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Double-layer graphene for enhanced tunable infrared
plasmonics

Daniel Rodrigo1, Andreas Tittl1, Odeta Limaj1, F Javier García de Abajo2,3, Valerio Pruneri2,3

and Hatice Altug1

Graphene is emerging as a promising material for photonic applications owing to its unique optoelectronic properties. Graphene

supports tunable, long-lived and extremely confined plasmons that have great potential for applications such as biosensing and

optical communications. However, in order to excite plasmonic resonances in graphene, this material requires a high doping

level, which is challenging to achieve without degrading carrier mobility and stability. Here, we demonstrate that the infrared

plasmonic response of a graphene multilayer stack is analogous to that of a highly doped single layer of graphene, preserving

mobility and supporting plasmonic resonances with higher oscillator strength than previously explored single-layer devices. Parti-

cularly, we find that the optically equivalent carrier density in multilayer graphene is larger than the sum of those in the indivi-

dual layers. Furthermore, electrostatic biasing in multilayer graphene is enhanced with respect to single layer due to the

redistribution of carriers over different layers, thus extending the spectral tuning range of the plasmonic structure. The superior

effective doping and improved tunability of multilayer graphene stacks should enable a plethora of future infrared plasmonic

devices with high optical performance and wide tunability.
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INTRODUCTION

Plasmons are optically driven collective electron oscillations capable of
concentrating light down to deeply subwavelength volumes1,2, laying
the foundation for a multitude of essential applications in fields such
as sensing3,4, light-harvesting5,6 and photochemistry7. While com-
monly used noble metals such as silver and gold exhibit plasmonic
properties mostly in the visible and near-infrared region of the
spectrum, graphene has recently emerged as a new material able to
extend the field of plasmonics to infrared and terahertz
wavelengths8–13. Localized surface plasmon resonances can be excited
in graphene by patterning it into optically resonant nanostructures,
such as nanoribbons14–20 or nanodisks21–23. In contrast to noble
metals, graphene plasmonic resonances can be dynamically tuned
through electrostatic biasing24,25 and enable a new generation of
reconfigurable plasmonic devices26–30. In addition, plasmons excited
in graphene can reach remarkably long lifetimes and provide
unprecedented levels of light confinement31. Owing to these
unique electro-optical properties, there has been a strong focus on
developing new graphene-based plasmonic devices, and in particular
infrared biosensors32, modulators33–35, metasurfaces36–38 and perfect
absorbers39,40.
In single-layer graphene (SLG), plasmonic resonances possess

relatively low oscillator strengths because the attainable carrier
densities are low. In the pursuit of stronger resonances, improved

carrier mobility and new capabilities, the exploration of graphene
plasmons in stack-ups composed of graphene and other two-
dimensional (2D) materials has recently attracted significant interest.
Initially, multilayer graphene (MLG) was investigated in the terahertz
range and was shown to provide plasmonic resonances with larger
amplitude modulation15. Extending this concept to infrared frequen-
cies, more recent work has focused on bilayer graphene41,42 and
heterostructures composed of graphene on boron nitride31,43. In
addition, MLG structures have been shown to exhibit resonances with
higher infrared transmission modulation compared to SLG44,45.
However, a satisfactory understanding of MLG, especially with regard
to electrostatic biasing, is still lacking, thus limiting its application to
actual devices. In this paper, we present a complete framework for
understanding localized surface plasmon resonances in MLG stacks. In
this multilayer structure, there is negligible interlayer electronic
coupling and, unlike in graphite, the graphene band structure is
retained. We explore the properties of MLG plasmonic nanoribbons,
including spectral, near-field and tuning properties, and we show
larger plasmonic enhancement associated with the multilayer geome-
try compared with previous results44. In particular, we show that
double-layer graphene (DLG) provides wider spectral tuning ranges
than SLG, in addition to sustaining resonances at higher frequencies
and with higher extinction. Our analysis reveals that plasmon
resonances in MLG can be quantitatively understood in the context
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of plasmon hybridization and provides a theoretical basis for the
experimental evidence that the plasmonic response of DLG is
equivalent to that of a SLG at a higher doping. Finally, we focus on
the response of MLG to electrostatic biasing that demonstrate for the
first time that the plasmonic effects of biasing are enhanced in MLG
compared with SLG. Our results and proposed technique hold
promise for a wide range of applications, as the performance of
graphene-based photonic devices can be significantly improved by
transferring two or more graphene layers rather than one.

MATERIALS AND METHODS

Fabrication and characterization
Graphene nanoribbon arrays are fabricated on a double-sided polished
float-zone silicon substrate. A native oxide layer of 280 nm is grown by
dry oxidation. Chemical vapor deposition (CVD)-grown graphene is
wet-transferred over the oxide layer. DLG devices are formed by two
successive transfers of SLG. Graphene nanoribbons are patterned with
100-keV electron beam lithography and are etched in oxygen plasma.
The transmission spectra of the graphene arrays are acquired with a
Fourier-transform infrared spectrometer coupled to an infrared
microscope (Bruker Vertex 80 V and Hyperion 3000). An infrared
polarizer is used to select the polarization transversal to the graphene
nanoribbons. Measurements are performed in a dry-air-purged atmo-
sphere with a non-immersion Cassegrain objective and a mercury–
cadmium–tellurium detector cooled in liquid nitrogen.

Numerical simulations
The extinction spectra and charge distributions of the graphene
nanoribbon arrays are calculated with a frequency-domain solver of
Maxwell equations based on the finite elements method (commercial
implementation Ansys HFSS). The periodic ribbon structure is
simulated using Floquet–Bloch periodic boundary conditions. The
convergence of simulations is ensured by monitorizing the transmis-
sion coefficient while refining the meshing in an iterative process.
Graphene is modeled as a 2D layer with complex surface conductivity

calculated from the Drude model: s ¼ i e2EF
_p oþi=tð Þ , where the Fermi

level EF accounts for room temperature effects: EF ¼ EF; T¼0þ
2kBT ln 1þ e�EF; T¼0=kBT

� �
. The frequency-dispersive dielectric func-

tion of SiO2 is obtained from Palik46.

RESULTS AND DISCUSSION

The excitation of localized surface plasmon resonances in a DLG
nanoribbon array (2L-GNRA) is conceptually shown in Figure 1a. The
nanoribbons have width W and period P. Scanning electron and
atomic force microscope images of a typical 2L-GNRA (Figure 1b and
1c) show that the fabricated nanoribbons possess uniform width
and well-defined edges. The infrared spectra of the 2L-GNRAs are
presented in Figure 1d and are compared against those of single-layer
nanoribbons (1L-GNRAs) with identical lateral dimensions. We
observe that the extinction peaks produced by DLG have much higher
intensity than those produced by SLG. The extinction intensity of 2L-
GNRAs is approximately three times higher than that of 1L-GNRAs.
This is a crucial advantage of DLG, which makes it very useful for
infrared plasmonic applications where one of the main challenges is
the poor coupling of free-space infrared radiation to the highly
subwavelength and strongly confined plasmonic modes of graphene.
Interestingly, unlike other techniques that rely on external resonant
structures to increase graphene absorption47, the enhancement in DLG
is intrinsic to the graphene layers and does not limit its frequency
range of operation.
In addition to the higher extinction, we observe that 2L-GNRAs

resonate at higher frequencies with respect to 1L-GNRAs. Therefore, it
is possible to obtain a plasmonic resonance at a specific frequency
(wavelength) using wider DLG ribbons instead of narrower SLG
ribbons. This is particularly useful from a fabrication perspective
because the nanostructuring of ribbons with highly uniform width
poses significant challenges, especially at infrared frequencies for
which the required ribbon widths are of the order of tens of
nanometers. A further important advantage is that the quality factor
of the plasmonic resonances in DLG is essentially maintained with
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Figure 1 Plasmonic resonances in SLG and DLG nanoribbons. (a) Conceptual representation of the excitation of localized surface plasmon resonances in a
2L-GNRA by illumination with mid-infrared radiation. The top graphene layer is transferred directly over the bottom layer without an interlayer spacer.
Graphene nanoribbons are patterned with a width W and periodicity P. (b) Surface topography image measured with an atomic force microscope and
(c) scanning electron microscope image of one of the fabricated 2L-GNRAs (W=50 nm, P=105 nm). (d) Experimental extinction spectra of 2L-GNRAs (solid
curves) with different widths (W=25, 33, 40, 50 nm and P≈2W). The 2L-GNRA spectra are compared against those of 1L-GNRAs (dashed curves) with
identical width and periodicity. The extinction is calculated as 1−T/T0, where T and T0 are the transmission coefficients with and without GNRAs,
respectively.
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respect to SLG. This indicates that the carrier scattering rate and
mobility in DLG and SLG are similar.
The spectra of 2L-GNRAs do not present any sharp feature

superimposed on the plasmonic resonance, indicating that DLG is
free of infrared-active phonons in this spectral range. For most
applications, such as plasmon-enhanced biosensing, these additional
features in the plasmonic response are undesired32. In this sense, DLG
presents a clear advantage over other related graphene materials such
as bilayer graphene or graphene–boron nitride heterostructures,
which exhibit infrared-active phonons at 1580 and 1370 cm−1,
respectively41,43,48. We remark that the DLG used in this work should
not be confused with bilayer graphene, in which the atomic alignment
of the two graphene layers strongly modifies the electronic band
structure and ensues optical properties41,49. Because of our fabrication
approach, in which we perform two independent transfers of CVD
graphene, the interlayer separation is larger than in bilayer graphene
and there is no crystallographic alignment; therefore, the plasmonic
effects of interlayer tunneling are negligible42. Roughness measure-
ments of the bottom graphene layer indicate a minimum average
interlayer spacing of 1.0 nm because of the presence of polymeric
residues and graphene wrinkles.

We study next the optical response of the GNRAs when the Fermi
level of graphene is electrostatically tuned. The tuning scheme is
outlined in Figure 2a and is based on applying a voltage difference
across the SiO2 layer to inject or remove electrons from the graphene
layers and modify their Fermi level. In contrast to previous work15,
our stack geometry avoids using isolating spacers between layers and
keeps the graphene layers electrically interconnected, allowing them to
be simultaneously biased. The physical mechanisms underlying the
biasing of MLG are analyzed later in this manuscript. The voltage-
dependent spectra are shown in Figure 2b and 2c for 1L- and
2L-GNRAs, respectively. For 1L-GNRAs, we observe that biasing from
0 V to negative voltages (up to � 100 V) produces a progressive shift
of the plasmonic resonance toward higher frequencies and an increase
in the resonance intensity. This result is consistent with previous
experiments reported by other research groups14,16,21 and is a
consequence of the initial p-doping of our CVD graphene (EF0o0),
for which negative voltages produce an increase in the hole carrier
density. The results of biasing 2L-GNRAs with negative biasing
voltages show identical behavior as in 1L-GNRAs, that is, a progressive
blue shift of the resonance accompanied by an increase in its
extinction. A clear advantage of 2L-GNRAs is that for the maximum
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Figure 2 Electrostatic tuning of plasmonic resonances in 1L- and 2L-GNRAs. (a) Electrostatic biasing scheme of graphene nanoribbon arrays. The biasing
voltage is applied across the 280-nm-thick SiO2 layer. Negative (positive) voltages shift the Fermi level (EF) of our p-doped graphene away from (toward) the
Dirac point. (b, c) Experimental extinction spectra of 1L- and 2L-GNRAs for different biasing voltages Vg. For 1L-GNRAs the voltage Vg is varied between 0 V
(black) and −100 V (red), whereas for 2L-GNRAs Vg is varied between +100 V (blue) and −100 V (red). (d, e) Extinction value and spectral position of the
measured plasmonic peak in 1L- and 2L-GNRAs for different ribbon widths W and biasing voltages Vg.
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negative bias they reach higher frequencies and intensity than
1L-GNRAs with the same lateral dimensions. In addition, while in
1L-GNRAs the use of positive bias voltage quenches the plasmonic
resonance, this does not happen in 2L-GNRAs where the much higher
extinction of the plasmonic peaks makes it possible to use positive
biasing. Figure 2c shows that positive bias voltages push the plasmonic
resonance toward lower frequencies and thus increase the spectral
tuning range.
We perform an extended comparison between SLG and DLG in

Figure 2d and 2e, where we present the spectral position and
extinction of the plasmonic peaks for all the fabricated arrays and
tested bias voltages. Each marker in the plot corresponds to a specific
array and voltage (Vg), with its horizontal position indicating the
resonance frequency and the vertical axis showing the intensity of the
resonance peak. At least two identical arrays were fabricated for each
value of the widthW, which correspond to the overlapping lines in the
graph, demonstrating excellent repeatability. For a variable voltage Vg

there is a linear relationship between the resonance peak intensity and
spectral position for both 1L- and 2L-GNRAs. The linear relationship
is only broken at the lowest frequencies, where SiO2 is strongly
dispersive and its effect is equivalent to a compression of the frequency
axis. The comparison between Figure 2d and 2e highlights very clearly
the advantages of DLG over SLG: higher peak intensity (up to 10% for
2L and 6% for 1L), higher resonance frequency (up to 1950 cm−1 for
2L and 1800 cm−1 for 1L) and wider tuning range (up to 450 cm−1 for
2L and 300 cm−1 for 1L).
To understand the physical mechanisms controlling the plasmonic

response of DLG, we perform numerical simulations for a 2L-GNRA
composed of two graphene layers separated by a distance s and with
Fermi levels EF

(1) and EF
(2) defined relative to their respective Dirac

points. In the spectral range of interest, the conductivity of graphene
follows the Drude model50,51

s ¼ i e2 EFj j
_p oþ i=tð Þ ð1Þ

Figure 3a shows the evolution of the simulated 2L-GNRA extinction
spectra with interlayer separation s. In these calculations, we study
plasmonic effects for non-varying graphene parameters and exclude,
for instance, potential variations of Fermi level induced by changes in
the interlayer distance. For large separations (s4W) the 2L-GNRA
produces two resonances matching those of the individual layers, that
is, the resonance frequency of 1L-GNRAs with Fermi levels EF

(1) and
EF

(2) (dashed lines). This indicates that for a separation comparable to
or larger than the ribbon width, the two graphene layers are
electromagnetically uncoupled. As we progressively reduce the inter-
layer separation s, there is an increasing spatial overlap between the
near-fields of the two graphene layers and therefore higher electro-
magnetic coupling52. This is evidenced in our simulations by the
progressive spectral shift of the two resonances as the separation s
approaches zero. The simulated plasmonic response is in perfect
agreement with a hybridization model that predicts symmetric and
antisymmetric modes with resonance frequencies above and below
those from the two individual layers, respectively53–55. The simulated
charge distribution corresponding to these two modes is shown in
Figure 3b. It is clear that the dipolar modes of each layer have the
same polarity for the symmetric mode and opposite polarity for the
antisymmetric mode. When the separation s becomes much smaller
than the width W, the antisymmetric mode is extinguished (that is, it
becomes dark) and only the symmetric mode remains. It is this
symmetric mode that is detected in our 2L-GNRAs experimental

results, for which we measure a higher resonance frequency and
extinction than for 1L-GNRAs.
The response of the 2L-GNRA is further analyzed in Figure 3c,

where we compare the extinction spectra of 1L-GNRAs (dashed lines)
and 2L-GNRAs (solid lines) for an interlayer separation s varying from
s=W (red curve) to s=W/100 (blue curve). As expected, when the
two layers are uncoupled (s=W) there is nearly perfect overlap
between the 2L-GNRA spectrum and that of two independent
1L-GNRAs with Fermi levels EF

(1) and EF
(2). Interestingly, when the

two layers are fully coupled (s≪W) the 2L-GNRA spectrum perfectly
matches the spectrum of a 1L-GNRA with an equivalent Fermi level
EF

2L, given by the sum of the Fermi levels of the individual layers
(EF

2L= |EF(1)|+|EF(2)|)56–59. At first glance, this result is counterintuitive
in the context of collective electronic excitations in coupled 2D
systems60, since one might expect the equivalent carrier density of the
two-layer system to be the sum of the carrier densities in each layer
(ns

(1)+ns
(2)), which is not the case here. The explanation for the

equivalence between a 2L-GNRA with Fermi levels EF
(1), EF

(2) and a
1L-GNRA with Fermi level |EF(1)|+|EF(2)| is that for small separations
one can replace the two parallel conductive layers by an equivalent
layer having the sum of the two conductivities. For the Drude-model
graphene conductivity (Equation (1)), the resulting equivalent con-
ductivity of the two-layer system is

s ¼ s1þs2 ¼
i e2 Eð1Þ

F

��� ���þ Eð2Þ
F

��� ���� �
_p oþ i=tð Þ ð2Þ

This expression corresponds to the Drude conductivity for a graphene
layer with Fermi level

E2L
F ¼ Eð1Þ

F

��� ���þ Eð2Þ
F

��� ��� ð3Þ
Accordingly, we define the effective doping of DLG as the sum of the
individual doping levels of its two constituent layers. Taking into
account the relation between Fermi level and carrier density
(EF ¼ _vF

ffiffiffiffiffiffiffi
pns

p
), the equivalent carrier density of DLG is

n2Ls ¼ nð1Þs

�� ��þ nð2Þs

�� ��þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1Þs

��� ��� nð2Þs

��� ���
r

ð4Þ
It is important to note that, even though the present work focuses on
the nanoribbon geometry, the results are equally valid for any arbitrary
shape, as long as the separation between the layers is much smaller than
the plasmon wavelength and the graphene conductivity follows a Drude
model. In this model, the plasmon frequency scales as E1=2

F with the
Fermi energy, and, consequently, the 2L-GNRA has a higher resonance
frequency than a 1L-GNRA with the same total carrier density
(ns

(1)+ns
(2)), reaching a frequency increase factor of 21/4 (that is, 20%

higher) when the carriers are equally distributed among the two layers.
This hybridization model can easily be extended to a higher number

of layers. An analogous study for a three-layer graphene structure
(Supplementary Fig. S1) shows that the different polarities of the
dipolar modes on each graphene layer give rise to multiple modes. As
in the 2L-GNRA, when the interlayer separation s approaches zero, all
of the modes become dark, except the so-called bonding mode
in which all layers have the same polarity. For small separations
(s≪W) the spectrum of the multilayer structure matches that of a 1L-

GNRA, adding up the Fermi levels of all layers (ENL
F ¼ PN

i¼1 jE ið Þ
F j) or

equivalently having a carrier density nNL
s ¼ PN

i¼1

ffiffiffiffiffiffiffiffiffi
jn ið Þ

s j
q� 	2

. There-

fore, increasing the number of layers is a practical approach to create
graphene structures with higher equivalent doping. However, a word
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of caution has to be given: the higher effective doping of DLG does not
extend the spectral region that is free from interband transitions
(_oo2jEðiÞ

F j)50, a condition that is required in order to have long-
lived plasmons that are unaffected by Landau damping.

A study of the plasmonic field distributions is presented in
Figure 3d, where we compare the near fields in 1L- and 2L-GNRAs.
We observe that both structures display field distributions correspond-
ing to dipolar modes with intense near-field hotspots at the graphene

Symmetric

+ −

500 750 1000 1250 1500 1750

100 %

10 %

1 %

0.1 %

Frequency  (cm–1)

0 0.2 0.4 0.6 0.8 1 1.2
500

750

1000

1250

1500

1750

s / W

F
re

qu
en

cy
  (

cm
−

1 ) s

W

a b

c

E
xt

in
ct

io
n 

 1
−
T

/T
0

1−T /T0

Antisymmetric

Symmetric

Antisymmetric

Symmetric

+
+

−

−

Antisymmetric

+ −

−

s = W s = W/100

EF
(1)

⎢EF
(2)⎢ ⎢EF

(1)⎢

⎢E /E0⎢2⎢E /E0⎢2

⎢EF
(1)⎢+ ⎢EF

(2)⎢

EF
(2)

2L1L
d

100 101 102 103 104 105 103 104

4

2 nm

2

0

–2

–4

2L1L z (nm)

2 nm

e

100%10%1%

EF
(1)

EF
(2)

Figure 3 Physical mechanisms and hybridization in 2L-GNRAs. (a) Simulated extinction coefficient of a 2L-GNRA for a variable interlayer separation s. The
two graphene layers have Fermi levels |EF(1)| =0.3 eV and |EF(2)| =0.2 eV, relaxation time τ=100 fs, the width of ribbons is W=40 nm and are embedded in
a dielectric with refractive index n=1.4. Solid curves represent the resonance frequencies of the 2L-GNRA and dashed curves stand for the resonance of
each individual layer, which correspond to the resonance of a 1L-GNRA with Fermi level |EF(1)| or |EF(2)|. (b) Electric charge distribution across the ribbons for
the 2L-GNRA with s=W/4 at the two resonance frequencies indicated in the figure. The high- (low-) resonance corresponds to a symmetric (antisymmetric)
mode. (c) Simulated extinction spectra of the 2L-GNRA (solid curves) for an interlayer separation varying from s=W (red curve) to s=W/100 (blue curve).
Dashed curves represent the extinction spectra of 1L-GNRAs with Fermi levels |EF

(1)|, |EF
(2)| and |EF(1)|+|EF

(2)|. (d) Field enhancement distribution at resonance
frequency for 1L-GNRA (|EF| =0.3 eV) and for the symmetric mode of a 2L-GNRA (|EF(1)| =0.3 eV, |EF

(2)| =0.2 eV) with a separation s=1 nm. The field is
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nanoribbon edges. Furthermore, in Figure 3e we present the field
intensity profile perpendicularly to the nanoribbons close to the
ribbon edge (0.3 nm distance), thus avoiding any inaccuracy intro-
duced by classical electromagnetic computations near sharp bound-
aries. We observe that the field distribution, confinement and optical
enhancement in DLG do not differ significantly from those in SLG.
The plasmonic equivalence between SLG and DLG can be

experimentally demonstrated by comparing the measured spectra of
the respective nanoribbon arrays. Figure 4a shows the extinction
spectra of 1L-GNRA and 2L-GNRA for specific pairs of biasing
voltages. We can clearly see that the spectrum of the 2L-GNRA for a
given voltage is in excellent agreement with that of the 1L-GNRA for a
significantly lower (more negative) voltage. These results provide
experimental confirmation that a 2L-GNRA is equivalent to a
1L-GNRA with a different Fermi level. The change of the equivalent
Fermi level with bias voltage in MLG is investigated next.
We consider a stack of N graphene layers having different levels of

initial doping (EðiÞ
F0 for the i-th layer), being electrically interconnected

to be simultaneously biased and having an interlayer separation s
tending to zero. In this case, the Dirac cones of the interconnected
layers shift along the energy axis; therefore, the Fermi levels of all
layers are aligned61–64, as shown in Figure 4b for two layers. Increasing
the bias voltage Vg shifts the overall Fermi level and as a result the
injected carriers are redistributed among the different layers propor-
tionally to their doping level. The Fermi level of each layer after
applying a bias (EðiÞ

F ) is calculated by assuming that the Fermi-level
variation is the same for all layers and that the extra carriers in the

graphene layers (nðiÞs � nðiÞs0 ) add up to the total charge in a capacitor
with surface capacitance Cox:

E ið Þ
F � E ið Þ

F0 ¼ E 1ð Þ
F � E 1ð Þ

F0 i ¼ 1::N ð5Þ

XN
i¼1

nðiÞs � nðiÞs0 ¼ CoxV g=e ð6Þ

where the Fermi level of each layer E ið Þ
F is defined as relative to its

corresponding Dirac point. This set of second-order equations
(EFB

ffiffiffiffi
ns

p
) has analytical solution in the case where all graphene

layers have the same type of doping (p or n). After some calculations,
the variation of Fermi level (ΔEF in Figure 4b) can be written in the
simple form (see the Supplementary Information for a detailed
derivation)

E ið Þ
F � E ið Þ

F0 ¼
ENL
F0

N

� 	2

7
1

N
AV g

" #1=2

� ENL
F0

N
ð7Þ

where A ¼ Cox_
2vF2p=e and the plus/minus sign accounts for the

doping type of the graphene layers (p- or n-doped). Notice that the
Fermi level variation does not depend on the individual doping levels
of the graphene layers (EðiÞF0), as one might initially expect. Instead, it

depends only on the sum of the initial levels (ENL
F0 ¼ PN

i¼1 E
ðiÞ
F0), which

we have previously shown to correspond to the equivalent Fermi level
of the MLG. Strictly speaking, the equivalent Fermi level corresponds

to the sum of the absolute doping levels (ENL
F0 ¼ PN

i¼1 jE ið Þ
F0 j); however,

the expression without absolute values can be used when all layers
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Figure 4 Equivalent doping and enhanced tunability of DLG. (a) Comparison between the experimental extinction spectra of 1L- and 2L-GNRAs with
W=33 nm and specific pairs of bias voltage Vg. (b) Band diagram representation of a multilayer graphene stack composed of two layers that are electrically
interconnected. The black/red planes represent the Fermi level before/after biasing. (c) Band diagram representation for initially undoped graphene layers
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share a common doping type. Next, we calculate the equivalent Fermi
level of the biased MLG (ENL

F ) by adding Equation (7) for all layers

ENL
F


 �2 � ENL
F0


 �2 ¼ 7NAV g ð8Þ

or in terms of the equivalent carrier density nNL
s ¼ PN

i¼1

ffiffiffiffiffiffiffiffiffi
jn ið Þ

s j
q� 	2

,

nNL
s � nNL

s0 ¼ 7NCox V g=e ð9Þ
This simple result shows that the increase in the equivalent carrier
density of MLG is enhanced with respect to SLG by a factor
corresponding to the number of layers N. This insight is of crucial
importance for plasmonic applications, since it shows that MLG
provides broader tunability than SLG. In particular, the biasing of
DLG can be twice as effective as in SLG, meaning a twofold increase in
the equivalent carrier density for the same bias voltage. This effect can
be readily understood for the case of undoped graphene layers

(Eð1Þ
F0 ¼ Eð2Þ

F0 ¼ 0), where the carriers split equally between the two

layers (nð1Þs ¼ nð2Þs ¼ 1
2n

1L
s ) and from Equation (4) the equivalent DLG

doping is n2Ls ¼ 2n1Ls (Figure 4c). Our simple model provides a clear
and intuitive description of the effects of electrostatic tuning over the
plasmonic response of MLG; however, more elaborate theoretical
models may be required for accurate calculations of charge redis-
tribution in structures with a large number of graphene layers65–67.
The biasing effectiveness can be degraded if carriers are redistributed
differently between the two graphene layers. However, the impact of a
moderate charge redistribution over the equivalent carrier density is
relatively low. For instance, if an undoped layer receives four times as
many carriers as a second undoped layer, the equivalent carrier density
according to Equation (4) is reduced by just 10% with respect to an
even distribution of charges.
To experimentally validate the enhanced tuning capabilities of

MLG, we extract the equivalent Fermi level of our 2L-GNRA for the
different voltages and compare it against that of the 1L-GNRA.
Specifically, we extract the Fermi level by comparison with electro-
magnetic simulations. In Figure 4d we show the simulated extinction
spectra of our 1L-GNRAs for different Fermi levels. We observe
that the spectral lineshapes are in good agreement with the experi-
mental data. Since the resonance frequency shifts monotonously
with the Fermi level, we can use the simulations to connect
these two parameters and extract the Fermi level from the experi-
mental data. Figure 4e presents the extracted carrier densities and

Fermi levels of SLG (EF
1L, ns

1L) and DLG (E2L
F ¼ Eð1Þ

F

��� ���þ Eð2Þ
F

��� ���,
n2Ls ¼

ffiffiffiffiffiffiffiffiffiffiffi
n 1ð Þ
s

��� ���r
þ

ffiffiffiffiffiffiffiffiffiffiffi
n 2ð Þ
s

��� ���r� 2
). As expected, the equivalent doping

level in DLG is significantly higher than in SLG, confirming that
DLG is equivalent to highly doped SLG. We observe two distinct
behaviors in the DLG carrier density for voltages Vg above or below
+40 V. For high positive voltages, we observe a saturation of the DLG
equivalent carrier density. This saturation is caused by the Fermi level
(red plane in Figure 4b) crossing the Dirac point of one of the layers,
resulting in two layers with opposite doping types (see Supplementary
Fig. S3).
Next, we focus on voltages below +40 V, which correspond to both

graphene layers being p-doped. This is the relevant voltage range for
plasmonics, since it corresponds to a high doping. In this range, the
equivalent carrier density varies linearly with the applied voltage, in
agreement with our theoretical calculations (see Equation (7)). This
linear relationship is well known for SLG, but is observed here for the
first time in DLG. More importantly, the variation of the equivalent

carrier density with the bias voltage (dns/dVg) in DLG is 36% higher
than in SLG. This variation, despite being smaller than the theoretical
value, confirms that biasing is more effective in MLG structures than
in SLG. It is important to emphasize that the improved biasing is not
caused by a larger amount of total injected carriers (which depends
only on the bias voltage and the gating layer capacitance); instead, it is
due to the redistribution of these carriers over multiple plasmonically
coupled layers. Finally, it is clear that stacking multiple graphene layers
is a powerful approach to enhance the tunability of graphene
plasmonic devices.

CONCLUSIONS

In conclusion, we have shown that DLG, readily fabricated by two
successive transfers of CVD graphene, provides significant advantages
over SLG for plasmonic applications. DLG operates as a SLG with an
equivalent higher doping and serves as a plasmonic platform for
higher frequency resonances, with stronger intensity and wider
tuning ranges. These results can be further generalized to MLG
structures with more than two layers, potentially yielding even better
performances. Since high doping and broad tunability are critical
requirements for graphene to succeed in plasmonic applications, we
believe that the combination of multiple graphene layers opens very
promising pathways toward novel reconfigurable nanophotonic
devices.
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