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1 Introduction

One of the main aims of particle physics in the coming years is the exploration of the scalar

sector of the theory which describes fundamental interactions, be it the Standard Model

or an extension. One has to clarify whether the Higgs boson is a fundamental particle and

how the particles of the theory obtain their mass. A process which helps to find answers to

these questions is the production of Higgs boson pairs, since it is the simplest process which

is sensitive to the triple-Higgs boson coupling. Although experimentally quite challenging,

there is a chance that double Higgs production will be observed after the high-luminosity

upgrade of the CERN LHC.

The leading order (LO) corrections to Higgs boson pair production have been computed

in refs. [1, 2] including the exact dependence on the top quark mass and the Mandelstam

variables. At next-to-leading order (NLO), QCD corrections were computed for the first

time in ref. [3] in the infinite top quark mass limit using an effective theory and an inde-

pendent cross check was provided in [4] by performing an asymptotic expansion in the full

theory. In this way a quantitative estimate of the quark mass effects could be provided.

Virtual NLO corrections in the large-mt limit have also been computed in ref. [5], confirm-

ing the results of ref. [4]. Finite top quark mass effects have also been considered in ref. [6],

in which the exact real radiation contribution is combined with the effective-theory virtual

corrections. Within the effective theory also next-to-next-to-leading (NNLO) contributions
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are available [7, 8]. The NNLO result was completed in ref. [9] in which the three-loop

matching coefficient of the effective operator for two Higgs bosons and two, three or four

gluons was computed. Note that it differs from that of single Higgs boson production.

The result of [9] has been complemented by power-suppressed terms in the top quark

mass in ref. [10], where the soft-virtual approximation was constructed. The resummation

of threshold-enhanced logarithms to next-to-next-to-leading logarithmic (NNLL) accuracy

has been performed in refs. [11, 12] and differential distributions through NNLO for various

observables were computed in ref. [13] in the heavy-top limit. Finally, exact NLO results

became available in refs. [14, 15] using a numerical approach for the computation of the

two-loop virtual corrections. Based on these results the transverse momentum resumma-

tion has been considered in ref. [16]. More recently the results of refs. [14, 15] have been

matched to parton showers in refs. [17, 18].

In this paper we study a class of massive two-loop four-point functions with massless

external particles. We describe in detail the methods used for the computation of the

amplitudes and in particular the evaluation of the master integrals. We aim to study

double Higgs boson production via the process gg → HH. Numerical NLO results are

available [14, 15], however the calculation of cross sections is computationally expensive

and we want to provide an independent cross check in the high-energy region. We wish to

provide results in terms of compact analytic expressions which can be used to construct

simple approximations or can be used directly in the kinematic region in which they are

valid. In this paper we provide the first step towards this goal by considering the part of

the amplitude which is expressed in terms of planar master integrals.

We perform our calculation in the limit of vanishing Higgs boson mass which provides,

as we will demonstrate in section 3, a good approximation to the general case where

mH 6= 0. Furthermore, finite Higgs-mass effects can be incorporated by a simple Taylor

expansion. Recently the amplitudes for single-Higgs boson plus jet production have been

considered in the limit of large Higgs transverse momentum [19]. In this reference an

expansion for small Higgs boson mass has been performed and thus the underlying integrals

are the same as those of our calculation, so part of our findings can be cross checked

against ref. [19].

In the recent literature one can find several calculations where two-loop box integrals

are also involved. However, the underlying integral families and/or the kinematics of the

external and internal masses are different. For example, in ref. [20] the amplitude of a

Higgs boson and three partons has been considered. In the limit mH → 0 their integrals

are also the same as ours. However, this limit cannot been taken since the calculation

is performed in the Euclidean region with the assumption m2
H < s < 0 and the results

are expressed in terms of multiple polylogarithms, which can not easily be analytically

continued into other regions. Similar arguments apply to other recent calculations such

as [21] or [22]; analytic results have been obtained in terms of multiple polylogarithms

which can in principle be evaluated numerically, but are very unwieldy. This is a another

reason why we have decided to perform an expansion in the high energy limit. Our final

results have a simple structure in terms of harmonic polylogarithms and can be evaluated

numerically in a fast and reliable manner.
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An interesting approach to obtain simple and easy-to-evaluate expressions for gg→HH

at NLO has been developed in ref. [23] where the large top mass expansion has been

combined with expansion terms obtained for the top threshold. A good approximation

of the exact (purely numerical) result [14, 15] has been constructed by combining the

different kinematic regions using Padé approximants. Further improvement is expected

after incorporating information about the gg → HH amplitude at high energies which is

the main purpose of this work.

The remainder of the paper is organized as follows: we introduce our notation in

section 2. In section 3 we briefly consider the one-loop corrections to gg → HH in the

high-energy limit to provide motivation for our calculation, and section 4 describes the

reduction of the amplitude to master integrals. The main part of the paper is section 5 in

which we discuss the calculation of the master integrals. We describe in detail the method

we used to compute the boundary values necessary for the solution of differential equations

for the master integrals. In this paper we refrain from presenting long formulae, which

instead can be found in the ancillary file of this paper [24].

2 gg → HH amplitude and kinematics

The amplitude g(q1)g(q2) → H(q3)H(q4), where all momenta are incoming, is conveniently

described in terms of the following variables

s = (q1 + q2)
2 , t = (q1 + q3)

2 , u = (q2 + q3)
2 , (2.1)

where we have that

q21 = q22 = 0 , q23 = q24 = m2
H , s+ t+ u = 2m2

H . (2.2)

Here we make the approximation mH = 0 which significantly simplifies the two-loop cal-

culation. Then we have instead that

s = 2q1 · q2 , t = 2q1 · q3 , u = 2q2 · q3 = −s− t, (2.3)

and integrals will depend on the variables s, t,m2
t . Note that finite Higgs mass effects can be

implemented by a simple Taylor expansion. Each integral is proportional to sa1(s/µ2)−ǫa2

where a2 = 1(2) at one-(two-)loop order, a1 is its overall mass dimension, µ is the renor-

malization scale and we work in d = 4 − 2ǫ dimensions. In our calculation of the master

integrals we expand the integrals for small top quark mass. Thus, effectively we assume

that m2
t ≪ s, t.

Due to Lorentz and gauge invariance there are only two independent Lorentz structures

and we can write

M = ε1,µε2,νMµν = ε1,µε2,ν (M1A
µν
1 +M2A

µν
2 ) , (2.4)

where

Aµν
1 = gµν − 1

q12
qν1q

µ
2 ,

Aµν
2 = gµν +

q33
q2T q12

qν1q
µ
2 − 2q23

q2T q12
qν1q

µ
3 − 2q13

q2T q12
qν3q

µ
2 +

2

q2T
qµ3 q

ν
3 , (2.5)
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and

qij = qi · qj , q 2
T =

2q13q23
q12

− q33 . (2.6)

The projectors to obtain M1 and M2 from Mµν via the relation

Mi = Pi,µνMµν (2.7)

are given by (see also, e.g., ref. [14])

P1,µν =−q1,νq2,µq33
4q12q2T

− q1,νq2,µ
4q12

+
q1,νq3,µq23
2q12q2T

+
q2,µq3,νq13
2q12q2T

− q3,µq3,ν
2q2T

+
1

(2−4ǫ)

[

q1,νq2,µq33
2q12q2T

− q1,νq2,µ
2q12

− q1,νq3,µq23
q12q2T

− q2,µq3,νq13
q12q2T

+
q3,µq3,ν

q2T
+gµν

]

,

P2,µν =
q1,νq2,µq33
4q12q2T

+
q1,νq2,µ
4q12

− q1,νq3,µq23
2q12q2T

− q2,µq3,νq13
2q12q2T

+
q3,µq3,ν
2q2T

+
1

(2−4ǫ)

[

q1,νq2,µq33
2q12q2T

− q1,νq2,µ
2q12

− q1,νq3,µq23
q12q2T

− q2,µq3,νq13
q12q2T

+
q3,µq3,ν

q2T
+gµν

]

. (2.8)

The partonic cross section is obtained from |M|2 after integration over the phase space

and multiplication by the flux factor.

3 One-loop considerations

Before providing details on our two-loop calculation we want to investigate the quality of

the high-energy expansion at one-loop order. In the following we consider the differential

partonic cross section

dσ

dθ
(s, t) (3.1)

where the scattering angle θ of the Higgs boson in the center-of-mass frame enters via the

following relation,

t = −s

2
(1− cos θ) . (3.2)

In figure 1 we study the
√
s-dependence of dσ/dθ for fixed scattering angle θ of 90 de-

grees. The exact result (see the solid curve for mH 6= 0 and the short-dashed curve for

mH = 0) is compared to various approximation, computed for mH = 0, incorporating high-

energy expansions up to m32
t (see the long-dashed and dash-dotted curves). For comparison

we also show the result based on an effective-theory calculation in which the limit of infinite

top quark mass is assumed (dotted curve). We observe that, as expected, the high-energy

approximations lead to good results for large values of
√
s. A systematic improvement is

obtained after including higher order expansion terms. For example, for
√
s ≈ 1500GeV

the curves including m8
t and m16

t terms agree with each other and the exact (short-dashed)

curve which suggests that an approximation incorporating m8
t terms works well above this
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Figure 1. dσ/dθ as a function of
√
s for fixed θ = π/2.

energy. With the same argument we conclude that m16
t terms are sufficient to describe the

exact result down to
√
s ≈ 750GeV. It seems that one cannot go significantly below this

energy since both the m16
t and the m32

t curves start to diverge just below
√
s ≈ 750GeV.

In the evaluation of the master integrals we assume m2
t ≪ s, t. This means that the

expansion breaks down for θ → 0, π (where |t| becomes small) and thus a restricted phase

space has to be considered when performing the integration over θ. In practical applica-

tions this does not constitute a big problem since θ → 0, π corresponds to the forward

and backward scattering of the Higgs boson, where no measurement can be performed.

Furthermore, the bulk of the cross section is provided by the central region. For example,

if we restrict 0.25π < θ < 0.75π in the exact one-loop corrections we cover around 70% of

the full cross section for
√
s = 1000GeV.

Apart from providing an independent and analytically simple expression in the high

energy region, which can be used as a cross-check of the exact (numerical) results, our

expressions also serve as input of the method based on Padé approximants [23] as already

mentioned in the Introduction.

4 Reduction to master integrals

We generate our amplitudes with the program qgraf [25] and use q2e and exp [26, 27]

to rewrite the output to FORM [28] notation. exp is also used to assign to each Feynman

diagram an integral family which is defined according to the topology and mass distribution

of the internal lines. For our application we have defined 34 families. We use FORM to express

the amplitude for each diagram as a linear combination of scalar integrals of a given family.

We use the C++ version of FIRE [29] for the reduction of all scalar integrals from each

family to master integrals, with LiteRed [30, 31] providing #rules for FIRE. All families

were reduced using the publicly available version FIRE 5.2. Some families were also re-
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duced using the development versions FIRE 5.5, 5.6 (which use more information from

the LiteRed files) in order to check whether the number of master integrals produced

was smaller. This was the case, but the number of master integrals was still not mini-

mal. We describe our procedure to obtain a minimal set of master integrals below. The

Mathematica-readable tables generated by FIRE are transformed to FORM Fill statements,

so that the reduction can be applied to the amplitude in FORM using a tableBase. The

reduction rules are heavily manipulated in FORM before creating this tableBase.

After the FIRE reduction, each integral family contains between 7 and 77 master inte-

grals (1395 in total (1+2 loops)). One must minimize the number of master integrals be-

tween all families; the use of FIRE’s FindRules[] command yields a total of 231 = 10+221

master integrals. This does not constitute a minimal set. We use the following procedure,

implemented in FORM, to find and eliminate “master integrals” which are in fact a linear

combination of other integrals of the set.

1. For each n-line master integral with a dot on one of its lines, generate the n − 1

integrals which instead have a dot on one of the other lines. Append these integrals

to the set of integrals from the amplitude. Ensure that each integral in this extended

set is present in the reduction tables.

2. Apply relations from FindRules[] to the extended set of integrals and consider

equations of the form:

FindRules[ I ] == I. (4.1)

Apply the reduction tables to these equations and discard all trivial equations. One

obtains a set of non-trivial equations which relate some integrals in the original set

of master integrals.

3. Use these equations to construct reduction relations into a final linearly independent

set of master integrals. We solve the equations to obtain the “most complicated”

(highest line count) integrals in terms of simpler integrals.

In Step 2, we consider such equations for all integrals I of complexity < 9, where we

define the complexity as the sum of the absolute values of the propagator powers. The

reduction rules for higher complexity integrals contain coefficients which are too large to

efficiently manipulate with FORM’s PolyRatFun. Despite this, the set of equations contains

many redundancies. That these equations are all satisfied increases our confidence that

our final set of master integrals is a minimal set. Additionally, FindRules[] maps many

integrals into different integral families, so this procedure shows some consistency between

our families. We note that no approximation (except mH = 0) is applied during the

reduction procedure. In particular, we retain the exact mt dependence.

Following this procedure we reduce the number of two-loop master integrals from 221

to 161. A list of them, and all 10 one-loop1 master integrals, can be found in appendix A.

At one-loop order we obtain the minimal set of ten master integrals simply by applying

1Note that only 7 of these 10 master integrals appear in the amplitude.
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FindRules[] to the master integrals of the three one-loop families. The additional two-

loop reduction relations are applied to the FIRE reduction relations before we create the

FORM TableBase which we apply to the amplitude and to the right-hand-side of differential

equations (see subsection 5.1).

The computation of these master integrals is described in section 5.

5 Calculation of master integrals

For the calculation of the master integrals we use the method of differential equations [32,

33]. We solve the differential equations using an appropriate ansatz which is described in

subsection 5.1. The boundary conditions (see subsection 5.2) are fixed by evaluating the

master integrals in the limit mt → 0. In some cases it is sufficient to evaluate the integrals

in this limit for fixed t = s = −1.

5.1 Differential equations

We compute the master integrals in an unphysical region where two Mandelstam variables

(s and t) are negative and u is positive. In this region, the integrals which we compute are

real valued. We can analytically continue results obtained here into the physical region.

For each master integral we have three differential equations which are obtained by

taking derivatives w.r.t. m2
t , s and t. The derivatives are computed using LiteRed. Note

that only two of the three differential equations are needed to construct the result. The

third provides a consistency check. The generation of the system of differential equations

requires the extension of the FIRE reduction tables. Note, however, that the additional

integrals which are required are not difficult to reduce.

Differentiating the vector of master integrals, (MI), w.r.t. x = t,m2
t and applying the

reduction tables to the result leads to systems of equations

d

dx
(MI) = Kx · (MI) , (5.1)

where Kx is a square matrix.

To solve the differential equations we follow two approaches. In the first, we make

an ansatz for each master integral which is suitable to describe the solution in the limit

mt → 0. Guided by asymptotic expansion we use (see also refs. [19, 34])

I =
∞
∑

n1=nmin

1

∞
∑

n2=nmin

2

2l+n1
∑

n3=0

c(I, n1, n2, n3, s, t) ǫ
n1

(

m2
t

)n2
(

log(m2
t )
)n3 , (5.2)

where l is the number of loops. To determine the coefficients c of the ansatz we use the

following procedure:

(1) Use the differential equation for t and determine the coefficients of the leading terms in

the mt → 0 expansion. This requires the solution of a system of first-order differential

equations for the t-dependent coefficients c. Boundary conditions are needed for one

specific value of t, e.g., for t = s = −1.
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(2) Use the differential equation for m2
t to obtain relations between the coefficients of

the higher order m2
t terms and the leading terms determined in (1). Since the mt

dependence is explicit in the ansatz one only has to solve a system of linear equations.

(3) The results for the master integrals are inserted into the differential equation for s,

which must be satisfied.

At one-loop order the matrix Kt in eq. (5.1) has a triangular structure. Thus, starting

from the simplest integral, one can run through the vector of master integrals and solve

the system integral-by-integral.

At two-loop order Kt in eq. (5.1) rather has a block-triangular structure. It contains

blocks of up to four integrals, which form coupled systems of differential equations. The

integrals within these blocks must be determined together.

Using the above approach based on t-independent boundary conditions we were not

able to obtain results for all two-loop master integrals. Presumably this is due to an in-

convenient choice of our set of master integrals. For this reason we developed a second

approach where we determine the master integrals in the limit m2
t → 0, keeping the full

t dependence. Afterwards we only have to solve the m2
t differential equation which, as

mentioned above, reduces to solving a system of linear equations. This approach pro-

vides results for all master integrals. Where possible, we compared the results of the two

approaches and found complete agreement.

Let us end this subsection by making a brief comment on the possibility to introduce

a canonical basis [35] for our master integrals. We made several attempts to produce such

a basis using the publicly available programs Fuchsia [36] and CANONICA [37]. We were

not able to obtain a canonical basis for our master integrals for all sectors. Since we are

interested in the small-mt limit we did not insist on obtaining a canonical basis.

5.2 Boundary conditions

The main tools which we use to compute the boundary conditions are the method of

regions [38, 39] and Mellin-Barnes techniques (see, e.g., [39]). Additionally, we make use of

the PSLQ algorithm [40, 41] and exploit the anticipated dependence on irrational numbers

of our final result to obtain exact expressions.

In the following we provide details of each step of the calculation and give concrete

examples for the master integral G6(1, 1, 1, 1, 1, 1, 1, 0, 0). See appendix A for definitions of

the integral families.

In this section we assume the scaling

m2
t ∼ χ, s ∼ 1, t ∼ 1, (5.3)

where the parameter χ ≪ 1 is introduced for convenience.

To begin, we express the Feynman integral in its alpha representation (using the rou-

tines provided in FIESTA [42]). This is a convenient starting point to apply the method of

– 8 –
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regions. For example, the integral G6(1, 1, 1, 1, 1, 1, 1, 0, 0) is expressed as

J = (µ2)2ǫe2ǫγE

(

7
∏

i=1

∫ ∞

0
αδi
i

)

U−d/2 exp (−F/U) , (5.4)

where the functions U and F , the so-called first and second Symanzik polynomials, are

given by

U = α1α4 + α1α5 + α1α6 + α1α7 + α2α4 + α2α5 + α2α6 + α2α7 (5.5)

+ α3α4 + α3α5 + α3α6 + α3α7 + α4α7 + α5α7 + α6α7 ,

F = m2
t (α1 + α2 + α3 + α4 + α5 + α6)U − t (α2α5α7)− s (α1α3α4 + α1α3α5

+α1α3α6 + α1α3α7 + α1α4α6 + α1α4α7 + α2α4α6 + α3α4α6 + α3α6α7 + α4α6α7) .

In eq. (5.4) we have introduced analytic regularization parameters δi to regularize collinear

divergences, which appear later in the calculation. The original integral is obtained by

taking the sequence limit δi → 0 for all δi.

To implement the asymptotic expansion for χ → 0 we use the program asy.m [43]. It

provides scaling rules for the alpha parameters for the various regions which have to be

considered. For the integral in eq. (5.4) there are 13 relevant regions. One corresponds

to the so-called hard region, in which all seven alpha parameters scale as “1”. There are

twelve so-called soft-collinear regions where some of the parameters have the weight “1”

and others the weight “χ”. For example, for region 2, we have that

region 2 : {α1 ∼ χ, α2 ∼ 1, α3 ∼ 1, α4 ∼ 1, α5 ∼ χ, α6 ∼ χ, α7 ∼ 1} . (5.6)

In total only four regions need to be considered. The remaining eight regions can be

obtained by simple symmetry considerations.

After the expansion, the original integral is expressed as a sum of homogeneously

scaling integrals

J = (µ2)2ǫe2ǫγE
13
∑

n=1

(

7
∏

i=1

∫ ∞

0
αδi
i

)

U−d/2
(n) exp

(

−F(n)/U(n)

)

+O(χ) , (5.7)

where the summation n spans the relevant regions and the subscript “(n)” indicates that

the polynomials U and F from eq. (5.5) are specific to the corresponding region. They are

expanded to leading order in χ. Note that each integral on the r.h.s. is homogeneous in

m2
t (or χ) but not in s and t, since they are O(1) parameters.

In the hard region there is only one soft parameter, m2
t , and thus a naive Taylor

expansion of the integrand has to be performed. This leads to purely massless integrals

which are known in the literature [44, 45]. We have cross-checked these results up to the

order in ǫ necessary for our application. Note that the contribution of the hard region is

regular in δi which means that one can take the limit δi → 0 at the very beginning.

The soft-collinear regions are more involved. In the following we outline the calculation

of the contribution from region 2 as an example. The calculation for other regions proceeds

analogously.
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1. We express each integral in terms of two-dimensional Mellin-Barnes integrals. For

our example integral, we find the following form

J (2) = (µ2)2ǫe2ǫγE
∫

dz1
2πi

dz2
2πi

(−s)−δ16−2(−t)−δ5−1(m2
t )

−2ǫ−δ2347Γ(ǫ+ δ47)

Γ(δ2 + 1)Γ(δ3 + 1)Γ(δ4 + 1)Γ(δ7 + 1)Γ(−ǫ− δ156 − 1)

× Γ(−z1)Γ(−z2)Γ(z2 − ǫ− δ7 + 1)Γ(z1 − δ5 + δ7)Γ(z1 − ǫ− δ156 − 1)

Γ(−ǫ− δ15 + z1)Γ(−ǫ− δ5 + z12 + 1)Γ(2ǫ+ δ34 + 2δ7 − z2)

× Γ(ǫ+ δ37 − z2)Γ(δ2 − δ5 + z12)Γ(z12 − ǫ− δ15)Γ(2ǫ+ δ3457 − z12) , (5.8)

where z12 = z1+ z2, δ123 = δ1+ δ2+ δ3 and so on. Note that the integration contours

of z1 and z2 are chosen to be straight lines parallel to the imaginary axis, satisfying

−1 < Re (z1) < Re (z2) < 0.

2. Next we use the package MB.m [46] to analytically continue the regularization pa-

rameters δi and ǫ to zero. As a result we obtain two-dimensional Mellin-Barnes

representations which depend only on z1, z2 and possibly on t/s. Note that the poles

in δi cancel among the contributions from the different regions, which provides a good

check of our calculations.

3. We now transform the two-dimensional Mellin-Barnes integrals into one-dimensional

integrals. In general this step is non-trivial; we provide more details in appendix B.

For simple cases barnesroutines.m [47] can be used.

4. At this point we arrive at two types of one-dimensional integral: those which are

independent of t/s and others which depend on t/s, such as
∫

dz1
2πi

(

t

s

)z1

Γ(−1− z1)
2Γ(−z1)Γ(1 + z1)

2Γ(2 + z1)ψ(1 + z1)ψ
′(−z1) . (5.9)

We perform a high-precision numerical evaluation (300 digits) of the t-independent

integrals and, after summing the contributions from all regions, apply the PSLQ

algorithm [40, 41] to re-construct the analytic result as a rational linear combination

of 33 products (up to weight 6) of numbers from the set

{1, ln 2, π2, ζ3, π
4, Li4(1/2), ζ5, Li5(1/2), π

6, Li6(1/2), S3,3(−1)} , (5.10)

and use a further 200 digits to verify each result. The Nielsen generalized polyloga-

rithm S3,3(−1) is implemented in Mathematica as PolyLog[3,3,-1].

For the t-dependent integrals we make an ansatz containing harmonic polylogarithms

(HPLs) [48] up to weight 6 with alphabet νi ∈ {−1, 0},
6
∑

n=0

c{νi},nH({νi}, t/s) logn(−m2
t /s) , (5.11)

which we Taylor-expand in t/s. The series is expressed as a multivariate polynomial

in (t/s), log(t/s), log(−m2
t /s). We obtain the Taylor series of the integrals by taking

their residues at z1 = 0, 1, 2, 3, . . . . We then use 50 low-order terms of the Taylor

series to fix the coefficients c{νi},n of the ansatz and check the result using a further

200 higher-order terms of the Taylor series.
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Using the above procedure, we obtain the following δi-independent result for our sample

master integral G6(1, 1, 1, 1, 1, 1, 1, 0, 0),

J =−
(

µ2

−s

)2ǫ
1

s2t

{

l4m− 8

3
l3mlt+l2m

(

2l2t −
2π2

3

)

+lm

(

8π2

3
lt−4ζ3

)

− 7π4

15
+4ltζ3−2π2l2t−

1

3
l4t +8H(−2,0,0; t/s)+4π2H(−2; t/s)

+ǫ

[

−4

3
l5m+

19

6
l4mlt+l3m

(

−4π2

9
−2l2t

)

+l2m

(

−4ζ3+π2lt+
1

3
l3t −π2H(−1, t/s)−2H(−1,0,0; t/s)

)

+lm

(

−11π4

45
+8ζ3lt−

10π2

3
l2t −

2

3
l4t +8H(−2,0,0; t/s)+8H(−1,0,0,0; t/s)

+4π2H(−2; t/s)+
4π2

3
H(−1,0; t/s)

)

−52ζ5+6π2ζ3+
83π4

90
lt−4ζ3l

2
t +

25π2

9
l3t +

l5t
2

−22π2H(−3; t/s)− 23π4

30
H(−1; t/s)+16π2H(−2,1; t/s)+6π2H(−1,−2; t/s)

−44H(−3,0,0; t/s)− 10π2

3
H(−1,0,0; t/s)+32H(−2,−1,0,0; t/s)

−48H(−2,0,0,0; t/s)+12H(−1,−2,0,0; t/s)−12H(−1,0,0,0,0; t/s)

+ 32ζ3H(−2; t/s)−24ζ3H(−1,0; t/s)− 40π2

3
H(−2,0; t/s)

]}

+O(m2
t )+O(ǫ2) , (5.12)

where lm = log(−m2
t /s) and lt = log(t/s).

To solve the m2
t -differential equation for most of our master integrals, it is sufficient to

obtain just the leading term in the small-mt expansion of the boundary condition. However,

for 9 integrals it is also necessary to compute the next-to-leading term in the asymptotic

expansion. In most of these cases we can simply apply the method discussed above and

expand up to the next-to-leading term in χ. However, for two of the seven-line integrals,

Step 3 above is hard to apply at the next-to-leading order. For these integrals, we use the

corresponding t-differential equations to obtain the next-to-leading boundary conditions.

For example, the next-to-leading term of G6(1, 1, 1, 1, 1, 1, 2, 0, 0) is determined in the

following way: we consider the t-differential equation of G6(1, 1, 1, 1, 1, 1, 1, 0, 0), which is

fully known at the leading order,

d

dt
G6(1, 1, 1, 1, 1, 1, 1, 0, 0) = +AG6(1, 1, 1, 1, 1, 1, 1, 0, 0)

+B m2
t G6(1, 1, 1, 1, 1, 2, 1, 0, 0)

+ C G6(1, 1, 1, 1, 1, 1, 2, 0, 0)

+ (known lower-line integrals) (5.13)
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where A, B and C are O(1) coefficients. The leading terms of the integrals behave as

follows,

G6(1, 1, 1, 1, 1, 1, 1, 0, 0) = O(1)

G6(1, 1, 1, 1, 1, 2, 1, 0, 0) = O(1/m2
t )

G6(1, 1, 1, 1, 1, 1, 2, 0, 0) = O(1/m2
t ) . (5.14)

Therefore, the next-to-leading (O(1)) contribution to G6(1, 1, 1, 1, 1, 1, 2, 0, 0) appears

in the differential equation at O(1) alongside the (known) leading contributions to

G6(1, 1, 1, 1, 1, 1, 1, 0, 0) and G6(1, 1, 1, 1, 1, 2, 1, 0, 0) and can be easily determined. Note

that the leading order (O(1/m2
t )) contribution of G6(1, 1, 1, 1, 1, 1, 2, 0, 0) cancels against

O(1/m2
t ) terms from the lower-line integrals appearing in eq. (5.13).

We have checked all boundary conditions numerically at a few euclidian values of s

and t using the command SDExpandAsy of FIESTA [42].

5.3 Solving the differential equations

Using the boundary conditions discussed in the previous subsection we can solve the differ-

ential equations of subsection 5.1 in a straightforward way. All of our results are expressed

in terms of HPLs. The expansion depth is limited only by the size of the intermediate ex-

pressions which enter the system of linear equations for the coefficients in our ansatz. We

have expanded each master integral such that the final result for the amplitude gg → HH is

available up to order m16
t . Our results for the master integrals can be downloaded from [24].

For illustration we show in figure 2 the results for two master integrals: G6(1, 1, 1, 1, 1,

1, 1, 0, 0), which is used as an example in subsection 5.2, and G20(1, 1, 1, 1, 1, 2, 1, 0, 0). We

plot the real and imaginary parts of the ǫ0 term as a function of
√
s and choose t = −s/2,

which corresponds to θ = π/2 (cf. figure 1), mt = 175GeV and µ2 = s. For clarity we

multiply each integral by appropriate powers of mt and s such that the leading term starts

with m2
t and is dimensionless. In each case we display the approximations including m2

t ,

m4
t , m

8
t and m16

t terms.

In the panels showing G6(1, 1, 1, 1, 1, 1, 1, 0, 0) we compare the approximations to the

exact result, which has been obtained numerically using pySecDec [49]. For this integral we

observe a rapid convergence. In fact, the m4
t , m

8
t and m16

t curves agree with each other and

the exact points down to
√
s ≈ 600GeV and the two highest approximation even down to√

s ≈ 500GeV. It is interesting to note that the m16
t curve reproduces to high accuracy the

turning point at
√
s ≈ 400GeV and the steep rise below that energy. It can not be expected

that all master integrals show such good convergence properties. In fact there are integrals,

in particular some of the non-planar contributions, where the expansion parameter is m2
t /u

instead ofm2
t /s which results in a smaller radius of convergence. Consider, e.g., the (planar)

master integral G4(1, 1, 1, 1, 1, 1, 1, 0, 0) which is obtained from G6(1, 1, 1, 1, 1, 1, 1, 0, 0) by

simply interchanging s and u. One observes that the coefficients of (m2
t )

n in the expansion

are larger for G4(1, 1, 1, 1, 1, 1, 1, 0, 0) than for G6(1, 1, 1, 1, 1, 1, 1, 0, 0) which yields a less

well-converging expression.

For G20(1, 1, 1, 1, 1, 2, 1, 0, 0) we were not able to obtain stable numerical results using

pySecDec and thus we only show our approximations. We observe a similar pattern as for

the LO cross section shown in figure 1: the inclusion of more terms extends the convergence
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0.5

1.0
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[

G20 [1, 1, 1, 1, 1, 2, 1, 0, 0] ·m4
t · s

2
]∣

∣
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m4
t
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t
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t

Figure 2. Real and imaginary part of the ǫ0 term of the two master integralsG6(1, 1, 1, 1, 1, 1, 1, 0, 0)

and G20(1, 1, 1, 1, 1, 2, 1, 0, 0). For convenience we multiply by powers of mt and s as indicated above

the plot.

range in
√
s down to smaller values. Furthermore, the curves including m8

t and m16
t terms

agree down to
√
s ≈ 900GeV and it can be expected that above this energy a good

approximation to the exact result can be provided.

6 Conclusions

The main focus of this paper is on NLO corrections to double Higgs boson production in

the high energy region, where the top quark mass is assumed to be small compared to the

kinematic variables s and t. Such considerations complement expansions for large top quark

mass and around the threshold which have been considered in the literature, see refs. [4, 23].

Furthermore, they provide an indpendent cross check of the exact calculation [14] which

relies heavily on numerical methods.

In this paper we perform the reduction of the gg → HH amplitude to master integrals

and compute all planar integrals in an expansion for small m2
t . The expansion depth for

each master integral is chosen such that the amplitude includes terms up to order m16
t .

Our analytic results for the master integrals are expressed in terms of HPLs and can be

obtained in computer-readable form from [24].
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To produce the full amplitude, the non-planar master integrals must also be consid-

ered. We expect that most of our methods can be applied in a similar manner as for the

planar cases, however, additional subtleties will arise. For example, the second Symanzik

polynomial F will not have a definite sign. We plan to address these issues in the future.
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A One- and two-loop master integrals

We define the propagators of the one-loop integral family as

D1(q1, q2, q3, q4)=
{

m2
t−l21,m

2
t−(l1+q3)

2,m2
t−(l1−q1−q2)

2,m2
t−(l1−q1)

2
}

, (A.1)

and at two loops we introduce

D6(q1, q2, q3, q4) =
{

m2
t − l21,m

2
t − l22,m

2
t − (l2 + q3)

2,m2
t − (l2 − q1 − q2)

2,

m2
t − (l1 − q1 − q2)

2,m2
t − (l1 − q1)

2,−(l1 − l2)
2,−(l1 + q3)

2,

−(l2 + q1)
2
}

,

D20(q1, q2, q3, q4) =
{

−l21,m
2
t − l22,m

2
t − (l2 + q3)

2,m2
t − (l2 − q1 − q2)

2,

−(l1 − q1 − q2)
2,−(l1 − q1)

2,m2
t − (l1 − l2)

2,−(l1 + q3)
2,−(l2 + q1)

2
}

,

D33(q1, q2, q3, q4) =
{

−l21,m
2
t − l22,m

2
t − (l2 + q4)

2,−(l1 + q3 + q4)
2,−(l1 − q1)

2,

m2
t − (l1 − l2 + q3)

2,m2
t − (l1 − l2)

2,−(l1 + q4)
2,−(l2 + q1)

2
}

,

D47(q1, q2, q3, q4) =
{

−l21,m
2
t − l22,m

2
t − (l2 + q4)

2,m2
t − (l2 − q1 − q2)

2,

m2
t − (l1 − l2 + q2)

2,m2
t − (l1 − l2)

2,−(l1 − q1)
2,−(l1 + q4)

2,

−(l2 + q1)
2
}

,

D72(q1, q2, q3, q4) =
{

m2
t − l21,m

2
t − (l1 + q2)

2,m2
t − (l1 + q1 + q2)

2,m2
t − (l2 + q1 + q2)

2,

m2
t − (l2 − q3)

2,m2
t − (l1 − q3)

2,−(l1 − l2)
2,−(l2 + q2)

2,−(l2 + q3)
2
}

,

D75(q1, q2, q3, q4) =
{

m2
t − l21,m

2
t − (l1 + q4)

2,m2
t − (l1 − q1 − q2)

2,−(l2 − q1 − q2)
2,

−(l2 − q1)
2,m2

t − (l1 − q1)
2,m2

t − (l1 − l2)
2,−(l2 + q4)

2,−(l2 + q1)
2
}

,

D90(q1, q2, q3, q4) =
{

m2
t − l21,m

2
t − (l1 + q3)

2,−(l1 + l2 − q1 − q2)
2,−(l1 + l2 − q1)

2,

m2
t − (l1 − q1)

2,m2
t − (l2 + q4)

2,m2
t − l22,−(l2 + q3)

2,−(l2 + q1)
2
}

,

where l1 and l2 are the loop momenta. Note that we prefer to use our internal notation for

the families, which is the reason why the numbering is not sequential. We also define the

integral families which are obtained by the exchange of external momenta. At one-loop

order there are two more families which are related to D1(q1, q2, q4, q3) as follows,

D2(q1, q2, q3, q4) = D1(q1, q2, q4, q3) D3(q1, q2, q3, q4) = D1(q1, q4, q3, q2) . (A.2)
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At two-loop order we have

D4(q1, q2, q3, q4) = D6(q1, q4, q3, q2) D5(q1, q2, q3, q4) = D6(q1, q2, q4, q3)

D8(q1, q2, q3, q4) = D6(q4, q1, q3, q2) D10(q1, q2, q3, q4) = D6(q3, q1, q4, q2)

D11(q1, q2, q3, q4) = D6(q3, q1, q2, q4) D26(q1, q2, q3, q4) = D20(q4, q3, q1, q2)

D51(q1, q2, q3, q4) = D47(q2, q1, q3, q4) D59(q1, q2, q3, q4) = D47(q2, q3, q1, q4)

D71(q1, q2, q3, q4) = D72(q1, q2, q4, q3) D73(q1, q2, q3, q4) = D72(q1, q4, q2, q3)

D78(q1, q2, q3, q4) = D75(q4, q1, q2, q3) D79(q1, q2, q3, q4) = D75(q2, q1, q3, q4)

D84(q1, q2, q3, q4) = D75(q3, q2, q4, q1) D91(q1, q2, q3, q4) = D90(q4, q1, q2, q3) .

(A.3)

Our minimal set of one-loop master integrals is given by

G1(1, 1, 1, 1), G2(1, 0, 1, 0), G2(1, 1, 1, 0), G2(1, 1, 1, 1), G3(0, 0, 0, 1),

G3(0, 1, 0, 1), G3(1, 0, 1, 0), G3(1, 1, 0, 1), G3(1, 1, 1, 0), G3(1, 1, 1, 1),

and at two loops we have

G4(1, 1, 1, 1, 1, 1, 1), G4(1, 1, 1, 1, 1, 1, 2), G4(1, 1, 1, 1, 1, 2, 1), G5(1, 1, 1, 1, 1, 1, 1), G5(1, 1, 1, 1, 1, 1, 2),

G5(1, 1, 1, 1, 1, 2, 1), G6(1, 1, 0, 1, 1, 0, 0), G6(1, 1, 0, 1, 1, 1, 0), G6(1, 1, 1, 1, 1, 1, 0), G6(1, 1, 1, 1, 1, 1, 1),

G6(1, 1, 1, 1, 1, 1, 2), G6(1, 1, 1, 1, 1, 2, 1), G8(1, 1, 0, 1, 1, 0, 0), G8(1, 1, 0, 1, 1, 1, 0), G8(1, 1, 1, 1, 1, 1, 0),

G8(1, 1, 1, 1, 1, 1, 1), G8(1, 1, 1, 1, 1, 1, 2), G8(1, 1, 1, 1, 1, 2, 1), G10(1, 1, 1, 1, 1, 1, 1), G10(1, 1, 1, 1, 1, 1, 2),

G10(1, 1, 1, 1, 1, 2, 1), G11(1, 1, 0, 1, 1, 0, 0), G11(1, 1, 0, 1, 1, 1, 0), G11(1, 1, 1, 1, 1, 1, 0), G11(1, 1, 1, 1, 1, 1, 1),

G11(1, 1, 1, 1, 1, 1, 2), G11(1, 1, 1, 1, 1, 2, 1), G20(1, 1, 0, 1, 1, 0, 0), G20(1, 1, 0, 1, 1, 0, 1), G20(1, 1, 1, 1, 1, 0, 0),

G20(1, 1, 1, 1, 1, 0, 1), G20(1, 1, 1, 1, 1, 1, 1), G20(1, 1, 1, 1, 1, 1, 2), G20(1, 1, 1, 1, 1, 2, 1), G20(1, 1, 2, 1, 1, 1, 1),

G26(1, 1, 1, 1, 1, 1, 1), G26(1, 1, 1, 1, 1, 1, 2), G26(1, 1, 1, 1, 1, 2, 1), G26(1, 1, 2, 1, 1, 1, 1), G33(1, 0, 1, 1, 1, 0, 1),

G33(1, 0, 1, 1, 2, 0, 1), G33(1, 1, 0, 1, 0, 0, 0), G33(1, 1, 0, 1, 0, 1, 0), G33(1, 1, 0, 1, 0, 2, 0), G33(1, 1, 0, 1, 1, 1, 0),

G33(1, 1, 0, 1, 2, 1, 0), G33(1, 1, 1, 1, 0, 1, 0), G33(1, 1, 1, 1, 0, 1, 1), G33(1, 1, 1, 1, 0, 2, 1), G33(1, 1, 1, 1, 1, 0, 1),

G33(1, 1, 1, 1, 1, 1, 0), G33(1, 1, 1, 1, 1, 1, 1), G33(1, 1, 1, 1, 2, 1, 1), G33(1, 1, 1, 2, 1, 1, 1), G33(1, 1, 2, 1, 1, 1, 1),

G47(1, 0, 1, 1, 1, 2, 1), G47(1, 1, 1, 0, 1, 2, 1), G47(1, 1, 1, 1, 1, 1, 2), G47(1, 1, 1, 2, 1, 0, 0), G47(1, 1, 1, 2, 1, 1, 1),

G51(1, 1, 0, 1, 1, 1, 1), G51(1, 1, 1, 1, 1, 1, 1), G51(1, 1, 1, 1, 1, 2, 1), G51(1, 1, 1, 1, 2, 1, 1), G59(1, 0, 1, 1, 1, 1, 1),

G59(1, 1, 0, 1, 1, 1, 1), G59(1, 1, 1, 1, 1, 1, 1), G59(1, 1, 1, 1, 1, 2, 1), G59(1, 1, 1, 1, 2, 1, 1), G59(1, 2, 1, 1, 1, 1, 1),

G59(2, 1, 1, 1, 1, 1, 1), G71(1, 1, 1, 1, 1, 0, 1), G71(1, 1, 2, 1, 1, 0, 1), G71(1, 2, 0, 1, 0, 1, 1), G72(0, 1, 0, 1, 1, 2, 1),

G72(1, 0, 1, 1, 1, 0, 1), G72(1, 0, 2, 1, 1, 0, 1), G72(1, 1, 0, 1, 1, 0, 1), G72(1, 1, 0, 1, 1, 0, 2), G72(1, 1, 0, 1, 1, 0, 3),

G72(1, 1, 0, 1, 1, 1, 1), G72(1, 1, 0, 1, 1, 2, 1), G72(1, 1, 1, 1, 1, 0, 1), G72(1, 1, 2, 1, 1, 0, 1), G73(0, 1, 0, 1, 0, 1, 2),

G73(0, 1, 0, 1, 1, 2, 1), G73(0, 1, 1, 1, 1, 0, 1), G73(1, 0, 1, 1, 1, 0, 1), G73(1, 1, 0, 1, 1, 2, 1), G73(1, 1, 1, 1, 1, 0, 1),

G73(1, 1, 2, 1, 1, 0, 1), G75(1, 1, 0, 1, 0, 2, 1), G78(1, 1, 0, 1, 0, 1, 1), G78(1, 1, 0, 1, 0, 2, 1), G78(1, 1, 1, 0, 0, 1, 1),

G78(1, 1, 1, 0, 1, 0, 1), G78(1, 2, 1, 0, 1, 0, 1), G78(2, 1, 0, 1, 0, 1, 1), G79(1, 0, 1, 0, 0, 0, 1), G79(1, 0, 1, 0, 0, 1, 1),

G79(1, 0, 1, 0, 1, 0, 1), G79(1, 0, 1, 0, 1, 0, 2), G79(1, 0, 1, 0, 2, 0, 1), G79(1, 1, 1, 0, 0, 1, 1), G79(1, 1, 1, 0, 1, 0, 1),

G79(1, 2, 1, 0, 1, 0, 1), G84(0, 1, 0, 0, 2, 0, 1), G84(1, 0, 1, 0, 0, 0, 1), G84(1, 0, 1, 0, 0, 1, 1), G84(1, 0, 1, 0, 1, 0, 1),

G84(1, 0, 1, 0, 1, 0, 2), G84(1, 0, 1, 0, 2, 0, 1), G84(1, 1, 1, 0, 0, 1, 1), G84(1, 1, 1, 0, 1, 0, 1), G84(1, 2, 1, 0, 1, 0, 1),

G84(2, 1, 1, 0, 1, 0, 1), G90(1, 1, 1, 0, 1, 1, 1), G90(1, 1, 1, 1, 2, 1, 1), G90(1, 1, 1, 2, 1, 1, 1), G90(1, 2, 1, 0, 1, 1, 1),

G91(0, 0, 0, 0, 1, 0, 1), G91(0, 0, 1, 0, 1, 1, 0), G91(0, 0, 1, 0, 1, 1, 1), G91(0, 1, 0, 0, 1, 0, 1), G91(0, 1, 0, 1, 1, 1, 0),

G91(0, 1, 0, 1, 1, 1, 1), G91(0, 1, 0, 1, 1, 2, 0), G91(0, 1, 1, 1, 1, 1, 1), G91(1, 0, 0, 1, 0, 1, 0), G91(1, 0, 0, 1, 0, 1, 1),

G91(1, 0, 0, 1, 1, 1, 1), G91(1, 0, 0, 2, 0, 1, 0), G91(1, 0, 1, 0, 0, 0, 1), G91(1, 0, 1, 0, 0, 1, 1), G91(1, 0, 1, 0, 1, 1, 1),

G91(1, 0, 1, 1, 0, 1, 1), G91(1, 0, 1, 1, 1, 1, 0), G91(1, 0, 1, 1, 1, 1, 1), G91(1, 0, 1, 1, 1, 1, 2), G91(1, 0, 1, 1, 1, 2, 0),

G91(1, 0, 2, 0, 0, 0, 1), G91(1, 0, 2, 0, 1, 1, 1), G91(1, 0, 3, 0, 1, 1, 1), G91(1, 1, 0, 0, 1, 0, 1), G91(1, 1, 0, 1, 0, 1, 1),

G91(1, 1, 0, 1, 1, 1, 0), G91(1, 1, 0, 2, 0, 1, 1), G91(1, 1, 0, 3, 0, 1, 1), G91(1, 1, 1, 0, 0, 1, 1), G91(1, 1, 1, 0, 1, 0, 1),

G91(1, 1, 1, 0, 1, 1, 1), G91(1, 1, 1, 1, 0, 0, 1), G91(1, 1, 1, 1, 0, 0, 2), G91(1, 1, 1, 1, 0, 1, 1), G91(1, 1, 1, 1, 1, 1, 1),

G91(1, 1, 1, 1, 1, 1, 2), G91(1, 1, 1, 1, 1, 2, 1), G91(1, 2, 1, 0, 1, 0, 1), G91(2, 0, 1, 1, 0, 1, 1), G91(2, 1, 0, 1, 1, 1, 0),

G91(2, 1, 1, 0, 1, 0, 1).

(A.4)
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G3(0, 0, 0, 1) G2(1, 0, 1, 0) G3(0, 1, 0, 1) G2(1, 1, 1, 0) G3(1, 1, 0, 1) G1(1, 1, 1, 1)

Figure 3. One-loop master integrals. Solid and dashed lines represent massive and massless scalar

propagators, respectively. The external (thin) lines are massless. The four master integrals which

are not shown are obtained by crossing.

Note that at two-loop order, each family is defined using nine propagators. However,

in our case the master integrals are chosen such, that the last two indices are always zero.

Thus, we have omitted them in the above list. For convenience we show in figures 3 and 4

graphical representations of our one- and two-loop master integrals.

We have cross-checked our expressions against the results given in the ancillary file

of [19] and find complete agreement. Note that in [19] the master integrals are expanded

to a sufficient order to provide an amplitude to O(m2
t ). Here, we compute each master

integral to a sufficient depth to provide the gg → HH amplitude at O(m16
t ). We have

successfully compared the triangle master integrals to ref. [50]. In the ancillary file to this

paper [24] we provide analytic results for all one- and two-loop planar master integrals

discussed here. Note that as the integration measure we use (µ2)(4−d)/2eǫγEddk/(iπd/2)

where d = 4− 2ǫ is the space-time dimension.

B Reducing the dimensionality of Mellin-Barnes integrals

In this appendix, we consider the following two types of Mellin-Barnes integrals:

∫

C

dz

2πi
Γ

[

a1 − z, a2 − z, b1 + z, b2 + z, b3 + z

c+ z

]

, (B.1)

∫

C

dz

2πi
Γ

[

a1 − z, a2 − z, b1 + z, b2 + z, b3 + z

c+ z

]

ψ(X) , (B.2)

with X = a1− z, a2− z, b1+ z, b2+ z, b3+ z or c+ z, where the following compact notation

has been introduced

Γ [x1, . . . , xn] =
n
∏

i=1

Γ(xi) , Γ

[

x1, . . . , xn
y1, . . . , ym

]

=
Γ [x1, . . . , xn]

Γ [y1, . . . , ym]
. (B.3)

Furthermore, we use the compressed notation a12 = a1+a2, b123 = b1+b2+b3. In eqs. (B.1)

and (B.2) the integration contour C goes from −i∞ to +i∞ and it is assumed that all the

poles of Γ [a1 − z, a2 − z] lie to the right of C and those of Γ [b1 + z, b2 + z, b3 + z] to the

left of C in the complex z-plane. We also assume

Re (ai) > 0, Re (bj) > 0 for all i, j, (B.4)

and choose the contour to be along the imaginary axis. If some of the left poles and the

right poles merge, a regularization and a subsequent analytic continuation are required (see

the example, discussed below eq. (B.13)).
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G91(0, 0, 0, 0, 1, 0, 1) G91(1, 0, 0, 1, 0, 1, 0) G91(1, 0, 0, 2, 0, 1, 0) G91(0, 0, 1, 0, 1, 1, 0) G84(0, 1, 0, 0, 2, 0, 1) G79(1, 0, 1, 0, 0, 0, 1)

G6(1, 1, 0, 1, 1, 0, 0) G79(1, 0, 1, 0, 0, 1, 1)
G79(1, 0, 1, 0, 1, 0, 1) G79(1, 0, 1, 0, 2, 0, 1) G79(1, 0, 1, 0, 1, 0, 2) G91(0, 0, 1, 0, 1, 1, 1)

G91(1, 0, 0, 1, 0, 1, 1) G73(0, 1, 1, 1, 1, 0, 1) G72(1, 0, 1, 1, 1, 0, 1) G72(1, 0, 2, 1, 1, 0, 1) G6(1, 1, 0, 1, 1, 1, 0) G6(1, 1, 1, 1, 1, 1, 0)

G91(1, 1, 0, 1, 0, 1, 1) G91(1, 1, 0, 2, 0, 1, 1) G91(1, 1, 0, 3, 0, 1, 1) G79(1, 1, 1, 0, 1, 0, 1) G47(1, 1, 1, 2, 1, 0, 0) G79(1, 2, 1, 0, 1, 0, 1)

G71(1, 1, 1, 1, 1, 0, 1) G71(1, 1, 2, 1, 1, 0, 1) G6(1, 1, 1, 1, 1, 1, 1) G6(1, 1, 1, 1, 1, 1, 2) G6(1, 1, 1, 1, 1, 2, 1) G79(1, 1, 1, 0, 0, 1, 1)

G33(1, 1, 0, 1, 0, 0, 0) G20(1, 1, 0, 1, 1, 0, 0) G20(1, 1, 1, 1, 1, 0, 0) G33(1, 1, 0, 1, 0, 1, 0) G33(1, 1, 0, 1, 0, 2, 0) G20(1, 1, 0, 1, 1, 0, 1)

G33(1, 1, 1, 1, 0, 1, 0) G33(1, 1, 0, 1, 1, 1, 0) G33(1, 1, 0, 1, 2, 1, 0) G91(1, 0, 1, 1, 1, 1, 0) G91(1, 0, 1, 1, 1, 2, 0) G20(1, 1, 1, 1, 1, 0, 1)

G33(1, 1, 1, 1, 1, 1, 0) G20(1, 1, 1, 1, 1, 1, 1) G20(1, 1, 1, 1, 1, 1, 2) G20(1, 1, 2, 1, 1, 1, 1) G20(1, 1, 1, 1, 1, 2, 1)

Figure 4. Two-loop planar master integrals. Solid and dashed lines represent massive and massless

scalar propagators, respectively. The external (thin) lines are massless. The planar master integrals

form (A.4) which are not shown are obtained by crossing.

Let us first briefly summarize the known properties of Mellin-Barnes integrals.

• If c = b3, the first Barnes lemma

∫

C

dz

2πi
Γ[a1−z,a2−z,b1+z,b2+z] =Γ

[

a1+b1,a1+b2,a2+b1,a2+b2
a1+a2+b1+b2

]

, (B.5)

can be applied to eq. (B.1). By taking a derivative w.r.t. one of the parameters

(e.g. a1) one obtains a solution for eq. (B.2).
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• If c = a12 + b123, the second Barnes lemma

∫

C

dz

2πi
Γ

[

a1 − z, a2 − z, b1 + z, b2 + z, b3 + z

a1 + a2 + b1 + b2 + b3 + z

]

= Γ

[

a1 + b1, a1 + b2, a1 + b3, a2 + b1, a2 + b2, a2 + b3
a12 + b12, a12 + b13, a12 + b23

]

, (B.6)

can be applied to eq. (B.1). However, there is no corresponding expression for

eq. (B.2); differentiation w.r.t. the parameters ai, bj gives relations between expres-

sions which have the form of eq. (B.2) with different X = a1 − z, a2 − z, b1 + z, b2 +

z, b3 + z, c + z. The number of independent relations is smaller than the number of

possible choices of X. Thus, no analytic result for eq. (B.2) can be obtained.

• If c = a12+b123+1 or c = a12+b123+2 the solutions for eq. (B.1) are also known [39]

and implemented in the package barnesroutines.m [47].

In the following we sketch the derivation of a solution for eq. (B.1) for the general case,

which also yields a solution for eq. (B.2) after differentiation w.r.t. one of the parameters.

Based on the assumptions about the relation between ai, bj (eq. (B.4)), we can express

eq. (B.1) as

∫

C

dz

2πi
Γ

[

a1−z,a2−z,b1+z,b2+z,b3+z

c+z

]

=−
∞
∑

m=0

(Resz=a1+m+Resz=a2+m) , (B.7)

where

−
∞
∑

m=0

Resz=a1+m

=
∞
∑

m=0

(−1)mΓ

[

−a1 + a2 −m, a1 + b1 +m, a1 + b2 +m, a1 + b3 +m

m+ 1, a1 + c+m

]

= Γ

[

−a1 + a2, a1 + b1, a1 + b2, a1 + b3
a1 + c

]

3F2

(

a1 + b1, a1 + b2, a1 + b3
1 + a1 − a2, a1 + c

; 1

)

. (B.8)

3F2 is the generalized hypergeometric function. The residues at z = a2 +m are written in

a similar manner. At this point the r.h.s. of eq. (B.7) contains two 3F2. We can transform

it into an expression containing only one 3F2 using the relation [51],

3F2

(

a,b,c

d,e
;1

)

=Γ

[

1−a,−b+c,d,e

1−a+b,c,−b+d,−b+e

]

3F2

(

b,1+b−d,1+b−e

1+b−a,1+b−c
;1

)

+Γ

[

1−a,b−c,d,e

b,1−a+c,−c+d,−c+e

]

3F2

(

c,1+c−d,1+c−e

1−a+c,1−b+c
;1

)

. (B.9)

We additional apply the relation [51]

3F2

(

a, b, c

d, e
; 1

)

= Γ

[

d, d+ e− a− b− c

d+ e− a− b, d− c

]

3F2

(

e− a, e− b, c

d+ e− a− b, e
; 1

)

, (B.10)
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and obtain the following result

∫

C

dz

2πi
Γ

[

a1 − z, a2 − z, b1 + z, b2 + z, b3 + z

c+ z

]

= Γ

[

a1 + b1, a2 + b1, a1 + b2, a2 + b2, a1 + b3, a2 + b3
a12 + b13, a12 + b23,−b3 + c

]

× 3F2

(

a1 + b3, a2 + b3, a12 + b123 − c

a12 + b13, a12 + b23
; 1

)

. (B.11)

This is the main result of this appendix. It reduces to the first Barnes lemma for c = bj
and to the second Barnes lemma for c = a12 + b123.

The l.h.s. of eq. (B.11) is symmetric in a1 ↔ a2 and b1 ↔ b2 ↔ b3, however the

symmetry among bj is not obvious on the r.h.s. We can show the symmetry by using the

transformation formula of 3F2 given in eq. (B.10).

In general, the generalized hypergeometric function 3F2({a, b, c}, {d, e}; z) converges at
z = 1 when [52]

Re (d+ e− a− b− c) > 0 . (B.12)

This condition has to be satisfied when using eq. (B.11). If condition (B.12) is violated we

perform an analytic continuation to obtain an expression which converges at z = 1. This

procedure is well-known [52], so we will not further discuss it here.

The convergence behaviour may change under the replacements b1 ↔ b2 ↔ b3. By

applying the condition (B.12) to 3F2 of eq. (B.11), we obtain the condition Re (c− b3) > 0,

which is clearly not symmetric under the replacements b1 ↔ b2 ↔ b3. Thus the conver-

gent domain, in terms of the space spanned by a1, a2, b1, b2, b3, can differ from expression

to expression.

As an example, let us consider the integral
∫

C

dz1
2πi

Γ [−z1,−z1 − z2, z1, 1 + z1 + z2]ψ(1 + z1) . (B.13)

In this case, the right-most left-pole at z1 = 0 merges with the left-most right-pole. To

separate the poles we introduce a regularization parameter δ > 0 as Γ(z1) → Γ(δ + z1)

assuming

−1 < −δ < Re (z1) < Re (z2) < 0 (B.14)

and analytically continue δ → 0 later. By applying the replacements

{a1 → 0 , a2 → −z2 , b1 → 1 , b2 → δ , b3 → 1 + z2 , c → 1 + c̃ , X → 1 + z1} (B.15)

to eq. (B.11), we have

∫

C

dz1
2πi

Γ

[

−z1,−z1 − z2, 1 + z1, δ + z1, 1 + z1 + z2
1 + c̃+ z1

]

=
1

δ − c̃

(

Γ

[

δ, 1− z2, z2
c̃

]

− Γ

[

δ − z2, 1− z2, z2
c̃− z2

])

, (B.16)
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where the Gauss summation formula

3F2

(

a, b, d

c, d
; 1

)

= 2F1

(

a, b

c
; 1

)

= Γ

[

c− a− b, c

c− a, c− b

]

(B.17)

has been used. After differentiating w.r.t. c̃ and setting c̃ → 0, we find

∫

C

dz1
2πi

Γ[−z1,−z1−z2, δ+z1,1+z1+z2]ψ(1+z1)

=−γEΓ[1+z2,−z2]

δ
+
Γ[1+z2,−z2]

2

(

γ2E+ζ2+ψ(−z2)
2−ψ′(−z2)

)

+O(δ) . (B.18)

Finally we can analytically continue δ → 0 as mentioned above; the r.h.s. becomes

∫

C

dz1
2πi

Γ[−z1,−z1−z2, δ+z1,1+z1+z2]ψ(1+z1)

=

∫

C

dz1
2πi

Γ[−z1,−z1−z2, z1,1+z1+z2]ψ(1+z1)

− γEΓ[1+z2,−z2]

δ
+Γ[1+z2,−z2]

(

γ2E−ζ2−γEψ(−z2)+γEψ(1+z2)
)

+O(δ) (B.19)

and therefore
∫

C

dz1
2πi

Γ[−z1,−z1−z2, z1,1+z1+z2]ψ(1+z1)

=
Γ[1+z2,−z2]

2

[

−γ2E+
π2

2
+2γEψ(−z2)+ψ(−z2)

2−2γEψ(1+z2)−ψ′(−z2)

]

. (B.20)

Throughout this example, z2 can assume any value satisfying eq. (B.14). It can, in par-

ticular, be an integration variable. Thus the two dimensional Mellin-Barnes integral of

eq. (B.13) can be reduced to a one dimensional integral.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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