‖f − Bµq‖Y ′
µ
. In order to be able to accurately evaluate

the residual in the dual norm ‖ · ‖Y ′
µ

one needs in any setting suitable assumptions on data oscillation, see

e.g. [4,7,33]. One way to express this is to require that the projection of R−1
Yµ

f into the test space YN captures

enough of R−1
Yµ

f . To this end, we make use of the following simple observation.

Remark 3.9. Assume that (3.36) holds. Given W ⊆ XN and any δ ∈ (0, 1), there exists a finite dimensional
test space V ⊂ Y such that

inf
v∈V

‖q − R−1

X̂µ
B∗

µv‖X̂µ
≤ δ‖q‖X̂µ

, q ∈ MX + W, μ ∈ P , (3.37)

which implies

(1 − δ2)1/2‖f − Bµp‖Y ′
µ
≤ ‖PYµ,V R−1

Yµ
(f − Bµp)‖Yµ

≤ ‖f − Bµp‖Y ′
µ
, p ∈ W. (3.38)

In the following, we denote by V(W, δ) all test spaces in YN which satisfy the stability condition (3.37).

Proof. Since MX is compact there is a linear space VM such that

inf
v∈VM

‖q − R−1

X̂µ
B∗

µv‖X̂µ
≤ δ inf

w∈W
‖q + w‖X̂µ

, q ∈ MX , μ ∈ P .

It follows that the space VM + W satisfies (3.37). Furthermore, since

inf
v∈V

‖q − R−1

X̂µ
B∗

µv‖X̂µ
≤ δ‖q‖X̂µ

⇐⇒ inf
v∈V

‖R−1
Yµ

Bµq − v‖Yµ
≤ δ‖R−1

Yµ
Bµq‖Yµ

, (3.39)

and since infv∈V ‖R−1
Yµ

Bµq − v‖Yµ
= ‖(I − PYµ,V )R−1

Yµ
Bµq‖Yµ

, the assertion follows. �
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We shall comment later how (3.37) can be realized, see also [7, 34] for a more detailed discussion. Since
rV,W (p, f) := PYµ,V R−1

Yµ
(f − Bµp) is given by

〈RYµ
rV,W (p, f), z〉 = 〈f − Bµp, z〉, z ∈ YN , (3.40)

the middle term in (3.38) is computable.

Remark 3.10. In what follows we shall always assume that for some fixed δN < 1 and any given XN ⊂ X , the
finite dimensional space YN is contained in V(XN , δN ) satisfying (3.37) which is solely a matter of the fixed truth
approximation. Therefore, abbreviating the solution of (3.22) for W = XN , V = YN , as pXN ,YN

=: pN (μ) ∈ XN ,
uN (μ) := uYN ,XN

(μ), we immediately conclude that

‖p(μ) − pN (μ)‖X̂µ
≤ (1 − δ2)−1/2‖uN (μ)‖Yµ

, μ ∈ P . (3.41)

Remark 3.11. (i) For any desired target tolerance τ , as soon as the computable quantity ‖uN (μ)‖Yµ
drops

below (1− δ2)1/2τ we know that the truth solution has guaranteed accuracy ≤ τ which can be achieved by the
refinement scheme in [7].
(ii) The above choice of YN guarantees, by Propositions 3.7, 3.8, in particular, that

inf
q∈XN

sup
v∈YN

bµ(q, v)

‖v‖Yµ
‖q‖X̄µ

≥ ξ
√

1 − δ2
N =: βN > 0, μ ∈ P , where ξ :=

{

1, ‖ · ‖X̄µ
= ‖ · ‖X̂µ

,

β, ‖ · ‖X̄µ
= ‖ · ‖Xµ

,
(3.42)

and where β is the inf-sup constant from (3.32) in the case of scenario (s1), see Section 3.1. Hence, βN can, in
principle be driven as close as one wishes to one or β, depending on the choice of norm for Xµ.

Note that the above statements do not contradict the possible case that the norms ‖ · ‖Yµ
or ‖ · ‖Xµ

, μ ∈ P ,
are not equivalent to a single reference norm.

In the following, we shall often not distinguish for simplicity of exposition between truth and full spaces
unless explicitly stated. In particular, whenever we speak of a computation in Yµ, Xµ we refer to the truth
spaces endowed with the norms ‖ · ‖Yµ

, ‖ · ‖X̂µ
, respectively.

Finally, the way how the bilinear forms depend on μ is important for practical feasibility. We assume that
the dependence of the bilinear forms on μ is affine in the usual sense, i.e.

bµ(·, ·) =

mB
∑

k=1

Θb
k(μ)bk(·, ·), (3.43)

with parameter independent bilinear forms bk(·, ·), k = 1, . . . , mB, and smooth functions Θb
k.

4. Stabilization

Suppose we are given a pair W = Xn ⊂ XN , Yn ⊂ YN of finite dimensional spaces with bases Φn = {φj}n
j=1

and Ψn = {ψj}m(n)
j=1 , respectively. Our convention will always be that the index n reflects the dimension of Xn

while generally dimYn = m(n) ≥ n. While the purpose of Xn is to approximate MX the role of Yn is, in view of
Proposition 3.7, to guarantee uniform inf-sup stability. More precisely, whenever Yn is δ-proximal for Xn (3.23)
for some δ < 1, one has

inf
q∈Xn

sup
v∈Yn

bµ(q, v)

‖v‖Yµ
‖q‖X̂µ

≥
√

1 − δ2, μ ∈ P . (4.1)

Hence, a natural strategy is to choose a constant 0 < ζ < 1, replace the right hand side of (4.1) by ζ
√

1 − δ2 and
enrich the space Yn until this relaxed inf-sup condition is valid. The closer one wishes pXn,Yn

(μ) to be to the

best X̂µ-approximation PX̂µ,Xn
p(μ), the closer ζ should be chosen to one, see (3.24). In particular, any ζ < 1 is

in principle feasible.
We shall formulate actually two variants of such a stabilization scheme which apply under slightly different

assumptions.
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4.1. Inf-sup stabilization

The first natural idea which has already been used in [13, 14, 29] is to enrich Yn by the supremizer for the
infimizing parameter μ̄. More precisely, we first search for a parameter μ̄ ∈ P and a function q̄ ∈ Xn for which
the inf-sup condition (3.28) is worst, i.e.

sup
v∈Yn

bµ̄(q̄, v)

‖v‖Yµ̄
‖q̄‖Xµ̄

= inf
µ∈P

(

inf
q∈Xn

sup
v∈Yn

bµ(q, v)

‖v‖Yµ
‖q‖Xµ

)

· (4.2)

If this worst case inf-sup constant does not exceed yet a desired uniform lower bound, Yn does not contain an
effective supremizer for μ̄, q̄, yet. However, since the truth space satisfies the uniform inf-sup condition (3.42)
there exists a good supremizer in the truth space which, on account of Remark 3.1, is given by

v̄ = R−1
Yµ̄

Bµ̄q̄ = argmax
v∈Yµ̄

bµ̄(q̄, v)

‖v‖Yµ̄
‖q̄‖Xµ̄

,

and provides the enrichment
Yn → span{Yn, R−1

Yµ
Bµq̄}. (4.3)

This strategy can now be applied recursively until we reach a satisfactory uniform inf-sup condition for the
reduced spaces.

Of course, three questions immediately arise:

(i) Is the computation of μ̄ and q̄ feasible?
(ii) Does this process terminate after finitely many steps?
(iii) If so, is the number of necessary stabilization steps affordable?

Assuming for the moment to have positive answers to (ii) and (iii), we first derive a suitable offline/online
strategy for an efficient implementation of (4.3). First note that for given μ̄ and q̄ the new test function
v̄ := R−1

Yµ̄
Bµ̄q̄ can be computed by a standard Galerkin scheme

(v̄, v)Yµ̄
= bµ̄(q̄, v), v ∈ Yµ̄,

so that it remains to solve the optimization problem (4.2) to find μ̄ and q̄. To this end, we first rewrite the
inf-sup condition in terms of the coefficient vectors with respect to the reduced bases. To describe this, we
denote the corresponding Gramians, respectively cross-Gramians as

RYµ
:= (Ψ,Ψ)Yµ

:=
(

(ψi, ψj)Yµ

)m

i,j=1
,

RXµ
:= (Φ,Φ)Xµ

:=
(

(φi, φj)Xµ

)n

i,j=1
,

Bµ := bµ(Φ,Ψ) :=
(

bµ(φi, ψj)
)m,n

j,i=1
.

(4.4)

Practical feasibility relies on the following

Assumption 4.1. In addition to Bµ the Riesz maps RYµ
and RXµ

depend affinely on the parameter μ.

Remark 4.2. Under Assumption 4.1 all the matrices in (4.4) can be computed online. Thus, by rewriting the
left hand side of the inf-sup condition as

inf
q∈Rn

sup
v∈Rm(n)

vT Bµq
(

vT RYµ
v
)1/2 (

qT RXµ
q
)1/2

(4.5)

we are left for each parameter μ with an optimization problem only of the size of the dimensions m(n), n of Yn

and Xn, respectively.
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In order to find an infimizing q ∈ R
n we eliminate the discrete Riesz maps in the denominator by factoring

them as

RYµ
= LT

Yµ
LYµ

RXµ
= LT

Xµ
LXµ

. (4.6)

Here, one can think of a Cholesky factorization or of a spectral decomposition LYµ
= Λ

1/2
Xµ

QXµ
where the

columns of QXµ
form an eigenbasis and ΛXµ

is the diagonal matrix with the eigenvalues (in descending order)

on the diagonal. Replacing v by LYµ
v and q by LXµ

q and defining Dµ := L−T
Yµ

BµL−1
Xµ

we find that

inf
q∈Rn

sup
v∈Rm(n)

vT Bµq
(

vTRYµ
v
)1/2 (

qTRXµ
q
)1/2

= inf
q∈Rn

sup
v∈Rm(n)

vT Dµq

‖v‖ℓ2‖q‖ℓ2

· (4.7)

and hence, one easily verifies the following fact.

Remark 4.3. For any given μ the corresponding inf-sup constant is the smallest singular value of Dµ and
the optimal q is the corresponding right singular vector. Since the computational cost of the singular value
decomposition is polynomial in the dimensions of the reduced bases, we can afford to compute all the inf-sup
constants for a sufficiently large sample set S ⊂ P of parameters, yielding the optimal μ̄.

The complete scheme is summarized in Algorithm 2 which we formulate for the general norms Xµ in (3.2)
and the inf-sup constant βN from (3.42).

Algorithm 2. Update to achieve inf-sup stability.

1: function Update-inf-sup(Yn, Xn)
2: Choose 0 < ζ < 1.
3: Select a sufficiently large sample S ⊂ P .
4: repeat

5: for µ ∈ S do

6: Assemble the Gramians and cross-Gramians RYµ , RXµ , Bµ.
7: Compute the Cholesky decompositions

RYµ = L
T
Yµ

LYµ RXµ = L
T
Xµ

LXµ .

8: Determine the smallest singular value σ(µ) and corresponding
right singular vector q̄µ of the matrix Dµ = L−T

Yµ
BµLXµ .

9: end for

10: Set µ̄ = min{σ(µ) : µ ∈ S}
11: Update Yn ← span{Yn, R−1

Yµ̄
Bµ̄q̄µ̄} with q̄µ̄ =

∑n

i=1
(q̄µ̄)iφi.

12: until σ(µ̄) ≥ ζβN

13: return Yn

14: end function

4.2. Stabilization based on δ-proximality

We shall now formulate an alternative stabilizing scheme. It is related to greedy approximation and will shed
some light on the above stabilization algorithm regarding the questions (ii), (iii). The idea is to enrich the space
Yn to obtain stability based on the equivalent criterion (3.27) which can be rephrased as

inf
φ∈Yn

‖R−1
Yµ

Bµq − φ‖Yµ
≤ δ‖R−1

Yµ
Bµq‖Yµ

, ∀ q ∈ Xn, μ ∈ P . (4.8)
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Defining

X1
n(μ) :=

{

q ∈ Xn : ‖q‖X̂µ
= ‖R−1

Yµ
Bµq‖Yµ

= 1
}

, (4.9)

this is equivalent to
sup
µ∈P

sup
q∈X1

n(µ)

inf
φ∈Yn

‖R−1
Yµ

Bµq − φ‖Yµ
≤ δ. (4.10)

We can again employ a greedy strategy to search for the parameter μ ∈ P and the element in X1
n :=

⋃

µ∈P X1
n(μ)

for which the error is worst:
(μ̄, q̄) = argmax

µ∈P;q∈X1
n(µ)

inf
φ∈Yn

‖R−1
Yµ

Bµq − φ‖Yµ
. (4.11)

As long as the approximation error for μ̄ and q̄ exceeds some fixed δ ∈ (0, 1), we add the best approximation
from the full truth space to the reduced basis:

Yn → span{Yn, R−1
Yµ̄

Bµ̄q̄}.

Since, as pointed out below (3.6), R−1
Yµ

= B−∗
µ RX̂µ

B−1
µ , we see that (R−1

Yµ
)−1 = BµR−1

X̂µ
B∗

µ. Hence, in view

of (3.6), we conclude that

(μ̄, q̄) = argmax
µ∈P;q∈X1

n(µ)

(

inf
φ∈Yn

‖q − R−1

X̂µ
B∗

µφ‖X̂µ

)

, (4.12)

which implies the following observation.

Remark 4.4. If (3.36) holds so that all the spaces Xµ agree with a parameter independent reference space X ,
the output (μ̄, q̄) is the result of a greedy approximation to the compact set X1

n :=
⋃

µ∈P X1
n(μ). Therefore, in

principle, the scheme fits into the standard greedy theory in [1, 3, 11]. In fact, by (3.36), (3.43), and the fact
that B∗

µ : Yµ → (X̂µ)′ is an isometry, the set R−1
X B∗

µYn is a finite dimensional subspace of X .

It remains to find a fast algorithm for the solution of the maximization problem (4.11) which will make use
of the ‖ · ‖X̂µ

-norm (3.6) for Xµ.

Lemma 4.5. Let q =
∑n

j=1 qjφj =: qTΦ. Referring to the matrices Bµ,RYµ
from (4.4), and defining RX̂µ

:=

(Φ,Φ)X̂µ
, one has

‖(I − PYµ,Yn
)R−1

Yµ
Bµq‖2

Yµ
= qT

(

RX̂µ
− BT

µ R−1
Yµ

Bµ

)

q. (4.13)

Proof. By orthogonality of PYµ,Yn
and (3.6), we have

‖(I − PYµ,Yn
)R−1

Yµ
Bµq‖2

Yµ
= ‖q‖2

X̂µ
− ‖PYµ,Yn

R−1
Yµ

Bµq‖2
Yµ

.

By definition, we have ‖q‖2
X̂µ

= qTRX̂µ
q. As for the second term, note that PYµ,Yn

R−1
Yµ

Bµq is the Galerkin

solution of RYµ
z = Bµq. Since for any w ∈ Y ′

µ the coefficient vector z of PYµ,Yn
R−1

Yµ
w is given by

RYµ
z = 〈w,Ψ〉 =:

(

〈w, ψj〉
)m

j=1
,

we conclude that for w := qTBµΦ one has

z = R−1
Yµ

〈Ψ,BµΦ〉q = R−1
Yµ

Bµq.

Hence
‖PYµ,Yn

R−1
Yµ

Bµq‖2
Yµ

= 〈Bµq, PYµ,Yn
R−1

Yµ
Bµq〉Yµ

= qTBT
µ R−1

Yµ
Bµq.

which confirms the claim. �
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Similarly, by the definition (3.6) of the X̂µ-norm, we have ‖q‖X̂µ
= ‖R−1

Yµ
Bµq‖Yµ

so that

X1
n(μ) =

{

q ∈ Xn : q = qTΦ, qTRX̂µ
q = 1

}

.

It follows that the optimization problem (4.11) is equivalent to

(μ̄, q̄) = argmax
µ∈P;q∈Rn

qT
(

RX̂µ
− BT

µ R−1
Yµ

Bµ

)

q

qTRX̂µ
q

, (4.14)

where q̄ is the coefficient vector of q̄. This problem can be solved analogously to the corresponding optimiza-
tion problem (4.2), (4.5) of the inf-sup condition so that we obtain the alternative algorithm Update-δ for
updating Yn.

Algorithm 3. Update to achieve δ-proximality.

1: function Update-δ(Yn, Xn)
2: Choose 0 < δ < 1.
3: Select a sufficiently large sample S ⊂ P .
4: repeat

5: Assemble the Gramians and cross-Gramians RYµ , RX̂µ
, Bµ (see (4.4)).

6: Compute

δmax = max
µ∈S;q∈Rn

qT
(

RX̂µ
− BT

µ R−1
Yµ

Bµ

)

q

qTRX̂µ
q

,

(µ̄, q̄) = argmax
µ∈S;q∈Rn

qT
(

RX̂µ
− BT

µ R−1
Yµ

Bµ

)

q

qTRX̂µ
q

.

7: Update Yn ← span{Yn, R−1
Yµ̄

Bµ̄q̄µ̄} with q̄µ̄ =
∑n

i=1
(q̄µ̄)iφi.

8: until δmax ≤ δ

9: return Yn

10: end function

The efficient practical execution of Algorithm Update-δ requires assembling the matrices RX̂µ
in the typical

offline/online fashion. This is possible when instead of Assumption 4.1 the following holds.

Assumption 4.6. The Riesz maps RYµ
, RX̂µ

and hence their inner products (·, ·)Yµ
, (·, ·)X̂µ

depend affinely
on the parameter μ ∈ P.

By (3.6), Assumption 4.6 is valid if the Yµ-norm can be chosen independent of μ, i.e., when (3.35) holds.
Moreover Assumption 4.6 can also be satisfied for parameter dependent Yµ-norms as e.g., in view of (3.8), for
the transport equation.

Finally, it is important to note that the number of operations used by both algorithms Update-Inf-Sup

and Update-δ (under Assumption 4.6) only depends on the size of the sample set S and the dimensions n and
m(n) of the reduced bases. Especially, it is independent of the dimension of the truth spaces which renders these
algorithms feasible.

Assumption 4.6 is clearly more restrictive, i.e. the use of Update-δ is more constrained than Update-Inf-

Sup which applies under the standard assumptions of affine dependence and for any norm on Xµ.
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4.3. Interrelation between both stabilization schemes

We discuss next the interrelation between the schemes Update-Inf-Sup and Update-δ.

Proposition 4.7. Assume that we use the ‖ · ‖X̂µ
-norm for Xµ and the spectral decomposition

RX̂µ
= LT

Xµ
LXµ

= QT
µ Λ1/2

µ Λ1/2
µ Qµ.

in (4.6) for the scheme Update-inf-sup, where Λµ is the diagonal matrix with the eigenvalues and Qµ the
matrix of corresponding eigenvectors. Then the outputs of Update-inf-sup and Update-δ coincide.

Proof. Let Mµ := BT
µ R−1

Yµ
Bµ. Clearly, since Qµ is orthogonal,

λmax(μ) := max
q∈Rn

qT
(

RX̂µ
− BT

µ R−1
Yµ

Bµ

)

q

qTRX̂µ
q

is the largest eigenvalue of the matrix I − Λ
−1/2
µ QµMµQT

µ Λ
−1/2
µ so that

λmax(μ) = 1 − λmin(Λ−1/2
µ QµMµQ

T
µ Λ−1/2

µ ). (4.15)

On the other hand, using the X̂µ-norm in Update-Inf-Sup, i.e., replacing RXµ
by RX̂µ

in (4.6), and using

the spectral decomposition RX̂µ
= QT

µ Λ
1/2
µ Λ

1/2
µ Qµ for LT

Xµ
LXµ

, the matrix Dµ in (4.7) takes the form Dµ =

L−T
Yµ

BµQT
µ Λ−1/2. Clearly, the smallest singular value of Dµ is just λmin(DT

µ Dµ)1/2 and the corresponding
eigenvector agrees with the right singular vector of Dµ. Since

DT
µ Dµ = Λ−1/2

µ QµMµQ
T
µ Λ−1/2

µ

we see that in this case the enrichments produced by both schemes agree, which confirms the claim. �

4.4. Termination of stabilizing greedy loops

4.4.1. The general case

Under the most general assumptions, neither insisting on (3.35) nor on (3.36) we resort to a very crude
argument that ensures termination of the stabilizations loops Update-inf-sup and Update-δ. Our findings
can be summarized as follows.

Proposition 4.8. Both schemes Update-Inf-Sup and Update-δ always terminate after finitely many steps.

Proof. We prove the assertion only for the scheme Update-Inf-Sup. The argument for Update-δ is identical.
To this end, let Yn+1 and Xn+1 be the spaces obtained by applying Update-Inf-Sup to the input spaces Yn

and Xn. According to the update rule (4.3) used by Update-Inf-Sup, the enlarged space Yn+1 is contained in
the truth space YN . Thus, since YN is finite dimensional, the statement of the proposition follows if each added
function is linearly independent to the previous ones. To this end, assume the algorithm has already grown Yn

to Ỹn and let v̄ = R−1
Yµ̄

Bµ̄q̄ be the next function to be added (see (3.3)). Now, assume by contradiction that it

is already contained in Ỹn. Since v̄ is a supremizer this implies that

sup
v∈Ỹn

bµ̄(q̄, v)

‖v‖Yµ
‖q̄‖Xµ

≥ ζβN .

Recalling that μ̄ and q̄ are the worst possible choices according to (4.2), this violates the stopping criterion in
Line 12 of Update-Inf-Sup. Thus, it follows that v̄ is linearly independent from Ỹn showing finite termination
of Update-Inf-Sup. �

The fact that, by the above argument, the number of stabilization steps may depend on the dimension of the
truth space is certainly very pessimistic and not satisfactory from a practical point of view. In fact, much more
can be said under some additional assumptions.
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4.5. Uniformly equivalent norms

Suppose now that all the spaces Yµ, Xµ agree as sets with Y , X , respectively (see (3.33)), and
that (3.35), (3.36)) hold. Then we can replace ‖ · ‖Yµ

by an uniformly equivalent reference norm ‖ · ‖Y . Since
the Riesz map RY is now independent of μ, Assumption 4.6 holds and the stabilizing schemes Update-inf-

sup and Update-δ are equivalent, see Proposition 4.7. Moreover, recall that, by Remark 3.2, the supremizer
for qn ∈ Xn in the inf-sup condition is given by R−1

Y Bµqn. The key observation is that because of the affine
decomposition (3.43) of Bµ all these supremizers together generate a finite dimensional space.

Remark 4.9. Given Xn ⊂ X , Xn = span {φj : j = 1, . . . , n}, let

Ŷn :=
{

R−1
Y Bµp : p ∈ Xn, μ ∈ P

}

⊆ span
{

R−1
Y Bµφj : j = 1, . . . , n, μ ∈ P

}

. (4.16)

Then Ŷn is a finite dimensional space of dimension dim Ŷn ≤ mBn, where mB is the number of terms in the
affine expansion (3.43). Hence, one has

inf
µ∈P

inf
q∈Xn

sup
v∈Ŷn

bµ(q, v)

‖q‖Xµ
‖v‖Y

= inf
µ∈P

inf
q∈Xn

sup
v∈YN

bµ(q, v)

‖q‖Xµ
‖v‖Y

≥ βN , (4.17)

where βN > 0 is the inf-sup constant from (3.42) in Remark 3.11.

Proof. If Bk is the operator corresponding to the bilinear form bk(·, ·) in the affine expansion (3.43) and RY =
RYµ

is independent of μ ∈ P , we conclude that

Ŷn ⊆ span
{

R−1
Y Bkφj : j = 1, . . . , n, k = 1, . . . , mB

}

which proves the first part of the claim. Since all optimal test functions are contained in Ŷn the discrete inf-sup
condition (4.17) follows immediately from the assumed inf-sup condition (3.42) of the full problem. �

The following simple observation is an immediate consequence of Remark 4.9.

Proposition 4.10. Assume that (3.35), hold. Then the update algorithm Update-Inf-Sup, and hence likewise
Update-δ, increases the dimension of the test space in each step and terminates with a test space of dimension
at most nmB.

Proof. The proof is identical to the one of Theorem 4.8 by noting that all supremizers that are added during
the algorithm are not only contained in the truth space YN but in the much smaller space Ŷn ⊂ YN which is of
dimension mBn. �

The above reasoning applies verbally to other saddle point problems like those appearing in parameter
dependent Stokes systems or constrained optimization problems. The finite dimensionality of Ŷn is also the
basis of the a priori choice of stabilizers in [13, 14, 29] to guarantee inf-sup stability although the connection
with a greedy stabilization does not seem to be made there.

The reason for nevertheless applying such a greedy stabilization is that a sufficient inf-sup stability might
actually be achieved at an earlier stage so that in total fewer stabilizers suffice.

4.6. A greedy perspective

As we shall see in later applications, in the context of Section 3.1 it will be important to treat also the case
where only (3.36) holds but (3.35) is not valid. In this case the norms ‖ · ‖Xµ

, ‖ · ‖X̂µ
are all equivalent and

can be replaced by a parameter independent reference norm ‖ · ‖X . For instance, in the case (2.11) one has
‖ · ‖L2(Ω) = ‖ · ‖X̂µ

= ‖ · ‖X , μ ∈ P , which will be further discussed in later numerical experiments. For the

remainder of this section we assume that only (3.36) is valid.
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We have already seen that (q̃, μ̃) := argminq∈X1
n,µ∈P

(

supv∈Yn
bµ(q, v)/‖v‖Yµ

)

agrees with the output of (4.11)

and, on account of Remark 4.4, of a greedy approximation step to the set X1
n. Hence, the question of termination

of the stabilization loop is equivalent to finding the smallest j for which

σn,j := max
q∈X1

n,µ∈P

(

inf
ψ∈Y j

n

‖q − R−1
X B∗

µψ‖X

)

≤ δ, (4.18)

where Y 0
n = Yn−1 and Y j

n is the enrichment of Y 0
n produced by the jth stabilization step. Here we assume that

for the preceding pair (Xn−1, Yn−1) we have that Yn−1 = Y
ℓn−1

n−1 satisfies σn−1,ℓn−1 ≤ δ. We wish to see now

how Y j
n evolves from Yn−1. For convenience let Kµ := R−1

X B∗
µ

A straightforward application of the currently available greedy concepts from [1, 11] is complicated by the
fact that the sets X1

n become “less compact” when n grows and that the approximating subspaces R−1
X B∗

µYn

depend on μ through the application of B∗
µ. The following discussion is merely to shed some light on the expected

behavior of σn,j , in particular, to identify some driving mechanisms, while we postpone a more detailed discussion
to forthcoming work.

Our first remarks concern the continuity of the mapping μ �→ Kµ. To this end, recall that the space Y =
⋂

µ∈P Yµ is endowed with the norm ‖ · ‖Y from (3.34) which is here allowed to be stronger than the individual
norms ‖ · ‖Yµ

. In view of (3.36) and (3.7), we have for any ψ ∈ Y

‖Kµψ‖X ≤ C0CM‖Kµψ‖X̂µ
= C0CM‖ψ‖Yµ

≤ C0CM‖ψ‖Y .

Thus, Kµ ∈ L(Y, X) which is equivalent to saying B∗
µ ∈ L(Y, X ′). Now let B∗

k be the component of B∗
µ

corresponding to the kth bilinear form bk(·, ·) in (3.43) which, by assumption, are smooth. Obviously, one has

‖(Kµ − Kµ′)ψ‖X ≤
mB
∑

k=1

|Θb
k(μ) − Θb

k(μ′)|‖B∗
kψ‖X′ ≤ C max

k=1,...,mB

|Θb
k(μ) − Θb

k(μ′)|‖ψ‖Y . (4.19)

which shows that the mapping P → L(Y, X), μ �→ Kµ is continuous in μ. By compactness of P , we can find for
each ǫ > 0 a finite ǫ-net comprised of Nǫ(P) centers μǫ,j such that for each ψ ∈ Y and any μ ∈ P there exists
a j ∈ {1, . . . , Nǫ(P)} such that

‖(Kµ − Kµǫ,j
)ψ‖X ≤ ǫ‖ψ‖Y . (4.20)

In order to estimate ‖ψ‖Y we introduce the constant

C(n,N ) := max
µ∈P; q∈X1

n

‖K−1
µ q‖Y , (4.21)

which is finite because K−1
µ̄ φr ∈ YN ⊂ Y . However, a point of concern is that the quantity C(n,N ) may depend

on the truth space dimension, a point that will be taken up later again. In particular, we have for any given
n and any ψ = K−1

µ̄ φr, r ≤ n, where φr is any of the orthonormalized reduced basis functions generated by
snapshots from MX ,

‖(Kµ̄ − Kµǫ,j
)K−1

µ̄ φr‖X ≤ ǫ‖K−1
µ̄ φr‖Y ≤ ǫC(n,N ), μ̄ ∈ P . (4.22)

For n = 1 the greedy stabilization would determine a sequence μ̄1,l, l = 1, . . . , ℓ1, such that

sup
µ∈P

∥

∥

∥
φ1 −

ℓ1
∑

l=1

cl(μ)Kµ

(

K−1
µ̄1,l

φ1)
)

∥

∥

∥

X
≤ δ. (4.23)

Thus, for ǫ ≤ δ/2C(n,N ), this means that ℓ1 ≤ Nǫ(P). In fact, as long as (4.23) does not hold no two μ̄1,l can
fall into a single ball of the ǫ-cover of P and as soon as every ball contains a μ̄1,l (4.22) says that (4.23) is valid.
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It is now easy to display for any given n a space Vn ⊂ Y which is δ-proximal for Xn. In fact, pick an ǫn-net
for P where ǫn := δ/(C(n,N )

√
n) and let

Vn := span {K−1
µǫn,l

φk : l = 1, . . . , Nǫn
(P), k = 1, . . . , n}.

Hence, for any μ ∈ P there exists a center μǫn,k such that, on account of (4.22), for every r = 1, . . . , n,

‖φr − Kµ(K−1
µǫn,k

φr)‖X = ‖(Kµǫn,k
− Kµ)(K−1

µǫn,k
φr)‖X ≤ δ/n1/2.

Since the φk are X-orthonormal we obtain for any q ∈ X1
n

inf
ψ∈Vn

‖q − Kµψ‖X ≤
n

∑

r=1

|(q, φr)X |‖φr − Kµ(K−1
µǫn,k

φr)‖X ≤ δ
(

n
∑

k=1

|(q, φr)X |2
)1/2

≤ δ.

Of course, it is not clear whether the greedy procedure for building the spaces Y j
n would actually produce a

space of similar dimension dim Vn ≤ nNǫn
(P) =: Nn. If one did instead a separate greedy procedure for each

subspace spanned by φr the argument for (4.23) would say that it terminates after at most Nn steps. Intuitively,
one expects that the actual greedy algorithm terminates earlier since each individual φr has to be resolved only
with accuracy δ, not with accuracy ǫn = δ/(n1/2C(n,N )) as above.

The perhaps simplest, although grossly pessimistic, way of rigorously bounding the number of greedy steps
providing the spaces Y j

n in the stabilization loop, is to use the above pigeonhole principle and consider in
addition to a δ̄-net for P with centers μδ̄,l, l = 1, . . . , Nδ̄(P), also a ǭ-net for the compact set X1

n with centers

qi, i = 1, . . . , Nǭ(X
1
n), where δ̄, ǭ will be specified later. Now suppose that K−1

µ̄ q̄ is the new snapshot added to
Y j−1

n to generate Y j
n . There exist, by construction, indices l ∈ {1, . . . , Nδ̄(P)} and i ∈ {1, . . . , Nǭ(X

1
n)} such

that ‖q̄ − qi‖X ≤ ǭ and ‖(Kµ̄ − Kµδ̄,l
)ψ‖X ≤ δ̄‖ψ‖Y .

Then, for any (q, μ) ∈ X1
n ×P with ‖qi − q‖X ≤ ǭ and ‖(Kµ − Kµδ̄,l

)ψ‖X ≤ δ̄‖ψ‖Y where qi, μδ̄,l are related

to the new snapshot K−1
µ̄ q̄ as above, we obtain

inf
ψ∈Y j

n

‖q − Kµψ‖X ≤ ‖q − KµK−1
µ̄ q̄‖X ≤ ‖q − qi‖X + ‖qi − q̄‖X + ‖(Kµ̄ − Kµ)K−1

µ̄ q̄‖X

≤ 2(ǭ + δ̄C(n,N )). (4.24)

Now choose ǭ and δ̄ such that 2(ǭ + δ̄C(n,N )) = δ, e.g. by taking ǭ = δ/4, δ̄ = δ/(4C(n,N )). It follows
from (4.24) that a new snapshot K−1

µ̄ q̄ can only satisfy infψ∈Y j−1
n

‖q̄−Kµ̄ψ‖X > δ if it falls into a cover element

Bqi,µδ̄,l
(ǭ, δ̄) := {(q, μ) : ‖qi−q‖X ≤ ǭ, ‖(Kµ−Kµδ̄,l

)ψ‖X ≤ δ̄‖ψ‖Y } that does not contain any previous snapshot

yet. This can happen at most Nδ̄(P)Nǭ(X
1
n) times which therefore bounds the number of possible greedy steps

in the stabilization loop.
As mentioned before, this bound is very pessimistic. In fact, since X1

n is isometrically isomorphic to a unit
sphere in ℓn

2 the covering numbers Nǭ(X
1
n) increase like (12/ǭ)n, see [20], Chapter 13. The numbers Nδ̄(P)

instead depend only on the fixed dimension of the parameter set P and the smoothness of the parameter
functions Θb

k(μ).
One way to ameliorate the strong dependence of the Nǭ(X

1
n) on n is to relate the problem to a greedy

approximation to a compact set that is independent of n. To this end, recall the solution set M = MX × {0},
see (3.19), which under the present assumptions is compact in X × {0}, independent of the truth spaces. As
detailed later the spaces Xn are generated by a (weak) greedy algorithm. By compactness, the (weak) greedy
errors

σn := σn(MX , Xn) := max dist (MX , Xn)X → 0, n → ∞, (4.25)

tend to zero at a rate that is independent of the truth dimension. A repeated greedy approximation generates
an X-orthonormal system {φj}∞j=1 ⊂ X . Let X◦ denote the closure of the span of {φj}∞j=1, i.e.

X◦ :=

{

q ∈ X :
∑

j∈N

(q, φj)
2
X < ∞

}

.
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Let

F := {q ∈ X◦ : |q|∗ < ∞} , |q|∗ := sup
n∈N

σ−1
n

(

∞
∑

j=n+1

(q, φj)
2
X

)1/2

.

Obviously, B := {q ∈ F : max {‖q‖X , |q|∗} ≤ 1} is a compact subset of X and by construction

dist (q, Xn)X ≤ σn|q|∗, q ∈ F , n ∈ N. (4.26)

Moreover, the greedy errors for B are comparable to the greedy errors for MX . In particular,

max dist (B, Xn)X≤ max dist (MX , Xn)X , n ∈ N. (4.27)

Furthermore,

X1
n := {q ∈ Xn : ‖q‖X̂µ

≤ 1, μ ∈ P} ⊆ {q ∈ Xn : ‖q‖X ≤ c−1
M } ⊂ F ,

since for q ∈ Xn

|q|∗ = max
j≤n

σ−1
j

(

n
∑

k=j+1

(q, φk)2X

)1/2

≤ σ−1
n ‖q‖X ≤ c−1

M σ−1
n . (4.28)

Therefore, recalling (4.18), we conclude that

σn,j ≤ max
q∈X1

n∩B,µ∈P

(

inf
ψ∈Y j

n

‖q − R−1

X̂µ
B∗

µψ‖X̂µ

)

(cMσn)−1

≤ max
q∈X1

n∩B,µ∈P

(

inf
ψ∈Y j

n

‖q − R−1
X B∗

µψ‖X

)

CM (cMσn)−1, (4.29)

where cM , CM are the constants from (3.6). Hence, termination of the stabilization loop reduces to analyzing

the necessary number of steps needed to enrich Y
ℓn−1

n−1 = Y 0
n until maxq∈X1

n∩B,µ∈P

(

infψ∈Y j
n
‖q−R−1

X B∗
µψ‖X

)

≤
cMσn/CM . Clearly, Nǫ(X

1
n ∩ B) ≤ Nǫ(B) where B is now a fixed compact set. We can now apply the same rea-

soning as above with X1
n, ǭ, δ̄ replaced by B, ǭcMσn/CM , δ̄cMσn/CM , respectively. This leads to the alternative

bound NδσncM /(4CM)(B)NδσncM /(CMC(n,N ))(P) for the maximal number of greedy steps. Note that in this case
C(n,N ) can be replaced by

C(B,N ) := max
µ∈P,q∈B

‖K−1
µ q‖Y .

Since every q ∈ X1
n or q ∈ B is a linear combination of snapshots B−1

µl
f = p(μl) and since the enrichments of

the test spaces Y j
n are of the form B−∗

µ̃j
RXqj , qj ∈ X1

n, they are linear combinations of elements of the form

B−∗
µ′ RXB−1

µ′′ f . Since the operators B−∗
µ′ RXB−1

µ′′ at least preserve the regularity of f the quantities K−1
µ q, q ∈ X1

n

(q ∈ B), where now the inversion is understood in the infinite dimensional spaces, possess the required additional
regularity in Y when f is sufficiently regular, see the discussion of the transport problem in Section 6.3.

Summary 4.11. We can now summarize the above findings as follows:

1. If the constants C(n,N ) or C(B,N ) are uniformly bounded independently of the choice of the truth spaces the
stabilization loops terminate after a number of steps that is independent of the truth spaces. Their dependence
on n can be bounded in terms of the metric entropy of X1

n or the metric entropies of B and P, coupled in
the latter case with the greedy errors σn for MX .

2. The constants C(n,N ), C(B,N ) remain independent of the truth spaces when f is sufficiently regular.
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5. A double greedy scheme

We shall discuss now a greedy strategy for constructing reduced spaces Xn, Yn for the saddle point prob-
lem (3.17) which is a weak formulation of (3.1).

The basic outline of such a strategy looks as follows:

• Stabilization: Given a pair Yn, Xn, enrich Yn until βYn,Xn
(μ) ≥ ζβN , μ ∈ P , where βN is given by (3.42)

and βYn,Xn
(μ), μ ∈ P , is the inf-sup constant (3.32) for the reduced spaces Xn and Yn.

• Approximation update: In view of the best approximation property (3.24), (3.25), we then improve the
accuracy of the reduced spaces with the aid of a greedy step.

That last greedy step, in turn, requires a tight residual based surrogate as detailed next.

5.1. Tight surrogates

Suppose now that the pair of spaces Xn ⊂ X , Yn ⊂ Y satisfy the δ-proximality condition (3.23) for some
δ ∈ (0, 1) and abbreviate the corresponding solutions of (3.22) as pn(μ) := pXn,Yn

(μ), un(μ) := uYn,Xn
(μ). By

Propositions 3.7, 3.8, the definition (3.6) of the X̂µ-norm says then that

‖p(μ) − pn(μ)‖X̂µ
= ‖f − Bµpn(μ)‖Y ′

µ
, μ ∈ P ,

i.e., the residual based surrogate

R(μ, Xn × Yn) := ‖f − Bµpn(μ)‖Y ′
µ

(5.1)

is in this case almost ideal. In fact, combining (5.1) with (3.24) yields

inf
q∈W

‖p(μ) − q‖X̂µ
≤ R(μ, Xn × Yn) ≤ 1

1 − δ
inf

q∈Xn

‖p(μ) − q‖X̂µ
. (5.2)

Hence, (1.8) holds with cR = 1 − δ, CR = 1.

5.1.1. Reduction to Truth-Riesz maps

Of course, the dual norm ‖ · ‖Y ′
µ

and hence R(μ, Xn × Yn) cannot be computed exactly. Instead, defining

‖ · ‖Y ′
N

:= ‖PYµ,YN
R−1

Yµ
· ‖Yµ

= sup
v∈Y ′

N

〈·, v〉
‖v‖Yµ

, (5.3)

we consider the following candidate
Rn(μ) := ‖f − Bµpn(μ)‖Y ′

N
, (5.4)

where we continue to assume that YN ∈ V(XN , δN ), i.e., the truth spaces XN , YN comply with Remark 3.10.
Then, by (3.40) and (3.41), we conclude that

‖p(μ) − pn(μ)‖X̂µ
≤ (1 − δ2

N )−1/2‖PYµ,YN
(R−1

Yµ
(f − Bµpn(μ))‖Yµ

= (1 − δ2
N )−1/2Rn(μ)

≤ (1 − δ2
N )−1/2‖f − Bµpn(μ)‖Y ′

µ
≤ (1 − δ2

N )−1/2(1 − δ)−1‖p(μ) − PX̂µ,Xn
p(μ)‖X̂µ

. (5.5)

This immediately implies the following fact.

Proposition 5.1. Under the above assumptions on the truth spaces the surrogate Rn(μ) given by (5.4) is tight
with condition

κ(Rn) ≤ 1

(1 − δ2
N )1/2(1 − δ)

, (5.6)

which, in principle, can be driven as close to one as one wishes, at a computational expense caused by a
correspondingly large truth space YN and a possibly larger number of stabilization steps.
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The equivalence
‖f − Bµq‖Y ′

N
∼ ‖f − Bµq‖Y ′

µ
, q ∈ XN , (5.7)

which is nothing but a reformulation of (3.38) for W = XN , YN ∈ V(XN , δN ), says that the ‖ · ‖Y ′
N

-norm yields
still a meaningful error estimate even in case the truth spaces are not rich enough to resolve all features of the
infinite dimensional exact solution which will be seen below in the experiments.

The above findings can be summarized as follows.

Proposition 5.2. If (3.35) holds, then Rn(μ), defined by (5.4), is feasible.

Proof. Under the given assumptions the norms ‖ · ‖Yµ
can be replaced by a uniformly equivalent reference norm

‖ · ‖Y so that the Riesz map RY is independent of μ ∈ P . Hence, Rn(μ) can, in view of (3.40), be efficiently
evaluated by a standard offline/online decomposition, see e.g. [28]. �

5.1.2. Iterative tightening

Recall that in the pure transport problem (3.35) does not hold, see Remark 2.1. Hence, the surrogate Rn(μ)
from (5.4) is no longer feasible in the strict sense. Instead a feasible variant would be

R′
n(μ) := ‖f − Bµpn(μ)‖Y ′

n
= ‖PYµ,Yn

R−1
Yµ

(f − Bµpn(μ))‖Yµ
, (5.8)

where the dual norm is now induced by the reduced space Yn instead of the truth space YN . While the δ-
proximality of Yn for Xn (see (3.23)) does ensure the equivalence ‖Bµq‖Y ′

µ
∼ ‖Bµq‖Y ′

n
, q ∈ Xn, (with constants

close to one, depending on δ) the analog is not clear for ‖f − Bµq‖Y ′
n

since generally f /∈ Bµ(Xn).
However, Remark 3.9 immediately tells us at least a criterion for the validity of the desired residual equiva-

lence, namely with the aid of a somewhat strengthened δ-proximality.

Remark 5.3. Assume that for some δ̄ ∈ (0, 1) one chooses Yn ∈ V(Xn, δ̄) so that

inf
v∈Yn

‖p − R−1

X̂µ
B∗

µv‖Xµ
≤ δ̄‖p‖Xµ

, ∀ p ∈ MX + Xn. (5.9)

Then
(1 − δ̄2)1/2‖f − Bµq‖Y ′

µ
≤ ‖f − Bµq‖Y ′

n
≤ ‖f − Bµq‖Y ′

µ
, q ∈ Xn, μ ∈ P , (5.10)

and we have κ(R′
n) ≤ (1 − δ̄2)−1/2(1 − δ)−1.

Note that we could replace MX in (5.9) by its truth approximation MX,N since, in view of (5.7), it suffices
to establish ‖f − Bµq‖Y ′

n
∼ ‖f − Bµq‖Y ′

N
. But the main practical issue remains how to find Yn satisfying (5.9)

at affordable cost.
To this end, we propose a systematic way of successively substantiating tightness of error estimators at the

expense of an additional computational effort in the offline phase. We refer to this process as iterative tightening.
The idea is that once a reduced space provides sufficiently accurate approximations to MX , condition (5.9)
becomes easier to fulfill. To make use of this observation, assume we have a second pair of reduced spaces
X̄ ⊂ XN and Ȳ ⊂ YN . We now describe how such spaces can give rise to tight surrogates and later discuss
their construction.

Lemma 5.4. Assume that the pair Xn + X̄ and Ȳ satisfies the (standard) δ-proximality condition (3.23) and
that the approximation of p(μ) from Xn + X̄ is superior to the approximation from Xn alone, i.e., one has for
some 0 ≤ ξ < 1

‖p(μ) − p̄n(μ)‖X̂µ
≤ ξ‖p(μ) − pn(μ)‖X̂µ

, μ ∈ P , (5.11)

where pn(μ) and p̄n(μ) are the respective best approximations to p(μ) from Xn and Xn + X̄. Then

inf
v̄∈Ȳ

‖p− R−1

X̂µ
B∗

µv̄‖X̂µ
≤ δ̄‖p‖X̂µ

, ∀ p ∈ MX + Xn, μ ∈ P , (5.12)

where δ̄ := (1+δ)ξ+δ. Hence, for ξ, δ sufficiently small, the surrogate R′
n(μ) from (5.8) is tight with a condition

given by (5.6) with δN replaced by δ̄.
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Note that we use the space Xn + X̄ as opposed to X̄ alone because for the latter space the condition (5.11)
would imply that Xn ⊂ X̄ if both spaces are constructed from snapshots, which would be too restrictive for the
application below.

Proof. For each deviation p(μ) − p, p ∈ Xn, we obtain

inf
v̄∈Ȳ

‖p(μ)−p−R−1
Xµ

B∗
µv̄‖X̂µ

≤ ‖p(μ)−p̄n(μ)‖X̂µ
+ inf

v̄∈Ȳ
‖p̄n(μ)−p−R−1

X̂µ
B∗

µv̄‖X̂µ

≤ ‖p(μ)−p̄n(μ)‖X̂µ
+δ‖p̄n(μ)−p‖X̂µ

≤
(

(1+δ)ξ+δ
)

‖p(μ)−p‖X̂µ
. (5.13)

Thus for (1+δ)ξ+δ sufficiently small the extended δ-proximality condition (5.9) is satisfied for the trial space Xn

and test space Ȳ . Thus, Remark 5.3 applies which says that the surrogate R′
n(μ) from (5.8) is tight with the

claimed condition. �

We shall describe ways of constructing the spaces X̄ and Ȳ later in Section 6.

5.2. Approximation update

Either scheme Update-Inf-Sup or Update-δ outputs a pair Xn, Yn that is uniformly inf-sup stable, i.e.,
the corresponding inf-sup constant is uniformly bounded away from zero βYn,Xn

(μ) ≥ ζβN , μ ∈ P . By Propo-
sition 5.1, the surrogate Rn(μ), defined by (5.4), is tight with a condition controlled by the δ-proximality
parameters. The feasibility of this surrogate depends on the way how the spaces Yµ depend on the parameter
μ ∈ P , see Proposition 5.2. In applications, an infeasible surrogate is replaced by R′

n(μ) from (5.8) combined
with iterative tightening.

This suggest the following outer greedy step Update-approximation, defined in Algorithm 5.15, which
aims at improving on the accuracy of the reduced model.

Algorithm 4. Update to improve the approximation quality.

Require: Finite dimensional spaces Yn ⊂ Y , Xn ⊂ X that satisfy the inf-sup condition

inf
µ∈P

inf
q∈Xn

sup
v∈Yn

bµ(q, v)

‖q‖Xµ

≥ ζβN (5.14)

for some 0 < ζ ≤ 1.
1: function Update-approximation(Yn, Xn)
2: Select a sufficiently large sample S ⊂ P .
3: compute

µ̂ := argmax
µ∈P

Rn(µ)

4: Compute the solution [û, p̂] ∈ Yµ̂ × Xµ̂ of

(u, v)Yµ̂
+ bµ̂(p, v) = 〈f, v〉, v ∈ Yµ̂,

bµ̂(q, u) = 〈g, q〉, q ∈ Xµ̂.
(5.15)

5: Set
span {Xn, p̂} → Xn

6: If (3.36) holds orthonormalize {φ1, . . . , φn−1, p̂n} in X.
7: return Xn

8: end function
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5.3. Putting things together

The overall double-greedy method (see Algorithm DoGre below) for computing reduced spaces for (7.1)
consists now in combining the inner greedy stabilization loop with the outer greedy approximation step for the
saddle point formulation (3.17).

Algorithm 5. Double greedy scheme

1: function DoGre

2: Initialize Y1 = {0} and X1 = span {u(µ1)} for an arbitrary µ1 ∈ P .
3: Y1 ← Update-inf-sup(Y1, X1).
4: while maxµ∈P Rn(µ) > τ do

5: Xn ← Update-Approximation(Yn, Xn).
6: Yn ← Update-inf-sup(Yn, Xn).
7: end while

8: return Yn, Xn

9: end function

To analyze of algorithm DoGre recall the solution manifold M = MX × {0} from (3.19). Since the inner
stabilization loops ensure, by Proposition 3.7 and (5.2), tightness of the surrogates, we can invoke Theorem 1.3.
The above findings can now be summarized as follows.

Theorem 5.5. Assume that (3.36) holds. Let pn(μ) := pXn,Yn
(μ), un(μ) := uYn,Xn

(μ) denote the solution
components of (3.22) for W = Xn, V = Yn, were [Yn, Xn] are the reduced spaces produced by algorithm
DoGre using the surrogate (5.4). Let

σn(MX) := sup
µ∈P

‖p(μ) − pn(μ)‖X̂µ
, dn(MX) := inf

dim(Zn)=n

(

max dist(MX , Zn)X

)

.

(a) Then, if dn(MX) = O(n−α), for some α > 0 or if dn(MX) = O(e−cnα

), for some c, α > 0, one has

σn(MX) = O(n−α), σn(M) = O(e−c̃nα

), n → ∞, (5.16)

respectively, with constants depending on the parameters δN , δ, ζ in Update-δ or Update-Inf-Sup, and on
the constants in (3.36), (3.7). Moreover, (5.16) remains valid for σn(MX) replaced by

σ̂n(MX) := sup
µ∈P

{

‖p(μ) − pn(μ)‖X + ‖u(μ) − un(μ)‖Yµ

}

. (5.17)

(b) Assume that both (3.35) and (3.36) hold. Then, the assertion (a) holds where in addition dim (Yn × Xn) ≤
(1+mB)n, n ∈ N. All bounds remain valid up to the tolerance tol∗ when all computations are carried out within
this accuracy. Moreover, the surrogate (5.4) in algorithm DoGre, Steps 4 and 5 is feasible.

Proof. The output [Yn, Xn] of Steps 5 and 6 in DoGre is uniformly inf-sup stable so that the surrogate (5.4)
used in Step 5 is uniformly tight, with a condition depending on the stabilization thresholds δ, δN . Concerning
σ̂n(MX) we use (3.25). By (3.36) the surrogates remain uniformly tight for the reference norm ‖ · ‖X . Hence,
Theorem 1.3 applies. The rest of the assertion follows from Propositions 4.10 and 5.2. �

In general, under the assumption (a), the well conditioned surrogate (5.4) is not feasible. Employing the
feasible surrogate (5.8) instead, requires, in order to guarantee rate optimality, an additional iterative tightening
as described in Section 5.1.2 and later in connection with numerical experiments. Note also that under the
assumption (a) dimYn could be significantly larger than n, see the discussion in Section 4.6. In the case of
uniformly equivalent norms, i.e., when both conditions (3.35) and (3.36) hold, the dimension of the stabilizing
spaces Yn remains proportional to the dimension of the reduced primal space.
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We conclude this section with a remark on the online evaluation of pn(μ). Recall that the corresponding
component un(μ) ∈ Yn is only an auxiliary variable tending to zero.

Remark 5.6. Assume that (3.35) and (3.36) hold, i.e. the spaces Xµ and Yµ can be choose parameter indepen-
dent. Instead of solving for a given μ the saddle point problem (3.22) for W = Xn, V = Yn, whose dimension
is n + m(n), one can compute in the offline phase the test basis functions ψk,j , j = 1, . . . n, k = 1, . . . , mB

(ψk,j , v)Y = bk(φj , v), v ∈ Yn, j = 1, . . . , n, (5.18)

where bk are the components of the affine decomposition (3.43). Then, defining

ψn
j (μ) :=

mB
∑

k=1

Θb
k(μ)ψk,j , (5.19)

on account of Proposition 3.6, for each μ ∈ P , the solution pn(μ) = pXn,Yn
(μ) of the saddle point problem (3.22),

also solves the Petrov−Galerkin problem

bµ(pn(μ), ψn
j (μ)) = 〈fN , ψn

j (μ)〉, j = 1, . . . , n. (5.20)

Hence the online complexity is indeed determined by the size n of the trial basis.

6. Application to the model problems

6.1. Singularly perturbed convection-diffusion problems

We refer to the setting in Section 2.3.1 and consider the convection-diffusion problem (2.5) for large Peclet
numbers.

To this end, we shall briefly discuss two scenarios concerning the truth spaces, namely (a) boundary layers
are to be resolved completely by the truth spaces, and (b) due to a possibly very small diffusion, even the truth
spaces cannot resolve the boundary layers.

In case (a) solutions in the truth spaces could be obtained by simple standard Galerkin discretizations and a
modified variational formulation according to (3.6) is only needed for the computation of reduced basis functions
which then also resolve boundary layers well.

In this example we prescribe the space Yµ and adjust Xµ according to (3.6). We first decompose Bµ into its
symmetric and skew-symmetric parts:

sµ(u, v) :=
1

2

(

〈Bµu, v〉 + 〈Bµv, u〉
)

, kµ(u, v) :=
1

2

(

〈Bµu, v〉 − 〈Bµv, u〉
)

,

and define

‖v‖2
Yµ

:= sµ(v, v) = ǫ|v|2H1(Ω) +

∥

∥

∥

∥

∥

(

c − 1

2
div b(μ)

)1/2

v

∥

∥

∥

∥

∥

2

L2(Ω)

, (6.1)

see [5,30,33] for details. ‖ · ‖Yµ
is then equivalent to the standard H1(Ω)-norm with constants depending on the

diffusion ǫ. This works perfectly when the discretization (adaptive or not) resolves the boundary layers. However,
when layers are not resolved, although stable, the scheme (3.22) would give rise to unpleasant numerical artifacts,
due to the nature of the involved norms, see the detailed discussion in [5, 34].

Therefore, we briefly recall next an alternative variational formulation of (2.6) avoiding the numerical arti-
facts, regardless of choosing sufficiently large truth spaces that fully resolve boundary layers or not. In essence,
in case the finite element truth space does not resolve boundary layers this scheme behaves like a solver of
the corresponding transport problem for ǫ = 0 which is, however, ill-posed when insisting on zero boundary
conditions on all of ∂Ω. We resort to a remedy proposed in [5, 34]. We retain the construction of the norms
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(a) ǫ = 2−5 (b) ǫ = 2−7 (c) ǫ = 2−26

X

Z

Y
X

Z

Y

X

Z

Y

Figure 1. Solutions of the convection-diffusion problem (6.8). (a) RB dimension n = 7, m(n) =
16, angle μ = 0.885115, (b) RB dimension n = 8, m(n) = 23, angle μ = 0.259830, (c) RB
dimension n = 20, m(n) = 57, angle μ = 0.587137.

but modify the outflow boundary condition. Instead of building them into the trial space, we impose them only
weakly. To this end, let

Γ+(μ) := {x ∈ ∂Ω : n(x) · b(μ, x) > 0}
be the outflow boundary where n(x) is the outward unit normal at x. Now, we take

X̄µ := {q ∈ H1(Ω) : q|Γ−(µ) = 0} (6.2)

as a set with norm defined below. Here and in the following, restrictions to the boundary are implicitly considered
in a trace sense. Thus, zero boundary conditions are only built into X̄µ on part of the boundary. To find a weak
form of the boundary conditions at the outflow boundary recall from (3.12) the connection of (3.6) with the
optimization problem

‖f − Bµp̄‖2
Y ′

µ
→ min (6.3)

where p̄ belongs now to the larger space X̄µ. So far we have not changed Yµ which is still H1
0 (Ω) endowed

with the norm (6.1). Due to the missing outflow boundary conditions, Bµ has a nontrivial kernel so that the
optimization problem is not uniquely solvable. One simple remedy is to add the outflow boundary condition as
a penalty term:

‖f − Bµp̄‖2
Y ′

µ
+ ω‖p̄‖2

Hb(µ) → min, (6.4)

where ‖ · ‖Hb(µ) is a norm for H
1/2
00 (Γ+(μ)) and ω > 0, see [5]. Practically, this weak enforcement of the outflow

boundary condition applied to a subspace W ⊂ X̄µ has the following effect: typically boundary layers are found
at the outflow boundary which are too narrow to be resolved at affordable cost. If ω is chosen small, then the
enforcement of the outflow boundary condition has little weight so that it is almost ignored which, in turn,
removes layer artifacts. If, however, W is sufficiently rich so as to resolve layers, infq∈W ‖f −Bµq‖Y ′

µ
becomes so

small that the boundary penalty becomes important and the boundary conditions are approximately satisfied,
see Figure 1a. The rationale is that as long as the layer is not resolved the error with respect to conventional
norms (including the SUPG-norm) is mostly concentrated in the layer region, which therefore stays, roughly
speaking, as large as not realizing the boundary conditions at the outflow boundary at all. Putting a small
weight on this error contribution actually increases accuracy away from the outflow boundary, see [5]. Putting
it in a slightly different way, by allowing more freedom in the outflow boundary layer, the Xµ-norm is changed
in such a manner that the error in the boundary layer has very small weight. This in turn allows one to better
control the error away from the layer.
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To apply the theory of Section 3.1, we define the test space

Ȳµ := Yµ × Hb(μ)′ = H1
0 (Ω) × H

1/2
00 (Γ+(μ))′,

‖[v, g]‖2
Ȳµ

:= ‖v‖2
Yµ

+ ω‖g‖2
Hb(µ)′ ,

(6.5)

and the operator
B̄µp := [Bµp, p|Γ+(µ)].

According to the definition of the graph-norm (3.6), this yields the norm

‖p‖2
X̄µ

:= ‖B̄µp‖2
Ȳ ′

µ
= ‖B̄µp‖2

Y ′
µ

+ ‖p‖2
Hb(µ) (6.6)

for the trial space X̄µ. Note that, in view of (6.1), the first part of the X̄µ-norm depends on the diffusion as
well as on the convection parameter. The convection term is measured in a dual norm which can be viewed as
the infinite dimensional counterpart to the mesh dependent weighted L2-norm of the convection term in the
classical SUPG norm, see e.g. [18, 26, 30, 33]. For a more detailed discussion of various versions of norms used
for convection-diffusion equations and related effects we refer to [5, 12, 26].

Note that in the optimization problem (6.4) the norm of the boundary penalty is not a dual norm. This
allows us to replace the system (3.22), which in or case is a 3 × 3 block system, by the simpler system

〈RYµ
uV , v〉 + 〈BµpW , v〉 = 〈f, v〉, v ∈ V,

〈B∗
µuV , q〉 − μ〈pW , q〉Hb(µ) = 0, q ∈ W,

(6.7)

in all practical computations. This system is derived by the same reasoning as in Section 3.1 applied to the first
term ‖f −BµpW ‖Y ′

µ
of the optimization problem (6.4) only. In [5,34], it is shown how to transform this system

to the equivalent saddle point problem (3.22), so that the theory of the present paper still applies to (6.7).
In summary, we have found a stable variational formulation of the convection-diffusion problem (2.6) that

fits into the general framework of Section 3.1. However, note that the spaces Ȳµ and X̄µ may differ even as sets
for different μ ∈ P , see (6.5), (6.2). Specifically, the dependence of Ȳµ on μ lies only in the boundary conditions.
However, for a polyhedral domain Ω one can find a finite cover {Pl : l = 1, . . . , P} of P so that the outflow
boundary portions Γ+(μ) = Γ+,l stay the same for μ ∈ Pl. Hence, the spaces Ȳµ, X̄µ all agree as sets for μ ∈ Pl.
Clearly, the solution manifold M (see (3.19)) is a finite union of solution manifolds M(l) corresponding to the
subsets Pl. Since each M(l) is compact so is the finite union M. Note that for μ ∈ Pl the Riesz map RȲµ

is
independent of μ. Therefore, we can apply Theorem 5.5 to each component Pl leading to the following result.

Corollary 6.1. The scheme DoGre based on (6.7) is rate-optimal.

In this case the online evaluations can be based on Remark 5.6. Some first numerical experiments are presented
in the following section.

6.2. Numerical experiments for convection-diffusion problems

We consider the convection-diffusion problem

−ǫ∆p +

(

cosμ
sinμ

)

· ∇p + p = 1, in Ω = (0, 1)2, p = 0, on ∂Ω. (6.8)

In all test cases we use the variational formulation based on (6.4) regardless of the choice of the truth spaces.
First, we treat scenario (a), i.e., with ǫ = 2−5 which is already convection dominated. However, we use a truth
space that completely resolves the layers. Specifically, for XN and YN we choose bilinear finite elements which
are continuous on a rectangular uniform grid of mesh size 2−10 and 2−11, respectively. For all computations we
used an equidistant sample set S ⊂ P = [0.2, π − 0.2] of cardinality 500. Using finite element a posteriori error
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Figure 2. Surrogates of the reduced basis approximation for the convection-diffusion prob-
lem (6.8).

estimators from [5], based on (5.1), the respective truth-accuracy is bounded by 0.00286384. We note that these
a posteriori bounds represent the truth residual and hence the energy error only within some fixed constants.
This is in contrast to the surrogate bounds for the reduced spaces which are much tighter. The number of
adaptively generated basis functions for the reduced test space together with the corresponding constant of the
δ-proximality, as well as the maximal surrogate are given in Table 1a. Figure 1a shows a reduced basis solution
for the angle μ = 0.885115. The parameter dependent direction of the first order term is visualized by a plane.

The intermediate case ǫ = 2−7 shown in Figure 1b demonstrates how the formulation handles a not fully
resolved boundary layer which is not far-off being resolved either.

The other example, scenario (b), refers to the same problem (6.8) again, however, with a very small viscosity
ǫ = 2−26 and we choose truth spaces with a mesh size of 2−9 and 2−10, respectively. Hence, this case is even more
strongly convection dominated and poses difficulties for resolving the boundary layers even for the truth space
itself. Since the boundary layers are not resolved (6.4) does not strictly enforce strong boundary conditions at
the outflow boundary even in the truth space. Accordingly, the approximate solutions from the reduced space
do not satisfy the boundary conditions in a strict sense either. In fact, we choose the same truth spaces as in
the preceding experiment. Thus we have to employ the norms (6.5) based on the variational formulation (6.7).
The numerical results are summarized in Table 1c and a corresponding reduced basis solution is displayed in
Figure 1c.

Figure 2 displays a surrogate plot for the values 2−5, 2−7 and 2−26 of ǫ. One observes that the error of the
reduced basis approximation decays rapidly already for small reduced bases. In fact, since infp∈XN

‖f−Bµp‖Y ′
µ
≤

infp∈Xn
‖f −Bµp‖Y ′

µ
, the error of the truth approximation is always a lower bound for the error of the reduced

basis approximation. This contrasts standard reduced basis methods where one, in our terminology, chooses
YN = XN . Instead, we assume a larger space YN ∈ V(XN , δN ) which, according to Remark 3.9, implies that
the surrogate (5.4) is equivalent to the true error with respect to the infinite dimensional solution, regardless
of whether the truth space resolves all solution features like boundary layers or not. Comparing the surrogate
plots with the Tables 1, one sees that the reduced basis errors stagnate roughly at the error level of the truth
solution. Due to the very small δ-proximality thresholds, the surrogates reflect the true reduced errors very
accurately, see (5.5), Proposition 5.1.

Note that in all cases the inner stabilization loop produces at most mB = 3 additional test basis functions
for the test space, see Proposition 4.10.

6.3. Transport problems – the worst scenario

We address now the transport equation (2.8) in Section 2.3.2. Aside from its essential appearance in more
general kinetic models and Boltzmann type equations, it can be viewed as a “limit” of convection-diffusion
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Table 1. Numerical results for the convection-diffusion problem (6.8).

(a) ǫ = 2−5, maximal a posteriori error 0.00286384.

dimension maximal surr /
δ

trial test surrogate a post

2 3 2.51e-01 7.02e-02 2.45e+01
3 6 3.75e-01 3.05e-02 1.06e+01
4 7 3.75e-01 6.12e-03 2.14e+00
5 10 3.51e-01 3.38e-03 1.18e+00
6 13 1.87e-01 2.96e-03 1.03e+00
7 16 1.64e-01 2.86e-03 1.00e+00

(b) ǫ = 2−7, maximal a posteriori error 0.0115811.

dimension maximal surr /
δ

trial test surrogate a post

2 5 6.94e-03 1.23e-01 1.06e+01
3 8 1.49e-01 9.49e-02 8.20e+00
4 11 1.22e-02 2.83e-02 2.44e+00
5 14 1.46e-02 2.09e-02 1.81e+00
6 17 5.10e-03 1.54e-02 1.33e+00
7 20 4.29e-03 1.16e-02 1.00e+00
8 23 7.40e-03 1.16e-02 1.00e+00

(c) ǫ = 2−26, maximal a posteriori error 0.001055.

dimension maximal surr / dimension maximal surr /
δ δ

trial test surrogate a post trial test surrogate a post

2 5 1.35e-03 2.11e-01 2.00e+02 12 33 3.47e-04 1.60e-02 1.52e+01
4 9 1.09e-02 7.58e-02 7.19e+01 14 39 1.10e-04 8.46e-03 8.02e+00
6 15 1.61e-03 5.02e-02 4.76e+01 16 45 9.39e-05 7.87e-03 7.46e+00
8 21 7.99e-04 2.39e-02 2.26e+01 18 51 6.11e-05 7.69e-03 7.29e+00
10 27 3.55e-04 2.10e-02 2.00e+01 20 57 5.28e-05 6.35e-03 6.02e+00

problems. The particular interest lies in the complete lack of viscosity as a “classical” stabilizing ingredient, see
e.g. [24]. Moreover, as we shall see, the conditions (3.36) and (3.35) do not hold simultaneously, not even for
suitable subsets of P . Moreover, the parameter dependence will be seen to be significantly less smooth.

We have already proposed a variational formulation (2.9) along with the spaces Yµ, Xµ in (2.10) endowed
with the norms (2.11). With these definitions, the operator Bµ : Xµ → Y ′

µ is an isomorphism with condition
number 1, i.e. ‖ · ‖Xµ

= ‖ · ‖X̂µ
= ‖Bµ · ‖Y ′

µ
, see [7]. Notice that in this case the Riesz map RYµ

are given by

RYµ
= BµB∗

µ, i.e., (v, w)Yµ
= 〈B∗

µv, B∗
µw〉, ‖ · ‖X̂µ

= ‖ · ‖L2(Ω),

so that (3.43) and (3.36) are valid. Finally, the Riesz maps RYµ
and RXµ

depend affinely on the parameter so
that the double greedy scheme can be applied.

However, since the Yµ-norm is not independent of μ, we cannot evaluate the surrogate given by (5.4) in the
usual way. As a remedy, we use the surrogate R′

n(μ) from (5.8), i.e., we approximate this inverse Riesz map by
projecting on the reduced basis space Yn instead of the truth space YN . To ensure that this surrogate is also
tight we take up the criterion in Remark 5.3. Specifically, we wish to apply Lemma 5.4 and try to construct
suitable pairs X̄, Ȳ as follows.

We run the double greedy scheme (possibly) several times which yields the sequences of reduced spaces
X i

1, X
i
2, . . . and Y i

1 , Y i
2 , . . . , i = 0, 1, 2, . . . in the ith run of the full double-greedy algorithm. Now, say we stop

the first run at index N and define X̄ := X0
N . For the second run, we use the same initial spaces as for the

first run, however, the calls of Update-Inf-Sup(Y 1
n , X1

n) are replaced by Update-Inf-Sup(Y 1
n , X̄ + X1

n), so
that δ-proximality is guaranteed for the larger space X̄ + X1

n. Then, with the n-dependent choice Ȳ = Y 1
n ,

the estimate (5.13) implies that for the second run the surrogates are tight as long as the condition (5.11) is
satisfied.

Of course, neither can this latter condition be rigorously checked since we cannot rely on the surrogates, nor
have we specified the terminating index N = N0. We briefly sketch now several options of iteratively tightening
the surrogates R′

n(μ). One could stop the first run i = 0 at the smallest N0 for which R′
N0

(μ)/τN ≤ α for some
α ≪ 1, where τN is the truth error tolerance. The second run i = 1 with X̄ = X̄1 = X0

N0
will stop at step N1.

In general, the ith run with X̄ i = X̄ i−1 + X i−1
Ni−1

stops at Ni. One expects that Ni+1 ≥ Ni since the surrogates,
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being lower bounds for the true residuals, become tighter as long as X̄ i grows. A practical stopping criterion
would be, for instance, that Ni+1 ≤ Ni, or R′

Ni
(μ)/‖f − BµpNi

(μ)‖Y ′
n
∼ R′

Ni+1
(μ)/‖f − BµpNi+1(μ)‖Y ′

n
.

An alternative strategy is to apply the double greedy scheme to the defect problem

Bµp̄(μ) = f − BµpN0(μ), μ ∈ P ,

and form X̄ as the sum of X0
N0

and the largest reduced space for the defect problem. Since the relative accuracy
to be achieved for the defect problem only needs to meet the constant ξ in (5.11) one expects that a few steps
suffice. Since X̄ now contains “complementary” information X0

N0
is enlarged more effectively than in the first

method.
The upshot of these comments is that investing additional computational offline effort is guaranteed to tighten

the surrogates and thereby improves the choice of the reduced spaces. This is in contrast to greedy strategies
based on surrogates that are not based on well-conditioned variational formulations and therefore most likely
fail to detect the most effective snapshots. These issues will be addressed in forthcoming work.

Since the basis function φj ∈ Xn can now be orthonormalized in L2(Ω) and ‖ · ‖X̂µ
= ‖ · ‖L2(Ω), Theorem 5.5

applies and yields the following result.

Corollary 6.2. If R′
n(μ) from (5.8) is based on iterative tightening with X̄i(n) satisfying (5.11) for sufficiently

small ξ, then the scheme DoGre using Update-inf-sup is rate-optimal for MX .

We could also reverse the roles of the spaces Yµ, Xu, choosing L2(Ω) as the test space, see [12, 34]. In this
case the trial spaces would essentially depend on the parameter μ so that the understanding of the solution
set M is less clear. On the other hand, this choice would correspond to the limit of the formulation (6.7) for
vanishing viscosity.

Since (3.35) does not hold we cannot apply Proposition 4.10 to predict a strict a priori bound on the number
of stabilization steps in Update-δ or Update-Inf-Sup. Adhering to the notation in Section 4.6, we have here
Kµ = B∗

µ, see (2.11). Since in the present case RX is the identity, as pointed out there, the enrichments of the test

spaces Yn are linear combinations of elements of the form B−∗
µ′ B−1

µ′′ f where μ′, μ′′ are different most of the time,

due to the greedy selection. As a consequence, when f ∈ L2(Ω), this means that indeed B−∗
µ′ B−1

µ′′ f ∈ H1(Ω) = Y .

Of course, the H1-norm may deteriorate when μ′, μ′′ get closer, which however may be offset to some extent by
the expectation that these snapshots are most relevant for the stabilization of solutions with nearby parameters.
It is also clear that higher regularity of f would indeed ensure sufficient regularity of the q ∈ X1

n (or q ∈ B),
independently of μ′, μ′′ and hence allows one to control the constants C(n,N ) (or C(B,N )). This effect is
reflected to some extent by the experiments below.

6.4. Numerical experiments for transport problems

We consider the analog of the convection-diffusion problem (6.8) with zero diffusion ǫ = 0 and corresponding
boundary conditions, i.e.

(

cosμ
sin μ

)

· ∇p + p = 1, in Ω = (0, 1)2, p = 0, on Γ−. (6.9)

We employ a truth trial space with mesh size 2−8, using discontinuous piecewise bilinear finite elements with
proper boundary conditions. To ensure stable truth discretizations, the test truth space is comprised of globally
continuous piecewise bilinear finite elements, therefore being contained in Y =

⋂

µ∈P Yµ, on a finer mesh with

mesh size 2−9 to ensure δ-proximality. Recall that the spaces Yµ now differ even as sets. The results are shown
in Table 2 and a reduced basis solution for the angle μ = 0.244579 is given in Figure 3. Specifically, in addition
to the dimensions of the trial and test spaces in columns (1) “trial”, (2) “test”, it records the values of the
surrogates in column (4) “surr”, the error between the reduced basis solution and the best L2-approximation
of the exact solution in the truth space in column (6) “rb L2”, the error between the reduced basis solution
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Table 2. Numerical results for the transport problem 6.9, maximal error truth L2 0.000109832.

dimension maximal maximal error between surr /
δ

trial test surr rb truth rb L2 err
4 11 3.95e-01 8.44e-03 2.45e-02 2.45e-02 3.45e-01
6 17 4.49e-01 7.06e-03 1.40e-02 1.40e-02 5.04e-01
8 25 4.87e-01 4.16e-03 9.05e-03 9.05e-03 4.60e-01
10 33 4.32e-01 3.37e-03 5.74e-03 5.74e-03 5.87e-01
12 40 4.83e-01 2.65e-03 4.65e-03 4.65e-03 5.71e-01
14 48 4.23e-01 1.64e-03 3.39e-03 3.39e-03 4.83e-01
16 57 4.32e-01 1.50e-03 2.56e-03 2.56e-03 5.84e-01
18 65 4.66e-01 1.17e-03 2.33e-03 2.33e-03 5.03e-01
20 74 4.16e-01 1.21e-03 2.10e-03 2.10e-03 5.77e-01
22 83 3.83e-01 1.02e-03 1.93e-03 1.93e-03 5.29e-01
24 91 4.05e-01 7.27e-04 1.58e-03 1.58e-03 4.61e-01

Table 3. Numerical results for the transport problem 6.9 after a single cycle of iterative
tightening. Maximal error truth L2 0.0154814.

dimension maximal maximal error between surr /
δ

trial test surr rb truth rb L2 err
First reduced basis creation

20 81 3.73e-01 2.71e-02 5.46e-02 5.62e-02 4.82e-01
Second reduced basis creation

10 87 3.51e-01 6.45e-02 7.40e-02 7.53e-02 8.57e-01

and the truth solution in column (5) “rb truth”, and finally in column (7) “surr/err” the ratio between the
computed surrogate and the error in “rb L2”. All values reflect the worst case over the parameter range.

As pointed out above, unlike the convection-diffusion problem, the surrogate (5.8) for the transport problem
is not necessarily well-conditioned from the start. Therefore, Table 2 contains one column which shows the ratio
of the surrogate compared to the true error of the reduced basis approximation, maximized over a sample of the
angles with the largest values of the surrogate. Although this is at this point not founded rigorously, we see that
this ratio stays uniformly bounded with respect to the size of the reduced basis. Hence it already does reflect the
accuracy of the reduced model. However, the ratio is not close to one yet, as it would be for a well-conditioned
surrogate given by the truth-exact evaluation of the residual corresponding to a well-conditioned variational
formulation. To further improve this ratio by approximating the residual more accurately, we resort to iterative
tightening as described above.

The results for a single iteration are recorded in Table 3. It is seen that already after a single run the ratio of
the surrogate and the true error between the reduced basis approximation and true solution has become much
closer to one.

In agreement with the discussion in Section 4.6 the experiments show that a slightly larger number of test
basis functions than for the convection-diffusion problem is needed here. In particular, unlike in the elliptic
case non-smooth data (right hand side, boundary shape, and boundary conditions) affect the smoothness of
the dependence of the solutions on the parameter. In our examples at most a low order polynomial decay of
the n-widths can be expected. According to Summary 4.11 in Section 4.6, since the right hand side is actually
smooth, we expect that σn,j , defined in (4.18), that controls the termination of the inner stabilization loop
drops below the desired δ < 1 after an acceptable bounded number of steps independent of the dimension of
the truth space. In fact, one observes that the growth of the test basis stays surprisingly moderate.
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X

Z

Y

Figure 3. Solution of the transport
problem (6.9), with reduced basis of
dimension n = 24, m(n) = 91 and an-
gle μ = 0.244579.

X
Z

Y

Figure 4. Solution of the transport
problem (6.10), with reduced basis of
dimension n = 24, m(n) = 96 and an-
gle μ = 0.256311.

Finally, Table 4 and Figure 4 show the results for the problem

(

cosμ
sin μ

)

· ∇p + p =

{

0.5 x < y
1 x ≥ y

, in Ω = (0, 1)2, p =

{

1 − y x ≤ 0.5
0 x > 0.5

, on Γ−. (6.10)

Now the right hand side as well as the boundary conditions exhibit jump discontinuities where the latter is
transported trough the domain. This causes a further significant reduction of the smoothness of the dependence
on the solutions on the parameter. Problem (6.10) therefore represents an extreme example involving interacting
jump discontinuities caused by the right hand side and by the boundary conditions. The small ripples observed
in the solution plot Figure 4 originate from the superposition of the jumps of the various snapshots involved in
the solution. Since they do neither grow nor expand one can conclude that the scheme is in fact stable.

As indicated before, varying the transport direction for such data shows that the dependence of the solution
on the parameter is even less smooth than in the previous example so that the Kolmogorov widths of the
solution manifold are expected to decay more slowly. Hence the greedy errors cannot decay too rapidly either.
Again, by Summary 4.11, the quantities σn,j in (4.18), estimating the number of stabilization steps for Xn,
are expected to decay even more slowly than in the case of zero boundary conditions. Table 4 confirms this
in that slightly more test basis functions are generated than in example 6.9. Nevertheless, one observes that
in the initial phase already a few reduced basis functions decrease the error very effectively so that a reduced
space with trial dimension as low as ten realizes an accuracy that would require a conventional finite element
space of much larger dimension. Overall, the performance, at least in the given range of truth accuracy, is only
slightly weaker than for the milder case of zero inflow boundary conditions. The precise implications on the
approximation of functionals of the solution and possible strategies for alternative ways of enriching the trial
dictionary will be explored in forthcoming work.

7. General saddle point problems

The crucial role of saddle point problems for the generation of well-conditioned variational formulations is
apparent from the preceding discussion. On the other hand, the concepts developed in this context have an imme-
diate bearing on more general saddle point problems of “classical type”. By this we mean (parameter dependent)
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Table 4. Numerical results for the transport problem 6.10, maximal error truth L2 0.0154814.

dimension maximal maximal error between surr /
δ

trial test surr rb truth rb L2 err
4 14 4.97e-01 5.91e-02 1.29e-01 1.30e-01 4.54e-01
6 23 4.92e-01 4.29e-02 1.00e-01 1.02e-01 4.22e-01
8 31 4.29e-01 4.34e-02 7.78e-02 7.95e-02 5.46e-01
10 40 4.15e-01 3.84e-02 7.78e-02 7.95e-02 4.83e-01
12 49 3.71e-01 3.48e-02 7.40e-02 7.53e-02 4.63e-01
14 57 3.76e-01 3.12e-02 6.20e-02 6.41e-02 4.87e-01
16 64 3.74e-01 2.99e-02 6.20e-02 6.41e-02 4.67e-01
18 73 4.63e-01 2.86e-02 6.20e-02 6.41e-02 4.47e-01
20 81 3.73e-01 2.71e-02 5.46e-02 5.62e-02 4.82e-01
22 87 4.09e-01 2.42e-02 5.46e-02 5.62e-02 4.32e-01
24 96 3.91e-01 2.51e-02 4.51e-02 4.79e-02 5.25e-01

5 10 15 20 25
0

2 · 10−3

4 · 10−3

6 · 10−3

8 · 10−3

1 · 10−2

1.2 · 10−2

reduced basis trial dimension

zero boundary

5 10 15 20 25
0

2 · 10−2

4 · 10−2

6 · 10−2

reduced basis trial dimension

jump boundary

Figure 5. Surrogates of the reduced basis approximation for the transport problems (6.9)
and (6.10).

variational formulations e.g. of the Stokes system or those arising in mixed formulations and constrained opti-
mization problems. To see this, it is useful to point out the main distinctions between the two settings when
considering the following general formulation for parameter dependent bilinear forms aµ(·, ·) : Yµ × Yµ → R,
bµ(·, ·) : Xµ × Yµ → R such that for μ ∈ P

aµ(u(μ), v) + b(p(μ), v) = 〈f, v〉, v ∈ Yµ,
bµ(q, u(μ)) = 〈g, q〉, q ∈ Xµ.

(7.1)

For classical problems the following conditions

|aµ(v, w)| ≤ Ca(μ)‖v‖Yµ
‖w‖Yµ

, |bµ(q, v)| ≤ Cb(μ)‖v‖Yµ
‖q‖Xµ

, v, w ∈ Yµ q ∈ Xµ, (7.2)

as well as

inf
q∈Xµ

sup
v∈Yµ

bµ(q, v)

‖q‖Xµ
‖v‖Yµ

≥ β(μ), aµ(v, v) ≥ ca(μ)‖v‖2
Yµ

, v ∈ V (μ), (7.3)
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where
V (μ) := {v ∈ Yµ : bµ(q, v) = 0, ∀ q ∈ M} = kerB∗

µ,

are usually met.
In comparison, the specific structure of the “stabilizing” saddle point problem (3.17) is the following.

Remark 7.1. Bµ is an isomorphism and for aµ(v, w) := 〈RYµ
v, w〉 one has V (μ) = {0} and condition (7.3)

holds with ca(μ) = Ca(μ) = 1 even on Yµ. Moreover, when using the norm ‖ · ‖X̂µ
on Xµ, (7.2) holds with

Cb(μ) = β(μ) = 1. However, on the downside, one may encounter failure of either (3.35) or (3.36).

For the classical problems considered in [13, 14, 29] one can state the following.

Remark 7.2. The conditions (3.35), (3.36) are both satisfied so that a single reference norm ‖ · ‖Y ×X can be
used. Hence, that renormation (3.6) is not necessary for achieving tightness of residual based surrogates which
now involve both component spaces Y ′×X ′ which can be evaluated by the standard offline-online decomposition,
see e.g. [13, 14].

It is well-known (see e.g. [2]) that, given (7.2) and (7.3), the validity of the mapping property MP and the
best approximation property BAP hinges again on the inf-sup condition

inf
q∈W

sup
v∈V

bµ(q, v)

‖v‖Yµ
‖q‖Xµ

≥ βV,W (μ). (7.4)

For classical problems it is known for V = Y, W = X , has to be ensured for the truth spaces V = YN , W = XN

through suitably chosen finite element spaces, say, and again need to be ensured by stabilizing strategies for the
reduced spaces V = Yn, W = Xn.

In view of Remark 7.2, both schemes Update-δ and Update-inf-sup can be applied. Since the spaces Yn no
longer just serve as stabilizers but need to contribute to the target approximation accuracy of the full solution
manifold

M := {[u(μ), p(μ)] : solves (7.1), μ ∈ P} =: MY ×MX , (7.5)

the only changes that need to be incorporated in a slightly modified version DoGre2 of DoGre are:

• In Algorithm (4) replace Step 5 by:
Set

span {Xn, p̂} → Xn, span {Yn, û} → Yn,

i.e., both component spaces are updated in the outer greedy step.
• In Algorithm (5) Step 5 is replaced by

Yn, Xn ← Update-Approximation(Yn, Xn)
• Replace the surrogate by

R∗(μ, V × W ) := ‖f − AµuW,V (μ) − BµpW,V (μ)‖Y ′
N

+ ‖g − B∗uW,V (μ)‖X′
N

,

see [13, 14].

Clearly, under the given assumptions (3.35), (3.36), M is compact. Denoting again by pn(μ), un(μ) the
solution components produced by the scheme DoGre2 and comparing the greedy errors (5.17)

σn(M) := sup
µ∈P

{

‖p(μ) − pn(μ)‖X + ‖u(μ) − un(μ)‖Y

}

,

with the n-widths dn(M)X×Y and keeping Proposition 4.10 in mind, we extend the results in [13, 14, 29] as
follows.

Corollary 7.3. The scheme DoGre2 applied to (7.1) is under the above assumptions rate-optimal.
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8. Concluding remarks

The generation of well-conditioned variational formulations for non-coercive or indefinite problems has been
proposed as the central ingredient of a general strategy for constructing tight surrogates for RBMs also for
such problem classes. In contrast to previous work, well-conditioned tight surrogates are obtained in a feasible
way in all settings warranting a near-optimal performance of the corresponding RBM, which does not seem to
be achievable with the aid of previously known concepts. We emphasize that these concepts apply as well to
space-time discretizations of unsteady problems (see [7]) offering interesting perspectives with regard to robustly
capturing long-term dynamics. The presented application to two simple model problems is to be viewed as a
first proof of concept. The two examples are to bring out some essential obstructions and raise issues that have
so far not been addressed in this context. In particular, they hint at the principal limitations of RBMs in their
standard formulations, especially regarding the smoothness of the parameter dependence.
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