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ab
stract

PURPOSE High-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements (HGBL-DH/TH) has

a poor outcome after standard chemoimmunotherapy. We sought to understand the biologic underpinnings of

HGBL-DH/TH with BCL2 rearrangements (HGBL-DH/TH-BCL2) and diffuse large B-cell lymphoma (DLBCL)

morphology through examination of gene expression.

PATIENTS AND METHODS We analyzed RNA sequencing data from 157 de novo germinal center B-cell-like

(GCB)-DLBCLs, including 25 with HGBL-DH/TH-BCL2, to define a gene expression signature that distinguishes

HGBL-DH/TH-BCL2 from other GCB-DLBCLs. To assess the genetic, molecular, and phenotypic features

associated with this signature, we analyzed targeted resequencing, whole-exome sequencing, RNA sequencing,

and immunohistochemistry data.

RESULTS We developed a 104-gene double-hit signature (DHITsig) that assigned 27% of GCB-DLBCLs to the

DHITsig-positive group, with only one half harboring MYC and BCL2 rearrangements (HGBL-DH/TH-BCL2).

DHITsig-positive patients had inferior outcomes after rituximab plus cyclophosphamide, doxorubicin, vin-

cristine, and prednisone immunochemotherapy compared with DHITsig-negative patients (5-year time to

progression rate, 57% and 81%, respectively; P , .001), irrespective of HGBL-DH/TH-BCL2 status. The

prognostic value of DHITsig was confirmed in an independent validation cohort. DHITsig-positive tumors are

biologically characterized by a putative non–light zone germinal center cell of origin and a distinct mutational

landscape that comprises genes associated with chromatin modification. A new NanoString assay (DLBCL90)

recapitulated the prognostic significance and RNA sequencing assignments. Validating the association with

HGBL-DH/TH-BCL2, 11 of 25 DHITsig-positive–transformed follicular lymphomas were classified as HGBL-DH/

TH-BCL2 compared with zero of 50 in the DHITsig-negative group. Furthermore, the DHITsig was shared with

the majority of B-cell lymphomas with high-grade morphology tested.

CONCLUSION We have defined a clinically and biologically distinct subgroup of tumors within GCB-DLBCL

characterized by a gene expression signature of HGBL-DH/TH-BCL2. This knowledge has been translated into

an assay applicable to routinely available biopsy samples, which enables exploration of its utility to guide patient

management.

J Clin Oncol 37:190-201. © 2018 by American Society of Clinical Oncology

INTRODUCTION

Recognition of the biologic heterogeneity in diffuse

large B-cell lymphoma (DLBCL) has prompted sig-

nificant effort to define distinct molecular subgroups

within the disease that have prognostic significance

and, more importantly, harbor potentially targetable

biology.1-3 Accordingly, the most recent revision of the

WHO classification, which divides tumors with DLBCL

morphology into cell-of-origin (COO) molecular sub-

types activated B-cell-like (ABC) and germinal center

B-cell-like (GCB), recognizes high-grade B-cell lym-

phoma with MYC and BCL2 and/or BCL6 rearrange-

ments (HGBL-DH/TH).4 This newly defined entity

comprises tumors with either DLBCL or high-grade

morphology. Approximately 8% of tumors with DLBCL

morphology are HGBL-DH/TH, and all HGBL-DH/TH

with BCL2 translocations (HGBL-DH/TH-BCL2) of

DLBCL morphology belong to the GCB molecular

subgroup.5,6 Clinically, despite the generally superior

prognosis of GCB-DLBCLs, patients with HGBL-DH/
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TH-BCL2 have poor outcomes,7-12 which has prompted

many institutions to treat these tumors with dose-

intensive immunochemotherapy. GCB patients that do

not respond to standard therapies and HGBL-DH/TH

patients that remain refractory to intensified therapy

represent a critical unmet need and would benefit from

novel treatment strategies that better address their

unique biology.

Owing to the relative rarity of HGBL-DH/TH-BCL2, a com-

prehensive biologic characterization of this entity is lacking,

and there has been speculation that additional molecular

features may refine the definition of these cases. Genomic

studies in DLBCL have identified recurrent mutations and

revealed the association of many with COO.13-16 Although

the most recent genomic landscape studies defined ge-

netic subgroups on the basis of somatic mutation and

structural variants, they did not address the genetic

background of HGBL-DH/TH-BCL2.17-19

We sought to identify gene expression features that dis-

tinguish HGBL-DH/TH-BCL2 from the remainder of GCB-

DLBCLs. In doing so, we discovered a distinct molecular

subgroup that comprises 27% of GCB-DLBCLs, only one

half of which were HGBL-DH/TH-BCL2, with poor prog-

nosis after rituximab plus cyclophosphamide, doxorubicin,

vincristine, and prednisone (R-CHOP) treatment, a finding

validated in an independent cohort using a gene expression

signature that robustly identifies these patients (double-hit

signature [DHITsig]). Relative to the other GCB-DLBCLs,

these tumors have significantly lower expression of genes

associated with the light zone (LZ) of the germinal center

and have mutations and gene expression features that imply

potentially targetable vulnerabilities. The signature has

been translated into a new assay on the NanoString

Technologies (Seattle, WA) platform that allows application

to routinely available formalin-fixed paraffin-embedded

(FFPE) biopsy samples.

PATIENTS AND METHODS

Patient Cohorts

To enhance our understanding of HGBL-DH/TH-BCL2, we

analyzed RNA sequencing (RNAseq) data from 157 de

novo GCB DLBCLs, including 25 HGBL-DH/TH-BCL2, to

define gene expression differences betweenHGBL-DH/TH-

BCL2 and other GCB-DLBCLs (discovery cohort). These are

GCB-DLBCLs with available MYC and BCL2 fluorescent

in situ hybridization (FISH) results from our previously

described cohort of 347 diagnostic biopsy samples of

patients with de novo DLBCL treated with R-CHOP who

were selected from the BC Cancer population-based reg-

istry6 (Appendix Fig A1, online only). Selection of the 347

patients was described previously.6 This study was reviewed

and approved by the University of British Columbia-BC

Cancer Research Ethics Board in accordance with the

Declaration of Helsinki.

We used two external cohorts with RNAseq data available

(Reddy et al,19 278 patients with GCB-DLBCL; Schmitz

et al,17 162 patients with GCB-DLBCL) to explore the

prognostic significance and molecular features associated

with DHITsig DLBCL. FFPE biopsy samples of 322 of the 347

DLBCLs plus 88 transformed follicular lymphomas (tFLs)20

with DLBCL morphology and 26 HGBLs from patients

treated in BC Cancer were analyzed for the validation of the

novel NanoString assay. Patient characteristics and pa-

thology data for the BC Cancer DLBCL cohort are listed in the

Data Supplement. Methods for FISH and immunohisto-

chemistry are described in the Data Supplement.

Gene Expression Profiling and Mutational Analysis

RNAseq was applied to RNA extracted from fresh frozen

biopsy samples. We compiled mutations from targeted

sequencing of the discovery cohort and existing exome

data from two validation cohorts, each with matched

RNAseq.17,19 Sample processing of RNA and DNA, library

construction and detailed analytic procedures for RNAseq,

targeted resequencing, and mutational analysis of exome

data were either previously described6,21-23 or are included

in the Data Supplement.

Digital Gene Expression Profiling

To translate the signature into an assay applicable to FFPE,

we performed digital expression profiling on RNA derived

from FFPE biopsy samples using the NanoString assay;

methods are provided in the Data Supplement.

Statistical Analysis

The Kaplan-Meier method was used to estimate the time to

progression (TTP; progression/relapse or death as a result

of lymphoma or acute treatment toxicity), progression-free

survival (PFS; progression/relapse or death as a result of

any cause), disease-specific survival (DSS; death as a result

of lymphoma or acute treatment toxicity), and overall

survival (OS; death as a result of any cause), with log-rank

test performed to compare groups. Univariable and mul-

tivariable Cox proportional hazard regression models were

used to evaluate proposed prognostic factors (Data

Supplement).

Fisher’s exact test was used for between-categorical data

comparisons. For the comparison of two continuous vari-

ables, data were tested by Wilcoxon rank sum test, except

where noted. Multiple testing correction was performed

where necessary using the Benjamini-Hochberg pro-

cedure. All P values result from two-sided tests, and

a threshold of .05 was used for significance, except where

noted. All analyses were performed using R-3.4.1 software

(https://cran.r-project.org/bin/windows/base/old/3.4.1).

RESULTS

Development of DHITsig

We identified 104 genes that were most significantly dif-

ferentially expressed between HGBL-DH/TH-BCL2 and
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FIG 1. The gene expression–based model of 104 genes on the basis of high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6 rearrangements with BCL2

translocations (HGBL-DH/TH-BCL2) status. (A) Importance score with 95% CI of the 104 most significantly differentially expressed genes between HGBL-DH/TH-BCL2

and germinal center B-cell-like (GCB) diffuse large B-cell lymphoma (DLBCL). Genes with blue and red bars are over- and underexpressed in HGBL-DH/TH-BCL2,

respectively. (B)Mean z-score of genes over- or underexpressed inHGBL-DH/TH-BCL2 is shown in the form of a heatmap, with the 157patient biopsy samples shown as

columns.Double-hit signature (DHITsig) groups identifiedby the signature are shownbelow theheatmap. The status ofMYC,BCL2, andBCL6 genetic alterations; HGBL-

DH/TH-BCL2; WHO categories; and MYC/BCL2 dual protein expression (DPE) status are displayed beneath the heat map. FISH, fluorescent in situ hybridization.
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other GCB-DLBCLs (Fig 1A; Data Supplement). We devised

a model score using the expression of these 104 genes

(Data Supplement) that separates GCB-DLBCL into two

groups. The smaller group, which comprised 42 tumors

(27%), was termed DHITsig positive (DHITsig-pos)

and included 22 of the 25 HGBL-DH/TH-BCL2 tumors

as determined by FISH. The remaining 115 GCB tu-

mors (73%) were considered DHITsig negative (DHITsig-

neg), including three HGBL-DH/TH-BCL2 tumors (Fig

1B).

Prognostic Value of DHITsig

Having developed the DHITsig while blinded to patient

outcomes, we then explored the prognostic impact of the

TABLE 1. Patient Characteristics According to DHITsig in Germinal

Center B-Cell-Like Diffuse Large B-Cell Lymphoma

DHIT Signature, No. (%)

Characteristic Positive Negative P

No. of patients 42 115

Age, years

Median (range) 62 (35-79) 62 (19-92)

# 60 years 18 (43) 47 (41) .97

. 60 years 24 (57) 68 (59)

Sex

Female 14 (33) 48 (42) .44

Male 28 (67) 67 (58)

Stage

I, II 18 (44) 66 (58)

III, IV 23 (56) 48 (42) .17

NA 1 1

LDH

Normal 16 (42) 60 (58)

. ULN 22 (58) 44 (42) .14

NA 4 11

ECOG PS

0-1 28 (68) 89 (78)

$ 2 13 (32) 25 (22) .30

NA 1 1

No. of extranodal sites

0-1 38 (93) 100 (88)

$ 2 3 (7) 14 (12) .56

NA 1 1

B symptoms

No 26 (63) 74 (65)

Yes 15 (37) 40 (35) 1.0

NA 1 1

Tumor mass . 10 cm

No 27 (71) 87 (78)

Yes 11 (29) 24 (22) .48

NA 4 4

IPI score

Low (0-1) 14 (35) 47 (42)

Intermediate (2-3) 19 (48) 51 (46) .56

High (4-5) 7 (17) 13 (12)

NA 2 4

Ki-67 IHC

, 80% 26 (65) 77 (73)

$ 80% 14 (35) 29 (27) .48

NA 2 9

(continued in next column)

TABLE 1. Patient Characteristics According to DHITsig in Germinal

Center B-Cell-Like Diffuse Large B-Cell Lymphoma (continued)

DHIT Signature, No. (%)

Characteristic Positive Negative P

MYC-TR

No 15 (36) 110 (96)

Yes 27 (64) 5 (4) < .001

NA 0 0

BCL2-TR

No 6 (15) 75 (65)

Yes 36 (85) 40 (35) < .001

NA 0 0

HGBL-DH/TH-BCL2

No 20 (48) 112 (98)

Yes 22 (52) 3 (2) < .001

NA 0 0

MYC-IHC

Negative 10 (25) 91 (80)

Positive 30 (75) 23 (20) < .001

NA 2 1

BCL2-IHC

Negative 5 (12) 58 (51)

Positive 36 (88) 55 (49) < .001

NA 1 2

MYC/BCL2-IHC (DPE)

No 15 (37) 106 (93)

Yes 25 (63) 8 (7) < .001

NA 2 1

NOTE. Boldface indicates significance.

Abbreviations: DHITsig, double-hit signature; DPE, double protein

expression; ECOG PS, Eastern Cooperative Oncology Group

performance status; IHC, immunohistochemistry; IPI, International

Prognostic Index; LDH, lactate dehydrogenase; NA, not available; TR,

translocations; ULN, upper level of normal.

Journal of Clinical Oncology 193

Double-Hit Signature in GCB-DLBCL



DHITsig within the 157 patients with de novo GCB-DLBCL

uniformly treated with R-CHOP6,24 using assignments from

the locked RNAseq model. DHITsig was not associated with

clinical variables, including the factors of International

Prognostic Index (IPI), IPI subgroups, B symptoms, and

tumor volume. As expected, MYC and BCL2 translocations

and protein expression of MYC and BCL2 were significantly

more frequent in DHITsig-pos patients (allP, .001; Table 1).

DHITsig-pos patients had significantly shorter TTP, DSS,

and OS compared with those with DHITsig-neg GCB (log-

rank P , .001, , .001, .012, respectively) and exhibited

outcomes comparable to those of ABC-DLBCL from the

cohort of 347 patients (Figs 2A to 2C). Of note, the DHITsig-

pos patients without HGBL-DH/TH-BCL2 showed com-

parably poor prognosis to patients with HGBL-DH/TH-BCL2

(Appendix Fig A2, online only). Although IPI factors, IPI
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FIG 3. Genetic, molecular, and phenotypic features of the double-hit signature (DHITsig). (A) Comparison of protein encoded by the MKI67 gene (Ki-67)

staining by immunohistochemistry between DHITsig-positive (DHITsig-pos), DHITsig-negative (DHITsig-neg) germinal center B-cell-like (GCB) diffuse large

B-cell lymphoma (DLBCL) and activated B-cell-like (ABC) DLBCL. (B) Comparison of linear predictor score (LPS) provided by the Lymph2Cx assay between

DHITsig-pos, DHITsig-neg GCB-DLBCL and ABC-DLBCL. Dark orange dots represent the high-grade B-cell lymphoma with MYC and BCL2 and/or BCL6

rearrangements with BCL2 translocations (HGBL-DH/TH-BCL2) tumors. (C) Comparison of immunohistochemistry staining pattern of CD10 (membrane

metallo-endopeptidase) and MUM1 (IRF4) between DHITsig-pos and DHITsig-neg GCB-DLBCL tumors. (D) Comparison of mean z-scores of dark zone

(DZ), intermediate zone (IZ), and light zone (LZ) signature genes (20 genes each) between DHITsig-pos and (continued on following page)
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subgroups, and dual protein expression (DPE) of MYC and

BCL2 also were associated with survival in GCB-DLBCL

(Data Supplement), DHITsig remained prognostic in mul-

tivariable analyses that included these factors (Data Sup-

plement). In particular, DPE did not provide a statistically

significant risk stratification within either the DHITsig-pos or

the DHIT-neg groups (Appendix Fig A3, online only), which

indicated that the DHITsig designation subsumes the

prognostic impact of DPE within GCB-DLBCL. Similarly,

DHITsig designation subsumed the prognostic impact of

the established pathology subgroups (ie, HGBL-DH/TH-

BCL2). We then applied this gene expression model to

GCB-DLBCL from an independent data set (Reddy et al,19

262 patients with GCB-DLBCL) in which the DHITsig-pos

group also had significantly inferior OS compared with other

patients with GCB-DLBCLs (P , .001; Fig 2D). Charac-

teristics of the cohorts of Reddy et al and BC Cancer are

compared in the Data Supplement

DHITsig Defines a Biologically Distinct Subgroup

Within GCB-DLBCL

Exploration of the pathology and gene expression patterns

demonstrated that DHITsig-pos tumors form a distinct bi-

ologic subgroup of GCB-DLBCL characterized by a COO

from the intermediate zone (IZ)/dark zone (DZ) of the ger-

minal center. In a first step, a pathology re-review of the

entire cohort of 347 patients with DLBCL from BC Cancer

was performed by a panel of expert hematopathologists

(G.W.S., P.F., and K.T.) who confirmed that DHITsig-pos

tumors were indeed of DLBCL morphology. No morpho-

logic features were observed that distinguished these

tumors from DHITsig-neg tumors. Furthermore, the pro-

liferation index, assessed by immunohistochemistry for

Ki67, was not significantly different between DHITsig

groups (Fig 3A).

In the Lymph2Cx assay, low linear predictor scores (LPSs)

result in an assignment to the GCB group, whereas high

LPSs result in an ABC assignment. Among the GCB

DLBCLs, DHITsig-pos tumors had significantly lower LPSs

than DHITsig-neg tumors (P , .001; Fig 3B). Moreover,

DHITsig-pos tumors were universally positive for CD10

(membrane metallo-endopeptidase) staining, and the

majority were MUM1 (IRF4) negative. CD10+/MUM12

cases were significantly more frequent in DHITsig-pos

tumors (P , .001; Fig 3C). Most GCB-DLBCLs have

been demonstrated previously to have a COO consistent

with B lymphocytes from the LZ of the germinal center.25

Given that the gene features in the Lymph2Cx and these

immunohistochemistry markers are associated with B-cell

differentiation states, we considered whether the two

DHITsig groups had gene expression patterns that imply

distinct putative COOs. Gene signatures associated with

DZ, LZ, and the more recently described IZ, which rep-

resents the transition stage between DZ and LZ, were

explored within the GCB-DLBCLs.26 Of note, DHITsig-pos

tumors showed significantly lower expression of LZ genes

compared with DHITsig-neg tumors (P , .001; Fig 3D).

The expression of genes in the DZ cluster were not sta-

tistically different between the two groups, whereas genes

associated with the IZ had higher expression within the

DHITsig-pos tumors. Furthermore, genes characteristic of

the IZ are part of the 104-gene DHITsig model. Collectively,

these findings demonstrate that although DHITsig-neg

tumors have an LZ COO, we postulate that the COO for

DHITsig-pos tumors are IZ B cells transitioning from the LZ

to the DZ.

Gene set enrichment analysis was then used to uncover

additional biologic differences between DHITsig-pos and

DHITsig-neg tumors. We found that DHITsig-pos tumors

demonstrated overexpression of MYC and E2F targets and

genes associated with oxidative phosphorylation and

MTORC1 signaling (Appendix Fig A4, online only). Con-

versely, DHITsig-pos tumors exhibit lower expression of

genes associated with apoptosis, tumor necrosis factor-a

signaling through nuclear factor-kB and decreased

interleukin-6/Janus kinase/signal transducers and activa-

tors of transcription 3, processes upregulated in cen-

trocytes. DHITsig-pos tumors also exhibited lower

expression of immune and inflammation signatures. Con-

sistently, tumor-infiltrating lymphocytes, especially CD4+

T cells, had significantly lower representation in DHITsig-

pos tumors relative to other GCBs (Fig 3E). Loss of surface

MHC class I (MHC-I) and MHC-II protein expression was

also more frequent in DHITsig-pos tumors (Fisher’s exact

test for MHC-I andMHC-II, 61% v 40% [P = .020] and 44%

v 14% [P , .001], respectively; Fig 3F), with 68% of

DHITsig-pos tumors having a loss of either MHC-I or MHC-II

expression. Finally, we identified that all representative

GCB-DLBCL cell lines tested belonged to the DHITsig-pos

subgroup (Appendix Fig A5, online only), consistent with

the notion that DHITsig-pos tumors harbor strong cell-

autonomous survival and proliferation signals and re-

duced dependence on the microenvironment.

Mutational Landscape of DHITsig-pos GCB-DLBCL

We next sought genetic features associated with DHITsig

status within GCB-DLBCL. For this, we used the combined

mutation data derived from 569 unique patients with

(Continued). DHITsig-neg groups. (E) Comparison of fraction of tumor-infiltrating T cells (CD3+, CD4+, and CD8+ T cells) measured by flow cytometry

between DHITsig-pos, DHITsig-neg GCB-DLBCL and ABC-DLBCL. (F) Frequencies of MHC class I (MHC-I) and MHC-II double-negative, isolated MHC-II

negative, isolated MHC-I negative, and MHC-I and -II double-positive cases in DHITsig-pos and DHITsig-neg cases. (G) Forest plots summarize the results of

Fisher’s exact tests that compare the frequency of mutations that affect individual genes in DHITsig-neg (dark orange dots) and DHITsig-pos (red dots) GCB-

DLBCL tumors. Significantly enriched genes in either DHITsig-pos or DHITsig-neg cases (false discovery rate, .10) are represented. Log10 odds ratios and 95%

CIs are shown. Bar plots represent the frequency of mutations in either DHITsig-pos or DHITsig-neg groups. *P , .10, †P , .05, ‡P ,.01.

196 © 2018 by American Society of Clinical Oncology Volume 37, Issue 3

Ennishi et al



OR13A1

MYC

SLC25A27

TNFSF8

PEG10

GAMT

SNHG19

QRSL1

RGCC

JCHAIN

CD24

AFMID

SMIM14

SYBU

GPR137B

CDK5R1

LY75

VASP

RFFL

MIR155HG

VOPP1

BATF

STAT3

IRF4

SGPP2

CD80

SEMA7A

EBI3

IL21R

ALOX5

DHITsig

MYC status
BCL2 status

HGBL-DH/TH-BCL2

BCL6 status

WHO category
DPE

220 De Novo Tumors With  DLBCL MorphologyA
GCB UNC

66%10%23%

OR13A1

MYC

SLC25A27

TNFSF8

PEG10

GAMT

SNHG19

QRSL1

RGCC

JCHAIN

CD24

AFMID

SMIM14

SYBU

GPR137B

CDK5R1

LY75

VASP

RFFL

MIR155HG

VOPP1

BATF

STAT3

IRF4

SGPP2

CD80

SEMA7A

EBI3

IL21R

ALOX5

DHITsig

MYC status

BCL2 status

HGBL-DH/TH-BCL2

BCL6 status

WHO category

88 tFL With DLBCL Morphology

28% 15% 57%

B
OR13A1

MYC

SLC25A27

TNFSF8

PEG10

GAMT

SNHG19

QRSL1

RGCC

JCHAIN

CD24

AFMID

SMIM14

SYBU

GPR137B

CDK5R1

LY75

VASP

RFFL

MIR155HG

VOPP1

BATF

STAT3

IRF4

SGPP2

CD80

SEMA7A

EBI3

IL21R

ALOX5

DHITsig

MYC status
BCL2 status

HGBL-DH/TH-BCL2

BCL6 status

WHO category
tFL v de novo

26 HGBLs

88%

C

Positive

Indeterminate

Negative

MYC status

DHITsig

FISH positive

FISH negative

HGBL-DH/TH-BCL2

HGBL-DH/TH-BCL2

Not HGBL-DH/TH-BCL2

WHO category

HGBL-DH/TH

Not HGBL-DH/TH

DPE

DPE

Non-DPE

tFL v de novo

tFL

De novo tumor

BCL2 status

BCL6 status

FISH positive

FISH negative

FISH positive

FISH negative

tFL v de novo

FIG 4. The gene expression–based model for the double-hit signature (DHITsig). The DLBCL90 assay is shown in the form of a heat map, with

the 30 informative genes shown as rows, and the tumors shown as columns, separated into (A) 220 germinal (continued on following page)

Journal of Clinical Oncology 197

Double-Hit Signature in GCB-DLBCL



GCB-DLBCL in three cohorts (BC Cancer, Reddy et al,19 and

Schmitz et al17). Along with the expected enrichment of

mutations in MYC and BCL2 (false discovery rate [FDR] ,

.001), mutations that affect CREBBP, EZH2Y646, DDX3X,

TP53, and KMT2D were more frequent in DHITsig-pos

tumors (FDR , .10). In contrast, the mutations of

TNFAIP3, KLHL6, NFKBIE, TET2, CD58, and STAT3 were

more common among DHITsig-neg GCB tumors (FDR ,

.10; Fig 3G; Appendix Fig A6, online only; Data Supple-

ment). With regard to the recently genetically defined sub-

groups of DLBCL, exploration of the DHITsig groups in

Schmitz et al showed a statistically significant association

between DHITsig-pos and EZB (P = .001; Data Supple-

ment). However, these groups showed only partial overlap,

with 38% of the DHITsig-pos tumors falling outside the EZB

group, and the majority (67%) of EZB were DHITsig-neg.

MYC rearrangements were not detected in 15 of the

DHITsig-pos patients, despite the use of two break-apart

probe sets and an MYC/IGH dual-fusion probe set (Data

Supplement). One tumor had a FISH pattern consistent

with amplification of MYC as double minutes. Other

mechanisms of MYC dysregulation that are cryptic to FISH

may be operative in the remaining 14 tumors.

Translation of DHITsig Into a Clinically Relevant Assay

To provide an assay applicable to routinely available biopsy

samples, the 104-gene RNAseq model was reduced to

a 30-gene module. This module was added to the

Lymph3Cx,27 which in turn is an extension of Lymph2Cx

that contains a module to distinguish primary mediastinal

B-cell lymphomas (PMBCL). This NanoString-based assay,

named DLBCL90, assigns tumors into DHITsig-pos and

DHITsig-neg groups using a Bayes rule with 20% and 80%

probability thresholds and with an indeterminate group

(DHITsig-ind) where the tumor could not be assigned with

sufficient confidence (Appendix Figs A7 to A9, online only;

Data Supplement). This was applied to 171 GCB-DLBCL

tumors from the 347-patient cohort (including 156 from the

discovery cohort), which gave 26% DHITsig-pos, 64%

DHITsig-neg, and 10% DHITsig-ind with a frank mis-

classification rate of 3% against the RNAseq comparator

(Data Supplement; Appendix Fig A10, online only). The

integrity of the Lymph2Cx assay was maintained (Appendix

Fig A11, online only). The assay was then applied to the

remainder of the available 322 FFPE biopsy samples from

the 347-patient de novo DLBCL cohort, which showed that

the DHITsig was not seen in ABC-DLBCL, with four (4%) of

102 being DHITsig-ind (Fig 4A; Appendix Fig A12, online

only). The prognostic significance for TTP, DSS, PFS, and OS

of DHITsig was maintained (all P , .001). Because the

DHITsig-ind group had similar outcomes to DHITsig-pos,

these two groups are shown together in Figure 5 and sepa-

rately in Appendix Figure A13 (online only). Of note, the assay

identified a group with very good prognosis, with DHITsig-neg

GCB-DLBCLs exhibiting a DSS rate of 90% at 5 years. In

advanced-stage disease (defined in the Data Supplement),

the DSS rate of the DHITsig-neg patients with GCB-DLBCL

was 87% at 5 years (Appendix Figs A14 and A15, online only,

show outcomes in advanced- and limited-stage disease, re-

spectively). Characteristics of the rare DHITsig-neg HGBL-

DH/TH-BCL2 tumors along with the outcomes of these pa-

tients are discussed in the Data Supplement.

To validate the association between the DHITsig andHGBL-

DH/TH-BCL2, DLBCL90 was applied to 88 patients with tFL

with DLBCL morphology. Within these patients, 11 of the 25

DHITsig-pos tumors were HGBL-DH/TH-BCL2 compared

with zero of 50 in the DHITsig-neg group. Within the DHITsig-

ind group, four of 13 tumors were HGBL-DH/TH-BCL2 (Fig

4B). Finally, the DLBCL90 assay was applied to 26 HGBL

tumors, including seven classified as HGBL not otherwise

specified and 18 classified as HGBL-DH/TH with high-grade

morphology; one tumor could not be assigned because of an

unknown MYC rearrangement status. Among these tumors,

the majority were assigned to the DHITsig-pos group (23

[88%]) with three (12%) being DHITsig-ind (Fig 4C).

DISCUSSION

We have defined a novel molecular subgroup within tumors

with DLBCL morphology characterized by distinct biology

and prognosis after standard immunochemotherapy.

Twenty-seven percent of GCB-DLBCLs share this signature,

with only one half of these harboring concurrent MYC and

BCL2 rearrangements. Furthermore, the poor prognosis,

comparable with ABC-DLBCL, was irrespective of HGBL-

DH/TH-BCL2 status. The robustness of this prognostic gene

expression signature was confirmed through validation in an

independent cohort of R-CHOP–treated patients.

This signature was also evident in tumors with high-grade

morphology, which currently fall into the HGBL not oth-

erwise specified and HGBL-DH/TH with high-grade mor-

phology groups in the revised 2017 WHO classification.4

We propose that this signature identifies tumors with high-

grade molecular features, with FISH for MYC and BCL2 as

surrogate features that represent a subset of these. As

genomic testing gains adoption in clinical practice, this

signature could form the basis of a more inclusive category

that encompasses DLBCLs both with and without these

(Continued). center B-cell-like (GCB) and unclassified (UNC) diffuse large B-cell lymphomas (DLBCLs). (B) Eighty-eight transformed follicular

lymphomas (tFLs) with DLBCLmorphology. (C) Twenty-six high-grade B-cell lymphomas (HGBLs). The tumors are arrayed from highest DHITsig

score on the left to lowest DHITsig score on the right. DHITsig groups identified by the signature are shown below the heat map. The status of

MYC, BCL2, and BCL6 genetic alterations; HGBL with MYC and BCL2 and/or BCL6 rearrangements with BCL2 translocations (HGBL-DH/TH-

BCL2) status; and WHO categories also are shown. White bars indicate data that are not available or assignments that could not be made on the

basis of the available data. DPE, dual protein expression; FISH, fluorescent in situ hybridization.
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rearrangements. This system would classify tumors with

shared biology together while significantly expanding

a group of patients with an established need for dose-

intensive regimens or alternative therapies and may drive

acceleration of clinical trials aimed at improving outcomes.

Meanwhile, the removal of these tumors from GCB-DLBCL

leaves a group with a 5-year DSS rate of 90%—strong

evidence that R-CHOP is sufficient for these patients.

The DHITsig identifies tumors with distinct biology with

potential targetable vulnerabilities. As opposed to other

GCB-DLBCLs, which have a putative COO of the germinal

center LZ, DHITsig-pos tumors display a pattern of gene

expression consistent with an intermediate zone COO. The

expression of MYC in normal germinal center biology is

restricted to cells selected within the LZ for re-entry into the

DZ,28,29 and we postulate that these recycling cells are the
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FIG 5. Prognostic association of DLBCL90 in patients with diffuse large B-cell lymphoma (DLBCL) treated with rituximab plus cyclophosphamide,

doxorubicin, vincristine, and prednisone. Kaplan-Meier curves of the germinal center B-cell-like (GCB) DLBCL v double-hit signature (DHITsig)-positive

(DHITsig-pos) and DHITsig-indeterminate (DHITsig-ind) v unclassified v activated B-cell-like (ABC) DLBCL for (A) time to progression (TTP), (B) disease-

free survival (DSS), (C) progression-free survival (PFS), and (D) overall survival (OS) in 322 patients with de novo tumors of DLBCL morphology treated with

rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone. The same curves with separation of DHITsig-pos and DHITsig-ind are shown in

Appendix Figure A13 (online only). *P , .001. HR, hazard ratio.
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physiologic counterpart of DHITsig-pos tumor cells. They

have a high incidence of mutations within chromatin-

modifier genes and are cold tumors with a paucity of

infiltrating T cells and a high incidence of low MHC-I

and MHC-II expression.23,30 Furthermore, gene expression

suggests that the tumor cells are highly metabolically

charged with a high expression of genes associated with

oxidative phosphorylation. This biology provides rationale

for exploring targeted agents beyond the current focus on

BCL2 inhibitors.31 Such strategies could target cell differ-

entiation block (enhancer of zeste homolog 2 inhibitors),

reducing immune evasion (histone deacetylase inhibitors),

enhancing T-cell activation (newer-generation anti-CD20

antibodies), and targeting oxidative phosphorylation and

the proteasome. Finally, high expression of certain genes

raises the possibility that specific inhibitors may be useful

(eg, inhibitors of arachidonate 5-lipoxygenase).

Two groups recently have described genetically defined

subgroups within GCB-DLBCL that carry a poor prognosis,

namely EZB and cluster 3 subgroups.17,18 Examination of

RNAseq data from Schmitz et al17 shows that there is only

partial overlap between DHITsig-pos tumors and the EZB

category, which indicates that this new biologic group is not

adequately identified by this genetics-based classification.

To allow the identification of DHITsig tumors in routinely

available biopsy samples, we reduced this gene expression

classifier to a module that was added to the Lymph3Cx

COO/PMBCL assay. This assay faithfully reproduced the

RNAseq-based model of DHITsig, while maintaining the

accuracy of the base Lymph2Cx assay, and could identify

HGBL-DH/TH within tumors of DLBCL morphology in

a cohort of tFL. Recently, the Efficacy and Safety Study of

Lenalidomide Plus R-CHOP Chemotherapy Versus Placebo

Plus R-CHOP Chemotherapy in Untreated ABC Type Diffuse

Large B-Cell Lymphoma (ROBUST) phase III clinical trial in

DLBCL used a gene expression–based assay for real-time

patient selection, which demonstrated the feasibility of such

assays in prospective clinical trial designs.32 Furthermore,

the retrospective application of this assay to completed

clinical trials will allow exploration of the impact of thera-

peutic strategies on this newly described entity.

This new DHITsig-pos subgroup of GCB-DLBCL roughly

doubles the number of DLBCL tumors that would be

classified as HGBL on the basis of FISH testing. We envision

that this will afford an immediate clinical impact because the

signature identifies a large group of DHITsig-neg patients with

GCB-DLBCL in whom R-CHOP is sufficient to effect cure,

obviating the need for therapy escalation in this group. Finally,

the translation of this biology to an assay facilitates clinical

trials aiming to improve outcomes, assigning DLBCL COO,

and identifying distinct biologic groups within GCBs that

harbor potentially targetable biology.
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APPENDIX
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FIG A6. Mutations detected by targeted sequencing of the discovery cohort and seven diffuse large B-cell lymphoma (DLBCL) cell lines are shown with
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FIG A13. Kaplan-Meier curves of the outcomes in 322 patients with de novo diffuse large B-cell lymphoma treated with curative intent with rituximab plus

cyclophosphamide, doxorubicin, vincristine, and prednisone in the BC Cancer cohort grouped according to double-hit signature (DHITsig) status and cell

of origin. (A) Time to progression (TTP). (B) Progression-free survival (PFS). (C) Disease-specific survival (DSS). (D) Overall survival (OS). *P, .001. ABC,

activated B-cell-like; GCB, germinal center B-cell-like; ind, indeterminate; pos, positive.
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FIG A14. Kaplan-Meier curves of the outcomes in 223 patients with de novo diffuse large B-cell lymphoma (DLBCL) with advanced-stage disease treated

with curative intent with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in the BC Cancer cohort grouped according to double-

hit signature (DHITsig) status and cell of origin. (A) Time to progression (TTP). (B) Disease-specific survival (DSS). (C) Progression-free survival (PFS). (D)

Overall survival (OS). *P , .001. ABC, activated B-cell-like; GCB, germinal center B-cell-like; HR, hazard ratio; ind, indeterminate; pos, positive.
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FIG A15. Kaplan-Meier curves of the outcomes in 95 patients with de novo diffuse large B-cell lymphoma (DLBCL) with limited-stage disease treated with

curative intent with rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone in the BC Cancer cohort grouped according to double-hit

signature (DHITsig) status and cell of origin. (A) Time to progression (TTP). (B) Disease-specific survival (DSS). (C) Progression-free survival (PFS). (D)

Overall survival (OS). ABC, activated B-cell-like; GCB, germinal center B-cell-like; HR, hazard ratio; ind, indeterminate; pos, positive.
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