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1 Introduction

The AdS/CFT [1–3] provides us with a very beautiful and useful relation between the dy-

namics of gravity and that of conformal field theories (CFTs). For example, the information

of metric in gravity is essentially captured by that of entanglement entropy (EE) [4–10]

via the holographic calculation [11–17]. To better understand the correspondence between

the dynamics of both theories, we recall that the gravity has its characteristic property of

non-linear interactions, which leads to gravitational forces.

There have been successful progresses which explain a part of non-linear Einstein

equation from the properties of entanglement entropy in CFTs based on the perturbative

expansions [18, 19] along the line of [20–24]. To go further, from a different perspective,

it will also be helpful to understand how gravitational forces between two heavy objects

are interpreted from the viewpoint of the dynamics of CFTs. This requires the full non-

perturbative analysis of gravitational interactions.

A purpose of this work is to study a class of explicit examples where gravitational

force between two heavy objects in AdS plays a crucial role. For this we will study the

simplest possible setups in AdS/CFT, namely double local quenches in two dimensional

CFTs (2d CFTs). Even without thinking of the AdS/CFT, the double local quenches are

at the same time intriguing non-equilibrium processes, which have not been studies well

so far. We consider three different types of local quenches: (a) Joining local quenches [25],

(b) Splitting local quenches [26], and (c) Operator local quenches [27, 28], whose double

quenches are depicted in figure 1.

A single local quench describes a local excitation at one point and is in general dual to a

certain localized massive object via the AdS/CFT. The gravitational force toward the AdS
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horizon dictates the motion of the object and its back-reaction leads to intriguing time-

dependences of entanglement entropy. The precise holographic descriptions of the above

three (single) local quenches (a), (b) and (c) were first worked out in [26, 29], and [30],

respectively. The gravity duals of (a) and (b) are given by evolutions of spacetime boundary

surfaces (or hard walls) in AdS [26, 29] in the AdS/BCFT construction [31, 32], while that

of (c) is given by a massive particle falling into the AdS horizon [30]. The results of

entanglement entropy from gravity duals can be reproduced from the CFT calculations in

the large c limit (i.e. holographic CFTs) [33]. Refer to [34–36] for other classes of topology

changing quantum operations in CFTs such as projections and partial identifications.

If we perform two local quenches at the same time (the locations of the two local

quenches are taken to be x = ±b), which we call the double local quench, then its gravity

dual corresponds to two heavy objects in AdS. Therefore, this double quench provides us a

basic holographic setup where we can study gravitational force between two heavy objects.

Note that, in addition, there is still the gravitational force which pulls the objects into the

AdS horizon as in the single quench case. Hence, it is interesting to consider the following

difference for a physical quantity q, which has positive contributions from excitations, such

as energy density and entanglement entropy:

qD − qS(x=b) − qS(x=−b), (1.1)

where qD is the value of q under the double local quench at x = ±b and qS(x=b) (or qS(x=−b))

is the quantity under a single local quenches at x = b (or x = −b). If there is no interaction

between two local quenches in the double quench, dual to the gravitational force between

two objects, then the difference (1.1) should vanish. Therefore, we believe that, such a

quantity should a good probe of gravitational force in the holographic dual.

For double local quenches, we can again consider the three different setups (a) Joining

local quenches, (b) Splitting local quenches, and (c) Operator local quenches, which are

sketched in figure 1. Only few results have been known so far for the double local quenches.

In [68, 69], the behavior of EE has been analyzed for (c) operator local quenches in 2d

rational CFTs (RCFTs), such as free CFTs and minimal models. In this special case, the

time evolution of EE is so simple that the EE is just a sum of two single operator local

quenches i.e. (1.1) does vanish. There have been no known results for more interacting

CFTs, including holographic CFTs. Also there have been no computations done for (a)

joining and (b) splitting double local quenches of CFTs.

In this work, we will provide extensive investigations of double local quenches for (a)

joining and (b) splitting setups. It is intriguing to note that even though the path-integral

description of single joining/single splitting quench can for both be conformally mapped

into an upper half plane, the situation is different in double local quenches. The double

joining quench is still described by an upper half plane. However, the double splitting

quench is now transformed into an annulus and we will have a phase transition depending

on the values of quench parameters.

We will study the behaviors of the energy stress tensor and the entanglement entropy

(EE). In the case of double splitting quenches, we will see characteristic oscillating behav-

iors, absent in the double joining quenches. We will also analyze the energy stress tensors

– 2 –
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t<0

t=0

t>0

(a) Double Joining 

Local  Quench

(b) Double Splitting 

Local Quench

(c) Double Operator 

Local Quench

O(-b) O(b)

Figure 1. The three different double local quenches are sketched: the joining local quench ((a):

left), the splitting local quench ((b): middle), and the operator local quench ((c): right) in two

dimensional CFTs. We choose the two points where the local quench occurs to be x = ±b.

for (c) double operator local quenches. Then we will analyze their differences (1.1) and

probe the gravitational forces from CFTs. To obtain the exact results, we will mainly work

with two choices of CFTs: holographic CFTs and integrable CFTs such as the free fermion

CFT and Ising model.

This work is organized as follows: in section 2, we present a brief review of single

local quenches as well as our strategy to calculate the EE. In section 3, we give an outline

of this work. We explain the quantities that we are interested in and our main results.

In section 4, we present our results of energy stress tensor and EE for (a) double joining

local quenches. In section 5, we show our results of energy stress tensor and EE for (b)

double splitting local quenches. In section 6, we study the behavior of energy stress tensor

for (c) double operator local quenches. In section 7, we will summarize our conclusions

and discuss future problems. In appendix A, we present explicit analytical expressions

of single joining/splitting quenches. In appendix B, we explain the geometric picture of

the connected geodesic length in the calculation of HEE for single joining quenches. In

appendix C, we present the analytical calculations of EE for the Dirac fermion CFT in the

limit where the subsystem is far away from the quench points.

We became aware of a parallel work [37], where the evolution of entanglement entropy

under double operator local quenches is studied for holographic CFTs. It is complementary

to the present work.

2 Brief review of single local quenches

In this section, we give a brief review on the descriptions and known results of single local

quenches (refer to [26] for more details). We will start with computations of entangle-

ment entropy based on both the field theoretic and holographic analysis. We will consider

three different types of local quenches: (a) Joining local quenches [25], (b) Splitting local

quenches [26], and (c) Operator local quenches [27, 28]. We will consider the descriptions of

local quenches in the holographic CFT and Dirac free fermion CFT in two dimensions, so
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that we can have analytical control. Then we will review the main features of entanglement

entropy in three kinds of local quantum quenches.1

2.1 Entanglement entropy in 2d CFTs

Let us start with the computation of entanglement entropy in 2d CFTs [6–8]. For a density

matrix ρ defined on Hilbert space Htot = HA ⊗ HAc , the entanglement entropy (EE for

short) of subsystem A is defined by the von Neumann entropy:

SA = −Tr[ρA log ρA]. (2.1)

Here, A is a subsystem of the whole physical system, and Ac is its complementary system.

In this work we always choose A to be an interval. ρA is the reduced density matrix defined

by tracing out Ac: ρA = TrAc [ρ]. Besides this, for a natural number n ≥ 2, the n-th Rényi

entropy of ρA is defined by:

S
(n)
A =

1

1− n
log Tr(ρA)

n, (2.2)

and the von Neumann entropy is given by the n → 1 limit of the Rényi entropy:

SA = lim
n→1

S
(n)
A . (2.3)

When we want to compute EE in a quantum field theory, we often rely on its the replica

trick definition

SA = − ∂

∂n
Tr(ρA)

n

∣

∣

∣

∣

n=1

= − ∂

∂n
log
(

Tr(ρA)
n
)

∣

∣

∣

∣

n=1

. (2.4)

Let us then consider a 2d CFT on a plane R2 and use complex coordinate (w, w̄) to

describe it. The Euclidean time and space coordinate (τ, x) are defined as

w = x+ iτ, w̄ = x− iτ. (2.5)

To get the real time we can perform analytic continuation

τ = it. (2.6)

For a primary operator O in a 2d CFT, its two point function is given by

〈O(w1, w̄1)O(w2, w̄2)〉 =
1

|w1 − w2|2(h+h̄)
, (2.7)

where (h, h̄) is the chiral/anti-chiral conformal dimension of O. For a subsystem

A = {x|x ∈ (x1, x2)} at Euclidean time τ ,

Tr(ρnA) ∝ 〈σn(x1 + iτ, x1 − iτ)σ̄n(x2 + iτ, x2 − iτ)〉, (2.8)

1A quantum quench is to prepare an initial state with a Hamiltonian H0 and then see its time evolution

under another Hamiltonian H1. Usually, the ground state of H0 is chosen to be the initial state. If H0−H1

has its supports only on a local space region, then we call it a local quench. “Local operator quench” below

is not included in this definition. However we still call it a local quench by generalizing the idea of local

quenches to localized excitations in field theories.
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where σn is the twist operator which has the conformal dimension h = h̄ = c
24(n − 1/n).

Here, c is the central charge of the CFT. Therefore the EE of subsystem A for the CFT

vacuum is given by

SA = − ∂

∂n
log〈σn(x1, x1)σ̄n(x2, x2)〉

∣

∣

∣

n=1
=

c

3
log

x2 − x1
ǫ

, (2.9)

where ǫ is the UV cut off corresponding to the lattice spacing. The Rényi entanglement

entropy can also be computed similarly. For the vacuum state,

S
(n)
A =

c

6

(

1 +
1

n

)

log
x2 − x1

ǫ
. (2.10)

Also note that we can use a conformal transformation

ξ = f(w) (2.11)

to map (w, w̄) to a new coordinate (ξ, ξ̄) and do the analysis on it. In this case, UV cutoff

ǫ introduced in (w, w̄) is mapped to ǫ̃(ξ) in (ξ, ξ̄), which is related to ǫ by2

ǫ̃(ξ) = |f ′(w)|ǫ. (2.12)

If a CFT is defined on a manifold M with boundaries ∂M , and a linear combination

of conformal symmetry is preserved on ∂M , we call it a boundary conformal field theory

(BCFT). Indeed, to describe (a) joining and (b) splitting local quenches we need to in-

troduce such a conformal boundary. Two point functions in a BCFT are essentially the

same as four point functions (or even higher order correlation functions) in a CFT without

boundaries. Therefore we cannot analytically compute them in general. However, in some

special CFTs, such as Dirac free fermion CFT and holographic CFTs, the calculation of

EE can be analytically performed even with boundaries as we will explain below.

EE in the Dirac free fermion CFT can be explicitly computed on several different M .

This is for example, when M parameterized by (w, w̄) has a single connected boundary, we

can map it to an upper half plane with a conformal map3 w = g(ξ). The EE is given by

SA =
1

6
log

( |ξ1 − ξ2|2|ξ1 − ξ̄1||ξ2 − ξ̄2||g′(ξ1)||g′(ξ2)|
ǫ2(ξ1 − ξ̄2)(ξ2 − ξ̄1)

)

, (2.13)

(see [9, 10, 36, 38, 39] for details).

2.2 Holographic entanglement entropy

A 2d holographic CFT has a 3d AdS dual. The holographic entanglement entropy

(HEE) [11–17] is given by

SA =
L

4GN
(2.14)

2In this work, we always use (w, w̄) to denote the physical system we are thinking about and other

notations including (ξ, ξ̄) to denote an artificial frame on which calculations are easier. So the physical

UV cutoff ǫ is introduced in (w, w̄) frame as a constant and corresponding UV cutoff ǫ̃(ξ) turns out to be

different at different spacetime points.
3From now on, we always use f to denote a conformal map from (w, w̄) to some artificial coordinates,

and use g to denote its inverse.
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M

N

Q

z

w

∂M

A M
N

M

∂M
Q

Im ξ

Re ξ

0

η

A

Figure 2. A sketch of AdS/BCFT setups for AdS3. A holographic CFT on M (with the boundary

∂M) is dual to gravity on N . We have ∂N = M ∪ Q and ∂Q = ∂M . The left picture shows

a CFT defined on M with coordinate (w, w̄) where M has a single connected boundary, and its

gravity dual. The right picture shows how it looks like in (ξ, ξ̄), where M is a upper half plane,

and its gravity dual. The red curve is the subsystem A. The yellow curve and the green curve are

connected geodesic and disconnected geodesic, respectively.

where L is the length of the geodesic which connects the two boundary points of the

subsystem A. Moreover we impose a homology condition which requires that the geodesic

is homologous to the subsystem A in the AdS geometry. In this work we always choose A

to be an interval. The Newton constant GN is related to the central charge c in the CFT by

1/(4GN ) = c/6. In this work we set the AdS radius to be 1. For example, the vacuum state

of the CFT defined on (w, w̄) is dual to an AdS geometry given by the Poincaré metric:

ds2 =
dz2 + dwdw̄

z2
. (2.15)

The length of the minimal geodesic which connects (w, w̄)=(x1+iτ, x1−iτ), (x2+iτ, x2−iτ)

is given by

L = log
(x2 − x1)

2

ǫ2
(2.16)

and thus (2.14) matches (2.9).

Let us then consider a conformal field theory defined on a manifold M with boundaries

∂M , where a half of the full conformal symmetries are preserved. Then this is a BCFT [41]

as we introduced before. A gravity dual of a BCFT can be described by following the

AdS/BCFT construction [31, 32] (see also earlier work [40]).4 The left picture in figure 2

sketches a typical AdS/BCFT setup. We call the manifold where the gravity dual is

defined N . We introduce a boundary surface Q in the bulk which satisfies ∂N = M ∪ Q

and ∂Q = ∂M . Also we impose the following boundary condition on Q

Kµν −Khµν = −TBCFT · hµν , (2.17)

4Though we focus on the three dimensional gravity dual, we can discuss higher dimensional setups in

the same way (refer to e.g. [42–44] for calculations of HEE in higher dimensional examples).
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where hµν is the induced metric on Q and Kµν is the extrinsic curvature on Q; K is the

trace hµνKµν . The constant TBCFT describes the tension of the “brane” or “wall” Q and

can take both positive and negative values in general. Since Q in the bulk is dual to the

boundary in the BCFT, it is natural to expect that the boundary conformal symmetry

should be preserved. In fact, we can confirm that this boundary condition (2.17) preserves

the boundary conformal symmetry in explicit examples [31, 32].

To find the metric in the bulk we need to solve the Einstein equation with the bound-

ary condition (2.17), where the presence of Q gives back-reactions and modifies the bulk

metric [31, 32, 45, 46].

The size of N increases as the tension TBCFT gets larger, which implies that TBCFT

estimates the degrees of freedom on the boundary ∂M . Indeed, as found in [31, 32], the

tension is monotonically related to the boundary entropy Sbdy [47]:

Sbdy =
c

6
arctanh(TBCFT). (2.18)

Holographic entanglement entropy in the AdS/BCFT setup is still written as (2.14),

where we regard the boundary surface Q as just a point when we impose the homology

condition. In practice, we divide the geodesics into two types: connected geodesics which

connects two points given by ∂A on M , and disconnected geodesics each of which connects

either of the two points ∂A and a point on the boundary surface Q (as in the right picture

in figure 2). We call the quantities calculated from these two kinds of geodesics with (2.14),

connected EE Scon
A and disconnected EE Sdis

A , respectively. The correct HEE is given by

the minimum among them:

SA = min{Scon
A , Sdis

A }. (2.19)

In a class of AdS/BCFT setups, we can firstly map it to a well-studied setup, and perform

the calculation in the latter one. Figure 2 shows an example. The left figure shows a BCFT

defined on a manifold M with a connected boundary. As shown in the right figure, this

can be mapped to an upper half plane with a conformal map ξ = f(w). The geometry of

the latter gravity dual is given by the Poincaré metric

ds2 =
dη2 + dξdξ̄

η2
, (2.20)

which is easy to work with. In this case, for a subsystem A with boundary points

(w, w̄) = (w1, w̄1), (w2, w̄2), connected HEE and disconnected HEE are given by

Scon
A =

c

6
log

|ξ1 − ξ2|2
ǫ̃1ǫ̃2

=
c

6
log

[ |f(w1)− f(w2)|2
ǫ2|f ′(w1)||f ′(w2)|

]

,

Sdis
A =

c

6
log

2Imξ1
ǫ̃1

+
c

6
log

2Imξ2
ǫ̃2

+ 2Sbdy (2.21)

=
c

6
log

(

4(Imf(w1))(Imf(w2))

ǫ2|f ′(w1)||f ′(w2)|

)

+ 2Sbdy.

The single joining/splitting and double joining local quench, are classified as this class of

setups, i.e. can be mapped into the gravity dual of upper half-plane. On the other hand,
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Im ξ
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Re ξ
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Figure 3. The left figure shows how to realize a single joining quench using path integral in a

(1+1)d CFT. The right figure shows the corresponding Euclidean setup. It can be mapped into an

upper half plane as showed in the lower figure using (2.22) or (2.23).

as we will see later, the double splitting local quench is mapped into a gravity dual of a

cylinder. However we can still apply, the basic rule of the AdS/BCFT formulation and the

analysis of HEE remains the same. Refer also to [48–51] for other quantum information

theoretical understandings of AdS/BCFT.

2.3 Single joining local quench

In a 2d physical system, let us prepare the initial state separately on x < 0 and x > 0 and

then turn on the interaction at the neighborhood of x = 0 at time t = 0. We call it a single

joining quench, because in this process we join two initially separated systems together,

and we have exactly one joining point. We can use the path integral showed in figure 3 to

realize a single joining quench in 2d CFT. The Euclidean setup can be mapped into an

upper half plane using the conformal map:5

ξ = i

√

w + ia

ia− w
≡ f(w), (2.22)

or equivalently

w = ia
ξ2 + 1

ξ2 − 1
≡ g(ξ). (2.23)

Note that the a here arises from the regularization of the local quench and has nothing to

do with ǫ, which is the physical cutoff corresponding to the lattice spacing.

5The map used here is related to that used in [26] by a simple coordinate transformation w → −w. This

map can be reduced from the map for the double joining quench (4.1) as we will see later.
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Figure 4. ∆Scon
A

= Scon
A

− S
(0)
A

(blue lines) and ∆Sdis = Sdis
A

− S
(0)
A

(orange lines) after a single

joining quench in a holographic CFT, where S
(0)
A

is the EE of the vacuum state. A = [50, 100] in

the left figure and A = [0.1, 1000] in the right figure. We set a = 0.1 and c = 1. The boundary

entropy Sbdy is set to be zero.

For a general subsystem A = [x1, x2] where 0 < |x1| < x2, we can get the analytical

results of the EE. However let us leave the details to appendix A or our previous work [26].

For numerical plots, we choose the subsystem as A = [50, 100] or A = [0.1, 1000] here as

examples to summarize the main features of the EE after a single joining quench.

2.3.1 EE in holographic CFT

The gravity dual can be constructed based on the AdS/BCFT [26, 29] (see also [52]). The

gravity counterpart of the map (2.22) maps the gravity dual to just a half of Poincaré AdS.

The calculation of HEE follows from this construction. Figure 4 shows the connected EE

and the disconnected EE after a single joining quench at t = 0. We can see the following

features in this figure. First, both the connected EE and the disconnected EE have a

discontinuity in their time derivative at t = |x1| and t = x2. Next, at |x1| ≪ t ≪ x2, the

connected EE and the disconnected EE has a logarithmic growth as below:

Scon

A =
c

6
log

t

a
+ . . . , (2.24)

Sdis

A =
c

6
log

t

a
+

c

6
log

t

ǫ
+ . . . =

c

3
log t+ . . . . (2.25)

These behaviors have clear geometric interpretations [26], for which we will give a brief

review in section 4.4.3. When the subsystem A is semi-infinite, the disconnected one

always dominates the HEE at x1 ≪ t ≪ x2.

2.3.2 EE in Dirac free fermion CFT

Figure 5 shows the EE after a single joining quench at t = 0. The EE has a discontinuity

in its time derivative at t = |x1| and t = x2. At |x1| ≪ t ≪ x2, the EE has a logarithmic

growth as below [25, 26]:

SA =
1

3
log t+ . . . . (2.26)
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Figure 5. ∆SA = SA − S
(0)
A

after a single joining quench in a Dirac free fermion CFT, where S
(0)
A

is the EE of the vacuum state. A = [50, 100] in the left figure and A = [0.1, 1000] in the right figure.

We set a = 0.1.

2.4 Single splitting local quench

In a 2d physical system, let us use a Hamiltonian which has a support on the whole space

region to prepare the initial state and then turn off the interaction at the neighborhood of

x = 0 at time t = 0. We call it a single splitting quench, because in this process we split

an originally connected system into two parts, and we have exactly one splitting point. We

can use the path integral showed in figure 6 to realize a single splitting quench in 2d CFT.

The Euclidean setup can be mapped into an upper half plane using the conformal map:

ξ = i

√

w + ia

w − ia
≡ f(w), (2.27)

or equivalently

w = ia
ξ2 − 1

ξ2 + 1
≡ g(ξ). (2.28)

Again note that the a here arises from the regularization of the local quench and has

nothing to do with ǫ, which is the physical cutoff corresponding to the lattice spacing.

For a general subsystem A = [x1, x2] where 0 < |x1| < x2, we can get the analytical

results of the EE. However let us again leave the details to appendix A and [26]. For

numerical calculations we choose the subsystem A = [50, 100] and A = [0.1, 1000] here as

examples to summarize the main features of the EE after a single splitting quench.

2.4.1 EE in holographic CFT

Again the gravity dual and its HEE can be found based on the AdS/BCFT [26]. Figure 7

shows the connected EE and the disconnected EE after a single splitting quench at t = 0.

We can see the following features in this figure: both the connected EE and the disconnected

EE have a discontinuity in their time derivative at t = |x1| and t = x2. At |x1| ≪ t ≪ x2,

the connected EE has a logarithmic growth. On the other hand, the disconnected EE has

no significant time evolution:

Scon

A =
c

6
log

t

a
+ . . . , (2.29)

Sdis

A = const. + . . . . (2.30)
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ξ = f(w)

w = g(ξ)

ξ

Im ξ

Re ξ

x

w

τ

ia

−ia

Lorentzian

Euclidean

x

t

−ia

Figure 6. The left figure shows how to realize a single splitting quench using path integral in a

(1+1)d CFT. The right figure shows the corresponding Euclidean setup. It can be mapped into an

upper half plane as showed in the lower figure using (2.27) or (2.28).
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Figure 7. ∆Scon
A

= Scon
A

− S
(0)
A

(blue lines) and ∆Sdis
A

= Sdis
A

− S
(0)
A

(orange lines) after a single

splitting quench in a holographic CFT, where S
(0)
A

is the EE of the vacuum state. A = [50, 100] in

the left figure and A = [0.1, 1000] in the right figure. We set a = 0.1 and c = 1. The boundary

entropy Sbdy is set to be zero.

These behaviors also have clear geometric interpretations in the gravity dual [26]. At late

time, the disconnected one dominates the HEE.

2.4.2 EE in Dirac free fermion CFT

Figure 8 shows the EE after a single splitting quench at t = 0. The EE has a discontinuity

in its time derivative at t = |x1| and t = x2. At |x1| ≪ t ≪ x2, the EE has no significant

time evolution:

SA = const. + · · · . (2.31)
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Figure 8. ∆SA = SA − S
(0)
A

after a single splitting quench in a Dirac free fermion CFT, where

S
(0)
A

is the EE of the vacuum state. A = [50, 100] in the left figure and A = [0.1, 1000] in the right

figure. We set a = 0.1.

2.5 Single operator local quench

Finally, we moved on to (c) single operator local quench [27, 28]. The quenched state is

produced by inserting a primary operator O(x) at a point x = 0 and time t = 0. Its time

evolved state is expressed as

|Ψ(t)〉 = NOe
−iHt · e−aHO(0)|0〉, (2.32)

where a is introduced as a regularization parameter which is infinitesimally small. NO is

introduced as a normalization factor to preserve the unit norm of the state. Note that a

is a regulator for local quench and has nothing to do with ǫ i.e. the UV cut off of the field

theory itself.

In this work, we focus on an operator quench in 2d CFTs. It is straightforward

to calculate the energy stress tensor for this single operator quench. In the Lorentzian

signature we obtain the value of left-moving component of energy stress tensor Tww(=

T++) [54] at the spacetime point (t, x) as follows

Tww =
2∆Oa

2

((x− t)2 + a2)2
, (2.33)

where ∆O is the total conformal dimension (i.e. the sum of chiral and anti-chiral dimension)

of the primary operator O(x). Note that this result is universal and is true for any 2d CFTs.

However, if we consider double operator local quenches, we lose this universal behavior and

the expectation value of the energy stress tensor depends on which 2d CFT we consider as

we will see later.

For the calculations of EE, we choose the subsystem A to be an interval [x1, x2]. (we

can take 0 < x1 < x2). In free CFTs or more generally rational CFTs (RCFTs), the

time evolution of entanglement entropy SA is very simple [27, 28, 53]. The growth of EE

∆SA = SA − S
(0)
A

(here S
(0)
A

is the EE for the ground state) gets positive only during the

time x1 < t < x2, otherwise we have ∆SA = 0. This means that we can explain the

behavior of EE by a simple relativistic particle propagation [27, 28, 53]. The local quench

creates an entangled pair at x = 0 and each of the pair propagates at the speed of light in
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the opposite directions. Moreover, the amount of the growth ∆SA > 0 for x1 < t < x2 is

given by the logarithm of a quantity called quantum dimension [53].

On the other hand, in holographic CFTs, we find different behavior of entanglement

entropy [30, 54]. The single operator local quench at x = 0 in a holographic CFT corre-

sponds to a heavy particle falling towards the Poincaré horizon along x = 0 in the AdS. In

this description, (2.34) comes from the back reaction of the heavy particle. In particular,

when x1 ≪ t ≪ x2 the HEE shows a logarithmic time evolution

∆SA ≃ c

6
log

t

a
, (2.34)

which is missing in the previous RCFT results. The behavior (2.34) can be reproduced

from field theoretic analysis for large central charge CFTs [33]. Refer to [55–80] for further

developments of operator local quenches.

3 Outline of our analysis for double local quenches

Before we get into detailed computations for three types of double local quenches (a)

Joining, (b) Splitting, and (c) Operator, as depicted in figure 1, we would like to give an

outline of our following analysis. In particular, here, we would like to explain quantities we

will study during double local quenches and what kind of behavior we expect from their

gravity duals for holographic CFTs.

The most interesting aspect of double local quenches which is missing in single ones

is the interactions between two local excitations. If we consider holographic CFTs, these

interactions correspond to gravitational forces between two heavy objects in AdS, which

are dual to the two excitations via the AdS/CFT. The objects are massive particles for (a)

operator local quench [30], while they are extended objects in (b) joining and (c) splitting

local quenches [26]. Therefore, the difference between a double local quench and two single

ones is expected to be related to the gravitational forces between the two objects.

In this work, we trigger the double quench at the two points x = ±b. Therefore we

should choose the two single quenches to occur at x = b and x = −b, respectively, so

that the difference is well-defined. More explicitly, let us chose a physical quantity q which

vanishes at the CFT vacuum and increases in the presence of local excitations, and consider

the difference qD(x=±b)−qS(x=b)−qS(x=−b), where qD(x=±b) and qS(x=±b) denotes the value

of the quantity under a double local quench and single one quenched at the specified points,

respectively.

We would like to argue that for right choices of q, we have the inequality

qD(x=±b) − qS(x=b) − qS(x=−b) ≤ 0, (3.1)

and that this negative value is a manifestation of the fact that the gravitational force is

attractive.

A natural candidate of q is the energy density or expectation value of the energy stress

tensor because it vanishes at the ground state and increases under the local quenches.
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Another candidate of q is the growth of entanglement entropy ∆SA = SA − S
(0)
A (S

(0)
A is

the EE for the ground state).

First of all, it is clear that the difference vanishes when the distance between two

quenches gets larger i.e. b/a → ∞, where we remember that a is the quench cut off

parameter:

lim
b/a→∞

[

qD(x=±b) − qS(x=b) − qS(x=−b)
]

= 0. (for (a),(b), and (c)). (3.2)

This is simply because we can neglect the correlations between two objects when the

distance gets larger. Moreover, if we focus on (a) joining and (b) splitting local quench, it

is possible to see that the opposite limit b/a → 0 is equivalent to a single quench at x = 0

(this is also obvious from figure 1), which leads to

lim
b/a→0

qD(x=±b) = qS(x=0). (for (a) and (b)). (3.3)

Clearly these relations (3.2) and (3.3) are consistent with the argued inequality (3.1).

The purpose of our analysis in this work is then to examine the inequality (3.1) for the

energy stress tensor Tww and the growth of EE ∆SA = SA − S
(0)
A for generic values of b/a.

For the energy stress tensor, we will be able to confirm the inequality (3.1) for the three

types of local quenches (a), (b), (c). This result turns out to be true for any 2d CFTs in

the case of (a) and (b). We can show it is true for all CFT we studied (holographic CFTs,

Ising CFT and free CFTs) in the case of (c).

For the growth of EE, as we will find from numerical analysis for (a) joining and (b)

splitting local quenches, the inequality (3.1) is true in holographic CFTs as long as the

subsystem A is away from the quench points |x| = b by a certain finite distance.6 However,

we will observe that the inequality (3.1) is not true in general for the free Dirac fermion

CFT in the case of (a) and (b) even when the subsystem is far away from the quench

points. On the other hand, in the case of (c), for the Dirac fermion CFT or more generally

rational CFTs, it was already known that the inequality (3.1) for EE is saturated [69].

In the gravity dual picture we can understand the inequality (3.1) in an intuitive way as

explained in figure 9. Consider two heavy objects placed in AdS. Due to their gravitational

force, they will tend to attract each other. This makes their configuration squeezed towards

the center in the bulk AdS and thus an outside observer feels that the back-reaction due

to these objects is getting reduced. This attractive nature of gravitational force makes

the value of q smaller for double quenches and in this way we expect the non-positivity

of the difference i.e. (3.1). This feature common to the three different double quenches

can be explicitly observed, for example, in the behaviors of energy stress tensor, which are

depicted in the middle picture of figure 14 for the double joining quench (a), in the right

picture of figure 35 for the double splitting quench (b), and in the figure 48 for the double

operator local quench (c).

After this intuitive outline, from the next section, we will begin more technical analysis

of the double local quenches.

6If we take the limit A to be infinitely far away, then the first law of EE [81] tells us that the EE is

proportional to the energy density and thus this property is just reduced to that of the energy stress tensor.
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Bdy

AdSz

Figure 9. Sketches of gravity duals of double local quenches. The upper left (or right) picture

describes the gravity dual of a simple superposition of two single operator (or joining) local quenches,

where no gravitational force between two heavy objects (brown colored ones) is taken into account.

The lower left (or right) depicts a gravity dual of double operator (or joining) local quench where

the back reactions are incorporated. In the left, a local operator is dual to a massive particle. In

the right, the heavy string is dual to the boundary surface in the joining local quench. In both

examples, gravitational forces bring the two objects closer and their back-reaction appears weaker

to a distant observer.

4 Double joining local quenches

To describe a double joining local quench, let us consider the map [82] (refer to figure 10)

w = i

(

sin2 α

2
log

(

1 + ζ

1− ζ

)

+ cos2 α

(

ζ

1 + ζ2

))

≡ g(ξ),

ζ =
ξ − i

ξ + i
. (4.1)

This combined map w = g(ξ) transforms a complex plane (w, w̄) with four vertical slits

into an upper half plane (ξ, ξ̄) with Im ξ > 0. Also note that the middle coordinate ζ

describes the unit radius disk |ζ| ≤ 1.

The end points of the four splits, which extend to infinity, in the former are given by

±b0 ± ia0, where

a0(α) =
sin2 α

2
log
(

cot
α

2

)

+
1

2
cosα,

b0(α) =
π

4
sin2 α. (4.2)

The behavior of a0 and b0 as functions of α is depicted in figure 11. It is useful to note

that if we set α = 0, then we find w = i ζ
1+ζ2

, which leads to the map

ξ = i

√

i
2 + w
i
2 − w

. (4.3)

This coincides with the single joining quench with a = 1
2 .

It is straightforward to analyze more general values of a and b by simply rescaling them

(a, b, w, w̄) → λ(a, b, w, w̄), where λ is an arbitrary positive constant. Therefore below we

treat a and b as independent parameters of the double quench.
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Figure 10. The conformal map (4.1).
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Figure 11. The plot of a0 (blue) and b0 (red) as a function of α.

We introduce the R2 coordinate (τ, x) as before:

w = x+ iτ, (4.4)

where τ is the Euclidean time and we can consider its Lorentzian continuation as τ = it,

The coordinate (w, w̄) describes a double joining local quench where the points x = b and

x = −b are joined at the same time as in figure 1.

In the Lorentzian time evolution, the coordinate (w, w̄) = (x−t, x+t) takes real values.

Then we introduce real valued functions (θ, θ̄) such that

w = x− t = w(eiθ), w̄ = x+ t = w(eiθ̄), (4.5)

where we defined

w(eiθ) =
1

2
cot θ · cos2 α+

1

2

(π

2
− θ
)

sin2 α, (4.6)

as depicted in figure 12. This function w takes the values:

w(θ = 0) = ∞, w(θ = π/2) = 0, w(θ = π) = −∞. (4.7)

Note that the real valued coordinates θ and θ̄ are independent. Only when t = 0, we

have θ = θ̄.

Finally, we can numerically find the inverse functions

θ = θ(x− t), θ̄ = θ̄(x+ t), (4.8)

when we would like to compute time evolutions of various quantities.
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Figure 12. The graph of the function g(eiθ) defined by (4.6) at α = 1.

4.1 Energy stress tensor for double joining local quenches

Since the energy stress tensor vanishes in the coordinate (ξ, ξ̄) we find the energy stress

tensor in the original coordinate (w, w̄) from the standard conformal transformation rule as

Tww =
c

24
· 2g

′(ξ)g′′′(ξ)− 3g′′(ξ)2

g′(ξ)4
. (4.9)

For example, for a single joining local quench at x = 0 with the regularization param-

eter a, we find the energy stress tensor

TS(x=0)
ww =

c

6
· 3a2

4(w2 + a2)2
. (4.10)

Now let us turn to the double joining local quench which we are interested in. In

particular, we can explicitly confirm that at α = 0 (i.e. a = 1/2 and b = 0), the above

energy stress tensor for the double local quench coincides with that for a single local

quench T
S(x=0)
ww .

When α > 0, we find that the result for the double quench deviates from that of the

single quench as depicted in the above three pictures of figure 13. As α approaches to π/2,

the result for the double quench gets close to that for the two single quenches. Moreover,

for any values of 0 < α < π/2, we can confirm the inequality (3.1) by setting q = Tww

as we can also find from figure 13. However, note that this calculation for energy stress

tensor is universal in that the result does not depend on the types of 2d CFTs we consider.

As we can see from the lower three graphs of figure 13, we can confirm that the difference

of (3.1) is always non-positive:

TD
ww − (TS(x=b)

ww + TS(x=−b)
ww ) ≤ 0. (4.11)

Consider the limit x → ∞ such that the subsystem A is far away from the quench

points x = ±b at t = 0. In this limit we can analytically estimate Tww as follows

TD
ww ≃ c

256x4
· (7 + 4 cos(2α)− 3 cos(4α)) . (4.12)

Note that this gets vanishing at α = π/2 (i.e. a = 0), where the energy density is delta

functionally localized at x = ±b. We can confirm TD
ww ≃ TS

ww at α = 0 and α = π/2, while

in general we have TD
ww < TS

ww for 0 < α < π/2. This is plotted in the left graph of figure 14.

– 17 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
8

Α=0

�4 �2 2 4

1

2

3

4

5

6

x

Α=1

�4 �2 2 4

0.5

1.0

1.5

2.0

2.5

3.0

Α=1.5

�4 �2 2 4

50

100

150

Α=0.001

�40 �20 20 40

�3.0

�2.5

�2.0

�1.5

�1.0

�0.5

x

Α=1

�30 �20 �10 10 20 30

�1.0

�0.8

�0.6

�0.4

�0.2

Α=1.5

�4 �2 2 4

�1.0

�0.8

�0.6

�0.4

�0.2

Figure 13. The above three pictures are the plots of energy stress tensor Tww at t = 0 for

α = 0.001 (left), α = 1 (middle) and α = 1.5 (right). The red graph describes the sum of two single

local quenches, while the blue one does the double local quench. In the right graph (α = 1.5),

the blue and red graph almost coincide. The lower three graphs are the plots of the difference

TD
ww − (T

S(x=b)
ww + T

S(x=−b)
ww ), which turns out to be non-positive.

By a simple scale transformation, we can also find for generic values of (a, b), the

energy stress tensor at x and t = 0, is given by

TD
ww(x, a, b) ≃

ca2

8x4
· F (b/a) = TS

ww(x, a) · F (b/a), (4.13)

where we introduced the function

F (b/a) =
7 + 4 cos(2α)− 3 cos(4α)

32a0(α)2
, (4.14)

with α is determined by b
a via b

a = b0(α)
a0(α)

. The ratio TD
ww/T

S
ww in the limit x → ∞, which

coincides with F (a/b) is plotted in the middle graph of figure 14. We also plotted the ratio
TD
ww

T
S(x=b)
ww +T

S(x=−b)
ww

at each point x for α = 1 in the right graph of figure 14. Indeed this ratio

is always less than 1 which confirms the inequality (4.11). Note that this ratio approaches

to F (a/b) in the limit x → ∞.

We would also like to comment on the time evolutions of the energy stress tensor.

Actually, Tww and Tw̄w̄ only depend on x − t and x + t, respectively. Therefore the time

evolution of each of them is just a simple shift x → x − t and the above observations are

true at any time t in a straightforward way.

4.2 Entanglement entropy for double joining local quenches

As in the energy stress tensor analysis, we are interested in properties of entanglement

entropy. We would like to compare the results for the double joining quench with those for

the single joining quenches. First we would like to note the following two basic observations.

At b = 0 (or α = 0) the entanglement entropy growth ∆SA = SA−S
(0)
A (S(0) is the ground

state entanglement entropy) for the double joining quench coincides with that for the single

joining quench, where the quench occurs at the origin x = 0. Also in the opposite limit
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Figure 14. The ratio limx→∞

TD

ww
(x)

TS
ww

(x)
= F (b/a) as a function of α (left) and as a function of

b/a (middle) at the spacial infinity limit x ≫ 1 at t = 0. The right graph shows the ratio
TD

ww
(x)

T
S(x=b)
ww (x)+T

S(x=−b)
ww (x)

as a function of x at t = 0 and α = 1.

a → 0 (or α → π/2), the entanglement entropy for the double joining quench gets identical

to that for the sum of two single joining quenches each of which we join the points x = b

or x = −b, respectively. Therefore we have

lim
b/a→0

∆S
double(x=±b)
A = ∆S

single(x=0)
A ,

lim
a/b→0

∆S
double(x=±b)
A = ∆S

single(x=b)
A +∆S

single(x=−b)
A . (4.15)

Below we will study two explicit examples: holographic CFTs and massless Dirac

fermion CFT.

4.3 Entanglement entropy in holographic CFTs

Consider the entanglement entropy SA(x1, x2, t) for a subsystem A given by the interval

[x1, x2] at time t. In holographic CFTs, as we briefly reviewed in section 2.2, we can

calculate SA by the following formula when the dual geodesic ΓA is connected:

Scon
A =

c

6
log

( |f(w1)− f(w2)|2
ǫ2|f ′(w1)||f ′(w2)|

)

=
c

6
log

( |ξ1 − ξ2|2|g′(ξ1)||g′(ξ2)|
ǫ2

)

, (4.16)

where ξ = f(w) and its inverse w = g(ξ) are the conformal map (4.1) for the double local

quenches.

In the presence of conformal boundaries, we can apply the AdS/BCFT formulation,

as is so in single local quenches. In that case, ΓA can be disconnected and we have the

following formula when the dual geodesic ΓA is disconnected:

Sdis
A =

c

6
log

( |ξ1 − ξ̄1||ξ2 − ξ̄2||g′(ξ1)||g′(ξ2)|
ǫ2

)

+ 2Sbdy, (4.17)

where Sbdy is the boundary entropy. In the end, the HEE is given by the smaller one

among Scon
A and Sdis

A .

We are interested in an inequality of the form (3.1). We would like to argue the

following inequality for the HEE of connected geodesic, is always true in our holographic

double joining quench when the subsystem A is an arbitrary interval:

∆S
con,D(x=±b)
A −

(

∆S
con,S(x=b)
A +∆S

con,S(x=−b)
A

)

≤ 0. (4.18)
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Note that we do not expect that such an inequality is satisfied for the disconnected geodesic

in general. This is partly because the boundary entropy contributions Sbdy does not cancel

in the above difference.

We can find that Scon
A is smaller than Sdis

A when a finite size subsystem A is away from

the quench points x = ±b by a certain distance. Therefore, our result (4.18) leads to the

inequality (3.1) for the genuine HEE

∆S
D(x=±b)
A −

(

∆S
S(x=b)
A +∆S

S(x=−b)
A

)

≤ 0, (4.19)

when the subsystem A is enough separated from the quench points.

Below we will show explicit results of ∆SA, which support the above inequalities. We

will choose b = 50 throughout this work. We will set Sbdy = 0 below for the disconnected

geodesic contribution.

4.3.1 Holographic entanglement entropy at t = 0

Here we consider the HEE under the double joining quenches at t = 0. We presented

numerical plots of ∆Scon
A as a function of x in figure 15, where we chose the subsystem A

as [x − 1, x + 1]. For such a small subsystem, we can confirm that always the connected

geodesics are favored for the calculations of HEE. We can confirm the behaviors (4.15)

and the inequality (4.18).

In particular, let us consider the distant limit of the subsystem A = [x1, x2]:

l ≡ x1 − x2 → 0, and x1 ≃ x2(= x) ≫ b, a. (4.20)

In this limit, the entanglement entropy ∆Scon
A can be analytically estimated as

∆Scon,D
A ≃ F (b/a) · ca

2l2

24x4
= F (b/a) ·∆Scon,S

A , (4.21)

where F was defined in (4.14). This behavior follows from the first law of EE [81]

∆Scon
A ≃ l2

3
Tww. (4.22)

Thus in this limit, the inequality (4.19) is equivalent to that for the energy stress ten-

sor (4.11).

4.3.2 Time evolutions of holographic entanglement entropy

Next we present numerical results for the time evolutions of HEE under the double joining

quenches. We consider ∆SA for the four different choices of the subsystem A: (i), (ii), (iii),

(iv) sketched in figure 16.

Our numerical results for these four different cases are presented in figure 17. Quali-

tative features for the time evolutions of HEE under double quenches are very similar to

those for the sum of two single quenches. However the difference between them (i.e. blue

graphs in the right pictures of figure 17) shows non-trivial time-dependence. The differ-

ence is always non-positive and this confirms the inequality (4.18). Also, the difference

gets larger when signals from both of the two quenches arrive in the subsystem A.
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Figure 15. Top: the behaviors of connected holographic entanglement entropy Scon
A at t = 0 and

b = 50 for the double local quench (blue) and the sum of two single local quenches (orange) at a = 1

(left), a = 10 (middle) and a = 100 (right). We chose the subsystem A to be A = [x − 1, x + 1]

and plotted ∆Scon
A as a function x. In the left graph at a = 1, the blue and orange graphs almost

coincide. Bottom: the difference ∆SD
A −∆S

S(x=b)
A −∆S

S(x=−b)
A for connected geodesics.
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Figure 16. The four different choices of subsystem A. We always choose b = 50.

In the case (i), there are two lumps in the regions t ∈ [x1− b, x2− b] and [x1+ b, x2+ b]

and they are due to the two local quenches at x = ±b, which create entangled pairs each

propagating in the left or right direction at the speed of light. Also in the other cases (ii),

(iii) and (iv), similarly we can understand the presence of lumps from the viewpoint of

entangled pair creations at the quench points x = ±b.

At late time t ≫ b, a, the HEE is dominated by the connected geodesic contribution

and we obtain the following behavior

∆S
(con)D
A ≃ F (b/a) · a

2l2

24t4
= F (b/a) ·∆S

(con)S
A . (4.23)

Indeed these are obtained from the first law relation (4.22). Note that this clearly shows

the inequality (4.18) at late time.

A special feature of EE for holographic CFTs can be found when the subsystem A is

semi-infinite. The numerical behaviors are plotted in figure 18. Note that for such a large
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Figure 17. The plots of ∆S
con/dis,D
A for the double joining local quench (left) and the difference

∆Scon,D
A −∆Scon,S(x=b)−∆Scon,S(x=−b) between the double and single quench (right) as a function

of t. We set b = 50 and a = 1. From the top to bottom we presented results for the four

different setups (i), (ii), (iii) and (iv). Left: in the left plots, the blue and red graph describes

∆Scon
A and ∆Sdis

A , respectively. Right: in the right plots, the blue graphs describe the difference

∆SD
A −∆S

S(x=b)
A −∆S

S(x=−b)
A for the connected geodesic, while the red line just shows the axis of

time coordinate.

– 22 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
8

Double

Single×2

200 400 600 800 1000

�3

�2

�1

1

2000 4000 6000 8000 10 000

�0.2

0.2

0.4

0.6

0.8

1.0

1.2

Double

0 200 400 600 800 1000

0.2

0.4

0.6

0.8

1.0

Figure 18. The behaviors of holographic entanglement entropy as a function of the time t when the

subsystem A is almost semi-infinite. We chose A = [51, 106] and a = 1, b = 50. In the left picture, we

plotted ∆Sdis
A for the double quench (blue) and the sum of two singles quenches (red) as a function

of time. In the middle picture we plotted the difference ∆Sdis,D
A −∆S

dis,S(x=b)
A −∆S

S(dis,x=−b)
A as a

function of time. In the right graph, we plotted t
d∆Sdis

A

dt (the coefficient of log t for the disconnected

geodesic contribution) for the double joining quench as a function of time.

subsystem with one of the end points of A close to b, the disconnected geodesic is favored

for the HEE computation. Thus at late time we found

∆Sdis,D
A ≃ c

3
log t,

∆Sdis,S(x=b) +∆Sdis,S(x=−b) ≃ 2c

3
log t. (4.24)

This result can be understood as follows. At late time, the excitations which were created

at the quench points x = ±b, already propagate a long distance. Therefore the differences

of the two quench points are negligible and the situation is very similar to b = 0 case

(see (4.15)). Again this confirms the inequality (4.18) at late time.

Holographic entanglement entropy that is physically realized is the smaller one between

Scon
A and Sdis

A . It is also interesting to study the full holographic entanglement entropy in a

double joining quench and see the difference from the sum of the full holographic entangle-

ment entropy in single local quenches. In figure 19, we plot the holographic entanglement

entropy, which is the smaller one among connected geodesics and disconnected geodesics, for

both of double local quenches and single local quenches. In this setup (the same as that of

figure 17), the difference of holographic entanglement entropy ∆SD
A −∆S

S(x=b)
A −∆S

S(x=−b)
A

becomes negative even after taking the minimal one between Scon
A and Sdis

A .

However, ∆SD
A −∆SS(x=b)−∆SS(x=−b) ≤ 0 is not always satisfied even in holographic

theory and can be violated when the regions are close to the excitation points. We plot

the full holographic entanglement entropy for double joining quench with a = 0.1, b = 50

in (4.1) at t = 0 with A = [x−200, x+200] in figure 20. The plots show that the difference

∆SD
A −∆S

S(x=b)
A −∆S

S(x=−b)
A becomes positive when the endpoint of A is close (x ∼ 200
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Figure 19. The plots of the full HEE ∆SD
A for the double joining local quench and the difference

∆SD
A − ∆SS(x=b) − ∆SS(x=−b) between the double and single quench as a function of t. We set

b = 50 and a = 1. From the top to bottom we presented results for the four different setups (i),

(ii), (iii) and (iv). Left: the plot of the full HEE ∆SA for the double local quench. Right: the

plot of the difference ∆SD
A −∆S

S(x=b)
A −∆S

S(x=−b)
A between double local quench and single local

quenches. From the top to bottom we presented results for the four different setups (i), (ii), (iii)

and (iv).
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Figure 20. The plot of the full HEE ∆SD
A for the double joining local quench and the difference

∆SD
A −∆SS(x=b) −∆SS(x=−b) between the double and single quench at t = 0 as a function of x.

We now set b = 50 and a = 0.1. We choose A to be [x − 200, x + 200] and we plot holographic

entanglement entropy as functions of x. Left: the plot of ∆SA in holographic CFT for double local

quench as well as the sum ∆SS(x=b) + ∆SS(x=−b) of holographic entanglement entropy for single

local quenches. Right: the plot of the difference ∆SD
A − ∆S

S(x=b)
A − ∆S

S(x=−b)
A between double

local quench and single local quenches.
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Figure 21. The plot of the full HEE ∆SD
A for the double joining local quench and the difference

∆SD
A −∆SS(x=b) −∆SS(x=−b) as a function of t. We set b = 50 and a = 0.1. We choose A to be

[10, 400]. Left: in the left plots, the blue and red graph describe ∆Scon
A and ∆Sdis

A , respectively.

Middle: the plot of ∆SA for double local quench as well as the sum ∆S
S(x=b)
A + ∆S

S(x=−b)
A for

single local quenches. Right: the plot of the difference ∆SD
A − ∆S

S(x=b)
A − ∆S

S(x=−b)
A between

double local quench and single local quenches.

or x ∼ −200) to the quench points. We can also see that ∆SD
A −∆S

S(x=b)
A −∆S

S(x=−b)
A

becomes positive. We plot the full holographic entanglement entropy for double joining

quench with a = 0.1, b = 50 in (4.1) at t = 0 with A = [x− 200, x+ 200] in figure 21. The

plots show that the difference ∆SD
A −∆S

S(x=b)
A −∆S

S(x=−b)
A is positive at early time.

4.4 Boundary surface in holographic double joining local quenches

An essential ingredient of holographic description based on the AdS/BCFT is the presence

of the boundary surface Q which is a heavy object moving in the bulk. Here we would like
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to study how the surface Q looks like in the gravity dual of double joining local quenches.

This will clarify the behavior of HEE which we calculated just before using the conformal

map into the upper half plane.

4.4.1 Mapping in the bulk

Consider a 2 dimensional CFT on (w, w̄) plane, and map it to (ξ, ξ̄) plane with conformal

transformation:

ξ = f(w),

ξ̄ = f̄(w̄). (4.25)

Then let us consider the bulk AdS corresponding to it. Using (ξ, ξ̄, η) to denote the coor-

dinate of 3 dimensional AdS corresponding to the CFT on (ξ, ξ̄) plane, let us focus on the

case when the metirc is given by Poincaré metric:

ds2 =
dη2 + dξdξ̄

η2
, (4.26)

where we set the AdS radius to 1 for simplicity. In this case, the gravity dual of the

conformal transformation (4.25) is given by the following coordinate transformation in

AdS3 (see e.g. [83]):

ξ = f(w)− 2z2(f ′)2(f̄ ′′)

4|f ′|2 + z2|f ′′|2 ,

ξ̄ = f̄(w̄)− 2z2(f̄ ′)2(f ′′)

4|f ′|2 + z2|f ′′|2 ,

η =
4z(f ′f̄ ′)3/2

4|f ′|2 + z2|f ′′|2 . (4.27)

The metric in the coordinate (w, w̄, z) looks like

ds2 =
dz2

z2
+ Tww(w)(dw)

2 + T̄w̄w̄(w̄)(dw̄)
2 +

(

1

z2
+ z2Tww(w)T̄w̄w̄(w̄)

)

dwdw̄, (4.28)

where

Tww(w) =
3(f ′′)2 − 2f ′f ′′′

4f ′2
, T̄w̄w̄(w̄) =

3(f̄ ′′)2 − 2f̄ ′f̄ ′′′

4f̄ ′2
, (4.29)

are the chiral and anti-chiral energy stress tensor, respectively. These together give the

gravity dual in the (w, w̄, z) coordinate.

4.4.2 Boundary surface in Euclidean setup

Here, we denote g ≡ f−1, and introduce two new parameters F and F̄ which satisfy

w = g(F ),

w̄ = ḡ(F̄ ). (4.30)
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Then we have

ξ = F +
2z2g′(F )ḡ′′(F̄ )

4(g′(F )ḡ′(F̄ ))2 + z2g′′(F )ḡ′′(F̄ )
,

ξ̄ = F̄ +
2z2ḡ′(F̄ )g′′(F )

4(g′(F )ḡ′(F̄ ))2 + z2g′′(F )ḡ′′(F̄ )
,

η =
4z(g′(F )ḡ′(F̄ ))3/2

4(g′(F )ḡ′(F̄ ))2 + z2g′′(F )ḡ′′(F̄ )
. (4.31)

In the case of the double joining quench, the metric of the bulk AdS in (ξ, ξ̄, η) coor-

dinate is given by (4.26). When boundary tension TBCFT = 0, the boundary surface Q is

given by ξ− ξ̄ = 0 and the gravity dual is given by ξ− ξ̄ > 0. This means, on the boundary

surface, we have7

z(F, F̄ ) =

(

4(F − F̄ )g′2ḡ′2

2(g′′ḡ′ − ḡ′′g′)− (F − F̄ )g′′ḡ′′

)1/2

. (4.32)

Then we can let F run in the region F − F̄ > 0 to find out the boundary surface given by

(w, w̄, z) = (g(F ), g(F̄ ), z(F, F̄ )).

4.4.3 Single joining quench revisited

Discussions so far can be applied to any BCFT setup which can be mapped to an upper half

plane using a conformal map. Before we go further into details of double joining quench,

let us revisit the single joining quench case.

A single joining quench with cutoff a defined on w plane can be mapped to an upper

half plane ξ by the map8

w = g (ξ) = ia
ξ2 + 1

ξ2 − 1
. (4.33)

In order to figure out bulk properties, we introduce a parameter F which satisfies w = g (F )

as explained before. In this case, it is straightforward to write F as a function of w = x+iτ ,

and we can get the boundary surface by simply plugging it into (4.32). The result is given by

z =
2
√

x2 + (a+ τ)2
√

x2 + (a− τ)2
√

a2 −
(

√

x2 + (a+ τ)2 −
√

x2 + (a− τ)2
)2

≡ GE(x, τ). (4.34)

Then applying analytic continuation, we have

z =
2
√

x2 + (a+ it)2
√

x2 + (a− it)2
√

a2 −
(

√

x2 + (a+ it)2 −
√

x2 + (a− it)2
)2

≡ GL(x, t). (4.35)

7This is valid only at F 6= F̄ . In w coordinate, the part of the boundary surface corresponding to F = F̄

extends from the BCFT boundary to the bulk. This part does not influence Lorentzian time evolution of

joining quenches. However, it is crucial in splitting quenches.
8The sign of this map is opposite to that used in [26]. This map here can be reduced from the map (4.1)

by set α = 0.

– 27 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
8

-4 -2 0 2 4
x

2

4

6

8

z

t =

0

1

2

3

4

Figure 22. Boundary surfaces of single joining quench at different t. a = 0.01. Note that the

boundary surface at x < t is given by z2 = (t2−x2)
[

1+O

(

t
2
a
2

(t2−x2)2

)]

and the x > t part is given by

z2 = 1
a2

4(x2
−t

2)3

(x2+3t2)

[

1+O

(

t
2
a
2

(t2−x2)2

)]

. Initially at t = 0, there is a sharp boundary surface localized at

x ∼ 0. Then it moves to ±x and falls towards +z direction in the bulk. When t is sufficiently large,

the boundary surface can be roughly regarded as two vertical lines and a semicircle between them.

Figure 22 shows how the boundary surface looks like on different time slices. Initially at

t = 0, there is a sharp boundary surface localized at x ∼ 0. Then it moves to ±x and falls

towards +z direction in the bulk. When t is sufficiently large, the boundary surface can

be roughly regarded as two vertical lines and a semicircle between them.

Features appeared in the time evolution of both connected EE and disconnected EE

can be understood from the behavior of geodesics in the presence of the boundary surface.

Refer to section 2.3 for a brief review of single joining quenches.

One of the main features of connected EE is that there are hills (increase followed by

decrease) in the graph of time evolution. This can be understood by connected geodesic

making a detour at the sharp corner of the boundary surface. Figure 23 shows a schematic

drawing of such a detour on a time slice. Though a general geodesic should not exactly lie

on a time slice, we can see that, actually for this case, even an estimation restricted on a

time slice can give the leading order of connected EE. (See appendix B for details.)

One of the main features of disconnected EE is that there is an increase in the graph

of time evolution. This can be understood by disconnected geodesic extended towards z

direction at late time. Figure 24 shows how a disconnected geodesic extended from (x, t)

to the boundary surface looks like at t ≫ x. This geodesic does not end inside the Poincaré

patch. The length of this geodesic inside and outside the Poincaré patch is given by log(t/ǫ)

and log(t/a), respectively. They together contribute to the (c/3) log t time evolution (2.25)

in disconnected EE. (See section 6 of [26] for details.)
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t

Figure 23. A schematic drawing of connected geodesic (shaded red) on a time slice, without and

with the existence of a boundary surface. This detour at the sharp corner of the boundary gives an

increase of connected entanglement entropy. Note that the real geodesic does not exactly lie on a

time slice.

x

z

boundary 

surface

disconnected 

geodesic  

S

M

t0

z

t

t0

S

trajectory of M

disconnected 

geodesic  

Poincaré 

patch

inside

outside

trajectory of M

S

r=0

T

r

φ

Figure 24. The left figure shows a time slice in Poincaré coordinate (t, x, z). For simplicity, let us

set the start point S of the disconnected geodesic to be (t0, 0, 0). The red dashed line shows how

the geodesic extending from S looks like when projected on the time slice. Note that this geodesic

does not lie on the time slice. The blue point M is the middle point of the boundary surface. The

right figure shows how these look like on x = 0. The lower figure shows how these looks like in a

global coordinate (T, r, φ). This coordinate is taken to satisfy that M stays at r = 0. The Poincaré

patch is shaded green in all three figures. The geodesic has an inside part (red) and an outside part

(yellow). Its length is given by log(t/ǫ) + log(t/a).
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Figure 25. Boundary surface in double joining quench on different time slices with sufficiently

small a. (Here, we have b = 50 and a = 5.) At t = 0, the boundary has two sharp angles localized

at x = ±b, and then both of them moves to ±x direction. At large t, the boundary surface can be

roughly regarded as two vertical lines x = ±b, a semicircle x2 + z2 = (t− b)2 and two sharp angles

at each side between them. The boundary is falling towards +z direction as a whole.

4.4.4 Boundary surface in double joining quench

In a general double joining quench, the z-coordinate of a boundary surface cannot be

explicitly represented as a function of x and t. However, we can use the maps (4.5)

and (4.8) to numerically compute it. Figure 25 shows the boundary surface of a double

joining quench at different time slices. Initially at t = 0, the boundary has two sharp

angles localized at x = ±b, and then both of them moves to ±x direction. At large t,

the boundary surface can be roughly regarded as two vertical lines x = ±b, a semicircle

x2+z2 = (t−b)2 and two sharp angles on each side between them. The boundary is falling

towards +z direction as a whole.

Let us see how this behavior of boundary surface in a double joining quench is consistent

with many results computed in a holographic CFT at b/a ≫ 1.

• Energy stress tensor for a double joining quench at x ≫ 1 is almost the same as that

for a single quench. The same statement is also true for connected entanglement
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Figure 26. An observer at large x (left figure) or at large t (right figure) can hardly distinguish

between a single joining quench and a double joining quench.

entropy of a small subsystem at x ≫ 1 due to the first law. From a boundary surface

point of view, this is because the heavy boundary surface for a double joining quench

looks almost the same as that for a single joining quench in this case. This is shown

in the left figure of figure 26.

• It is also true by changing x ≫ 1 in the former statement with t ≫ 1. This is shown

in the right figure of figure 26.

• As (4.24) shows, EE for a semi-infinite subsystem has a (c/3) log t time evolution.

Indeed we can confirm that the disconnected geodesic in the double joining quench is

essentially the same as that of the disconnected geodesic in a single joining quench.

• Qualitative features in figure 17 can also be understood by considering detour of

connected geodesics and contributions from disconnected geodesics.

4.5 Entanglement entropy in Dirac fermion CFTs

Now we would like to consider a free Dirac massless fermion CFTs as the second example.

For the conformal map w = g(ξ), the entanglement entropy for an interval A is computed

as follows (refer to [26, 36]):

SDirac
A =

1

6
log

( |ξ1 − ξ2|2|ξ1 − ξ̄1||ξ2 − ξ̄2||g′(ξ1)||g′(ξ2)|
ǫ2(ξ1 − ξ̄2)(ξ2 − ξ̄1)

)

. (4.36)

We plotted the behavior of ∆SA at t = 0 in figure 27. In this case of the Dirac fermion,

actually we find from the numerical analysis that the inequality (3.1) is violated.

Actually, even when we focus on the case where the subsystem A is far away from the

quench points (i.e. x ≫ b), this violation occurs. In this limit we have

∆SD
A ≃ ∆SS

A ≃ − l2

24x2
, (4.37)

both for a single and a double joining quench, where l is the size of A. Refer to the

appendix C for the derivation. This behavior is different from that in the holographic

CFTs as the first law of the form (4.22) cannot be applied to free fermion CFTs. The time
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Figure 27. Top: the behaviors of entanglement entropy at t = 0 in Dirac Fermion CFT for the

double joining local quench (blue) and the sum of two single local quenches (orange) at a = 1 (left),

a = 10 (middle) and a = 100 (right). We chose the subsystem A to be A = [x−1, x+1] and plotted

∆SA as a function of x. In the left graph at a = 1, the blue and orange graphs almost coincide. Bot-

tom: the behaviors of the difference of entanglement entropy ∆SD
A−∆SS(x=b)−∆SS(x=−b) at t = 0.

evolutions of ∆SA for the four different subsystems (i), (ii), (iii), (iv) sketched in figure 16,

are presented in figure 28. Again we find that the inequality (4.19) is violated in general.

In the late time limit t → ∞, ∆SA in the Dirac fermion CFT behaves as follows (x is

the center of the interval A and l is the length of A)

∆SS
A ≃ a2l2x2

3t6
,

∆SD
A ≃ G(b/a) · a

2l2

24t4
, (4.38)

where the function G(b/a) is plotted in figure 29. The exact expression is G(b/a) =

(cos2 α sin2 α)/a0(α)
2, which is calculated in appendix C, (C.23). Since G(0) = 0, the

above result for double quench indeed is reduced to that for the single quench at b = 0.

When b/a ≫ 1, we have G ≃ 1. Since we always find G(x) ≤ 1, the inequality (4.19)

is satisfied.

When the subsystem A is semi-infinite l ≫ t, we found that the behavior of ∆SA in

the Dirac fermion CFT is very similar to the one for the holographic CFTs. We can again

confirm the late time behavior (4.24) in this case.

5 Double splitting local quenches

In this section we study double splitting local quenches in two dimensional CFTs. Our

description of a double splitting quench is shown in figure 30. Two vertical boundaries

correspond to two quenches by splitting the system. We impose a conformal boundary

condition to these boundaries. This boundary condition will be extended to the bulk

boundary condition by the AdS/BCFT prescription as in the case of joining quenches.
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Figure 28. The plots of ∆Sdouble
A of the Dirac Fermion CFT for the double joining local quench

(left) and the difference ∆SD
A −∆SS(x=b)−∆SS(x=−b) between the double and single quench (right)

as a function of t. We set b = 50 and a = 1. From the top to bottom we presented results for the

four different setups (i), (ii), (iii) and (iv). In the left plots, the blue and orange graph describes

∆SD
A and ∆SS(x=b) − ∆SS(x=−b), respectively. In the right plots, the red graphs describe the

difference ∆SD
A −∆S

S(x=b)
A −∆S

S(x=−b)
A .
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Figure 29. A plot of function G(x).

Figure 30. The left figure describes Euclidean spacetime for double splitting quench. There are

two vertical boundaries at ±b + iτ (−a < τ < a), which means splitting quench at ±b. These

vertical boundaries correspond to splitting 1 dimensional system. a is cutoff for quench. The right

figure is the annulus ν coordinate which is defined by equation (5.1).

We prepare a state at τ = 0 by the Euclidean path integral from τ = −∞ to τ = 0,

and consider the time evolution by Lorentzian path integral via the Wick rotation τ = it.

We write the complex coordinate as w = x + iτ and its complex conjugate as w = x − iτ

in the Euclidean space. The Lorentzian spacetime after the Wick rotation is described by

the coordinate w− = x− t, w+ = x+ t.

First we consider the Euclidean time picture. The w plane coordinate can be mapped

into an annulus coordinate ν by the following transformation (see [36] for another applica-

tion of the same map9),

w(ν) = b

[

K(ν) +K

(

ν +
is

2

)

+ 1

]

, (5.1)

where the function K is defined by,

K(ν) =
1

πi
∂ν′ log θ1(ν

′, is)|ν′=ν (5.2)

θ1(ν, τ), = 2eπiτ/4 sinπν
∞
∏

k=1

(1− e2πikτ )(1− e2πiνe2πikτ )(1− e−2πiνe2πikτ ). (5.3)

9The parameter ρ in [36] is related to s in this work via ρ = e−πs.
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Figure 31. The relation between s and a/b.

Let us make some remarks about this conformal mapping. This maps C − ([−b −
ia,−b+ ia] ∪ [b− ia, b+ ia]) to [0, 1]× (−is/4, is/4) bijectively. Since Re(ν) = 0 line and

Re(ν) = 1 line are identified, the ν coordinate is an annulus coordinate. Im(ν) = ±s/4

lines correspond to the two vertical boundaries in w-coordinate.

As a nontrivial feature of this conformal mapping, Re(ν) direction corresponds to τ

direction in w-coordinate, and Im(ν) direction corresponds to x direction in w-coordinate.

Because of this, we write Re(ν) and Im(ν) as T and X in the next subsection.

Since the ν-annulus which has two boundaries is equivalent to the half of torus, s is the

moduli parameter of the torus which is the double of ν-annulus. The moduli parameter s

depends only on the ratio b/a. We plot the relation between them in figure 31.

In s → 0 or s → ∞ limit, the relation s = s(b/a) approximates,

s ∼















2b

a
(s → 0)

2

π
log

4b

a
(s → ∞).

(5.4)

To get above relations, we used the asymptotic behavior of elliptic theta function.

θ1(ν, is) ∼











2√
s
exp

(

−π

s

(

ν2 +
1

4

))

sinh
πν

s
(s → 0)

2 exp
(

−πs

4

)

sinπν (s → ∞).

(5.5)

5.1 Holographic dual geometry

In the previous subsection, we considered the annulus coordinate w, ν with two boundaries

and imposed the conformal boundary conditions to these boundaries. Now we consider

the AdS spacetime with boundary which is dual to the BCFT. We impose the Neumann

boundary condition on the boundary surface Q by following the AdS/BCFT construc-

tion [31, 32]. In particular we choose the vanishing tension TBCFT = 0 of Q or equally the

vanishing boundary entropy Sbdy = 0 for simplicity.
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Figure 32. The right figure describes “doubling” of ν annulus coordinate. Im(ν) = ±s/2 line are

identified, and also Re(ν) = 0, 1 line are identified, which corresponds to the whole torus.

The gravity dual of a holographic CFT on the ν-annulus is precisely a half of that of

a holographic CFT on the torus, which is given by pasting two copies of the ν-annulus.

Namely we add the “mirror” region to the original ν-annulus coordinate as depicted in

figure 32.

The standard known fact in AdS/CFT tells us that there is the Hawking-Page tran-

sition of the gravity dual geometry between the thermal AdS phase s < 1 and BTZ black

hole phase s > 1, depending on the torus moduli parameter s. Therefore the gravity dual

of the double splitting quench is also classified into the two phases:

(I)s < 1 (b/a < r∗ ≃ 1.1064) −→ Thermal AdS phase

(II)s > 1 (b/a > r∗ ≃ 1.1064) −→ BTZ BH phase.

Below we will study their geometries individually.

5.1.1 Thermal AdS geometry (s < 1)

Here we write −2πiν = XT + iTT . The periodicity of the torus coordinate becomes,

TT ∼ TT + 2π, XT ∼ XT + 2πs. (5.6)

In s < 1 case, the XT -direction becomes the smaller circle of the torus and thus will be

contractible cycle in the gravity dual. Thus the gravity dual of our double quench is given

by a half of the thermal AdS geometry (figure 33):

ds2T =
1

z2T

[

dz2T
1− z2T /s

2
+
(

1− z2T /s
2
)

dX2
T + dT 2

T

]

, (5.7)

where (TT , XT ) takes the values 0 ≤ TT < 2π and 0 ≤ XT < πs. In this case the boundary

surface Q (which is dual to the boundary of BCFT) has one connected component. The

Lorentzian time evolution is obtained from the Wick rotation TT = iTL,T as in figure 33.

– 36 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
8

Figure 33. The picture of the dual geometry in the thermal AdS phase. The left figure describes

Euclidean geometry, and the right figure describes Lorentzian time evolution. In this case we impose

the dual boundary surface Q has one connected component.

5.1.2 BTZ geometry (s > 1)

Here we write −2πiν/s = XB + iTB. The periodicity of torus coordinate becomes,

TB ∼ TB + 2π/s, XB ∼ XB + 2π. (5.8)

In the s > 1 case, the T -direction becomes the smaller circle of the torus and thus will be

contractible cycle in the gravity dual. Thus the gravity dual of our double quench is given

by a half of the BTZ black hole geometry (figure 34),

ds2B =
1

z2B

[

dz2B
1− s2z2B

+
(

1− s2z2B
)

dT 2
B + dX2

B

]

, (5.9)

where (TB, XB) takes the values 0 ≤ TT < 2π/s and 0 ≤ XT < π. In this case the boundary

surface Q (which is dual to the boundary of BCFT) has two connected components. The

Lorentzian time evolution is obtained from the Wick rotation TB = iTL,B as in figure 34,

which can be regarded as a half of the setup in [84].

It is also useful to remember that the half BTZ geometry has black hole entropy

given by

SBH =
c

6
πs. (5.10)

If we consider the limit b/a ≫ 1, we find from (5.4)

SBH ≃ c

3
log

4b

a
. (5.11)

Indeed we can identify this with the entanglement entropy between two regions [−b, b] and

its complement, which are separated by the double splitting quench. By setting the length

of the interval to be l = 2b and the cut off scale ǫ to be of order a, the entanglement

entropy (5.11) reproduces the well-known formula of [6].
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Figure 34. The picture of the dual geometry in the BTZ phase. The left figure describes Euclidean

geometry, and the right figure describes Lorentzian time evolution. In this case we impose the dual

boundary surface has two connected components Q1, Q2.

5.2 Energy stress tensor

The energy stress tensor in our double splitting quench can be computed by the conformal

transformation (5.1), which leads to the following transformation of the energy stress tensor:

Tww = (w′)−2 ·
(

Tνν +
c

24
· 2w

′w′′′ − 3(w′′)2

(w′)2

)

, (5.12)

where w′ = dw
dν .

The Tνν is the energy stress tensor of a two dimensional CFT on an annulus with the

flat metric. For a holographic CFT, the standard result tells us (in our normalization)

(I) Themal AdS phase : Tνν =
π2c

6s2
,

(II) BTZ phase : Tνν = −π2c

6
. (5.13)

Finally, we obtain the behavior of energy stress tensor as plotted in figure 35. Note that

in the thermal AdS phase, the energy density is discontinuous at the points x = ±b where

the splitting quench is performed. We can confirm the inequality (4.11).

It is also useful to study the behavior of energy density in the far away limit x → ∞.

We find the behavior

TD
ww ≃ H(b/a) · ca

2

8x4
= H(b/a) · TS

ww, (5.14)

where TD
ww and TS

ww are the energy stress tensor in the double and single splitting quench.

The function H(b/a) is plotted in the right picture in figure 35. Indeed, at the limit b → 0,

the double quench result coincides with that for the single quench H(0) = 1. Also in

the opposite limit b → ∞, we find H(∞) = 2. Since H always satisfies H(b/a) ≤ 2, the

inequality (4.11) is satisfied. Note that the property that the asymptotic ratio TD/TS

reaches the value H = 2 in the limit b/a → ∞ is very special to the double splitting
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Figure 35. The behaviors of energy stress tensor Tww in a holographic CFT under double splitting

quenches at the time t = 0. The left and middle graph describes the energy stress tensor as a

function of the position x with the quench parameter a = 6.3 (BTZ phase) and a = 76.3 (Thermal

AdS phase), respectively (we always set b = 50). The blue graph describes TD
ww, while the red

dotted one shows T
S(x=b)
ww + T

S(x=−b)
ww . The right picture is a plot of the function H(b/a) as a

function of b/a. Note that there is a phase transition at b/a = r∗ ≃ 1.1064.

quenches, which is missing in joining quenches. As we will explain in subsection 5.4 using

the holography, this is because the gravity dual includes two disconnected boundaries.

5.3 Entanglement entropy in holographic CFTs

Now we move on to the analysis of holographic entanglement entropy (HEE). We choose

the subsystem A to be an interval. The holographic entanglement entropy is computed as

min{Scon
A , Sdis

A }. As we will see below, in summary, we will be able to confirm (4.18) for the

connected geodesic contribution, which means that the inequality for the full HEE (4.19)

is again satisfied when A is enough away from the quench points.

First, consider the HEE at t = 0. If we choose A to be an interval [x− l/2, x+ l/2] and

consider the value of HEE as a function of l, we find a qualitatively similar behavior as that

the energy stress tensor TD
ww(x) discussed in the previous subsection. We can numerically

confirm that the inequality (4.18) is always satisfied (refer to figure 36 for an example of

time evolution). In particular if we take the limit l → 0, they are exactly proportional to

each other via the first law (4.22).

Similarly, the first law contribution gets dominant in the distant limit of subsystem

x → ∞ and the late time limit t → ∞, where the connected geodesic is favored. In these

limits we obtain:

∆Scon,D
A ≃ H(b/a) · ca

2l2

24x4
= H(b/a) ·∆Scon,S

A (x → ∞),

∆Scon,D
A ≃ H(b/a) · ca

2l2

24t4
= H(b/a) ·∆Scon,S

A (t → ∞), (5.15)

where H is the function introduced in (5.14). For these, clearly the inequality (4.18) is

satisfied.

Below we study the time evolution of HEE for the four different choices (i), (ii), (iii),

(iv) of the subsystem A, depicted in figure 16. We parametrize the location of the subsystem

A as A = [x1, x2]. We define ν∓,i as the corresponding point of w∓ = xi ∓ t (i = 1, 2). We

will discuss the behavior of HEE separately in the thermal AdS and BTZ phase.
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Figure 36. The ratio
∆SD

A

∆S
S(x=b)
A

+∆S
S(x=−b)
A

under the time evolutions of HEE in the splitting

quenches. We chose the subsystem (i) and set a = 2 and b = 50.

5.3.1 HEE in thermal AdS phase (s < 1)

We write the distance between boundary points as ∆T,∓ = (XT,1∓TL,T,1)−(XT,2∓TL,T,2) =

−2πi(ν∓,1 − ν∓,2) = −2πi∆ν∓.

Because the metric ds2T asymptotically approaches to that of the Poincaré AdS, the

UV cutoff ǫ in the original w-coordinate is related to the UV cutoff δT in (zT , XT , TT )-

coordinate as

ǫ =

∣

∣

∣

∣

dw

d(XT + iTT )

∣

∣

∣

∣

δT =
1

2π

∣

∣

∣

∣

dw

dν

∣

∣

∣

∣

δT . (5.16)

The HEE for the connected geodesic is,

Scon
A =

c

12
log

[

(

2s

δT

)4

sin2
(

∆T,−

2s

)

sin2
(

∆T,+

2s

)

]

(5.17)

=
c

12
log

[

( s

πǫ

)4 dw+,1

dν+,1

dw−,1

dν−,1

dw+,2

dν+,2

dw−,2

dν−,2
sinh2

(

π∆ν−
s

)

sinh2
(

π∆ν+
s

)]

. (5.18)

We can also calculate the HEE for the disconected geodesic.

Sdis
A = min

σ=±

(

c

12
log

[

( s

πǫ

)2 dw+,1

dν+,1

dw−,1

dν−,1
sinh2

(

πL1,σ

s

)])

+ (1 ↔ 2) + 2Sbdy, (5.19)

where Li,± (i = 1, 2) is the distance between a twist operator and its “mirror image”:

Li,± = ν−,i − ν+,i ±
is

2
. (5.20)

Sbdy is the boundary entropy of Q. We assume that the tension is vanishing TBCFT = 0 in

the AdS/BCFT and thus we have Sbdy = 0. We numerically computed the time evolution

of HEE for the four difference choices of the subsystem A in figure 37.

5.3.2 HEE in BTZ phase (s > 1)

Here, we write the distance between boundary points as ∆B,∓ = (XB,1∓TL,B,1)− (XB,2∓
TL,B,2) = −2πi(ν∓,1 − ν∓,2)/s = −2πi∆ν∓/s.
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Figure 37. The time evolution of HEE in thermal AdS phase. The horizontal axis describes

the time t, and the vertical axis describes ∆SA. We set b = 50 and a = 50 (this corresponds to

s = 0.945 . . . (< 1)), and the subsystem A is chosen to be (i), (ii), (iii) and (iv). The upper left

graph is for (i), the upper right is for (ii), the lower left is for (iii), and the lower right is for (iv).

Blue and orange curves describe the HEE for connected and disconnected geodesics, respectively.

Because the metric is asymptotically the same as the Poincaré AdS, the UV cutoff ǫ

of original w-coordinate is related to the UV cutoff δB of (zB, XB, TB)-coordinate with

ǫ =

∣

∣

∣

∣

dw

d(XB + iTB)

∣

∣

∣

∣

δB =
s

2π

∣

∣

∣

∣

dw

dν

∣

∣

∣

∣

δB. (5.21)

The HEE for the connected geodesic is,

Scon
A =

c

12
log

[

(

2

sδB

)4

sinh2
(

s∆B,−

2

)

sinh2
(

s∆B,+

2

)

]

(5.22)

=
c

12
log

[

(

1

πǫ

)4 dw+,1

dν+,1

dw−,1

dν−,1

dw+,2

dν+,2

dw−,2

dν−,2
sin2 (π∆ν−) sin

2 (π∆ν+)

]

. (5.23)

We can also calculate the HEE for the disconected geodesic. However in BTZ black hole

phase we have to be aware of homology constraint of geodesics, since there are two discon-

nected boundary surface Q1, Q2. Finally we get the formula of the HEE for disconected

geodesic,

Sdis
A = min

σ1=±,σ2=±

(

c

12
log

[

( s

πǫ

)2 dw+,1

dν+,1

dw−,1

dν−,1
sin2

(

πL1,σ1

s

)]

+ (1 ↔ 2)

+ησ1,σ2SBH) + Sbdy,1 + Sbdy,2,

(5.24)

where SBH is given by the black hole entropy (5.11) and Li is defined by equation (5.20).

The signs σ1 = ±1 and σ2 = ±1 describe the two possible end points on the two dis-

connected boundary surfaces Q1 (Imν = s/2) and Q2 (Imν = −s/2) for each of the two
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Figure 38. The time evolution of HEE in BTZ BH phase. The horizontal axis is for the time t,

and the vertical axis is for ∆SA. We set b = 50 and a = 0.05 (corresponding to s = 5.28 . . . (> 1)),

and the subsystem A is chosen to be (i), (ii), (iii) and (iv). The upper left graph is for (i), the

upper right is for (ii), the lower left is for (iii), and the lower right is for (iv). Blue and orange

curves describe the HEE for connected and disconnected geodesics, respectively.

disconnected geodesics. ησ1,σ2 takes either 0 or 1, depending on whether the homology con-

straint of HEE requires us to include a horizon surface in addition to the two disconnected

geodesics or not, which is explicitly given by

ησ1,σ2 =
1− σ1σ2

2
. (5.25)

Sbdy,1 and Sbdy,2 are the boundary entropies for the boundary surfaces Q1, Q2, which we set

to zero again. We numerically computed the time evolution of HEE for the four difference

choices of the subsystem A in figure 38.

5.3.3 Interpretations of the time evolutions of HEE

Now we would like to give physical interpretations of the behaviors of HEE, computed

before (refer to figures 37 and 38). First we would like to note that we can understand

most of qualitative features of the time evolutions from quasi-particle propagations. Refer

to figure 39 for a sketch. The quasi-particle picture is like this: when a simple splitting

quench cuts a line into two semi-infinite lines, entangled quasi-particles are created at the

two end points, and they go away from the splitting point at the speed of light. In our

double splitting quench case, this entangled pair creation occurs at both of x = b and

x = −b. Since the middle interval [−b, b] is isolated after the quench, the entangled pairs

created at the end points of this interval will confine inside it, bouncing due to the “hard

wall” at x = ±b. Therefore we will observe oscillations for the excitation in [−b, b]. On the

other hand, the other entangled pairs will propagate to x → ±∞ under the time evolution.
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Figure 39. Sketch of a quasi-particle picture. Since single quench creates two quasi-particles,

double splitting quench creates four quasi-particles, which is described by blue and yellow lines.

These particles move at light speed. Two particles go away from quench point and the other two

are trapped in the interval [−b, b].

Now let us examine the behaviors in more details for the four choices of subsystem

A = [x1, x2] of figure 16. Notice that the quasi-particle picture gets shaper for small values

of a, as this quench cut off parameter a essentially estimates the size of smearing length

scale of the quench. In the setup (i), we find that the connected geodesic is dominant. The

HEE gets enhanced in the interval [x1 − b, x2 − b], when the entangled pair enters into the

subsystem A.

In the setup (ii), the connected contribution is again dominant. We observe the oscil-

lations of entanglement pair propagations due to the bouncing at x = ±b, mentioned in

the above, though this effect is small for thermal AdS phase.

In the setup (iii), we only have the disconnected geodesic contribution in thermal AdS

phase. In the BTZ phase, initially the disconnected geodesic is favored, while later the

connected one dominates forever. In general, we expect that the HEE initially decreases

as one part of the entangled pair escapes from the subsystem A and that later the HEE

oscillates as in the case of (ii). We can estimate the final value of ∆SA around which the

HEE oscillates as follows:

∆SA =
1

6
log

2(b− x1)

ǫ
+

1

6
log

2(x2 − b)

ǫ
− 1

3
log

x2 − x1
ǫ

,

=
1

6
log

4(x2 − b)(b− x1)

(x2 − x1)2
. (5.26)

This can be evaluated as ∆SA ≃ −0.034 for our specific choice of (iii). This is because we

can regard the system as the ground state of a holographic CFT on the three disconnected

segments: [−∞,−b], [−b, b] and [b,∞]. Indeed, this estimation agrees with our results in

both thermal AdS and BTZ phase up to an error we expect.
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Figure 40. A time slice t = const. in a single splitting quench. The green curve is an identification

surface whose +x part and −x part should be identified to realize the true bulk geometry. The

shaded part is excluded. The thick black line is the boundary surface, which extends from the quench

point and falls towards +z direction. Essentially, there is a falling boundary surface extending from

the quench point and other parts of the bulk are connected.

In the setup of (iv), the disconnected one always gets dominant in the thermal AdS

phase. In this case, the HEE decreases initially because the entanglement parts get out of

the subsystem A and later approaches to a constant. This final value of ∆SA is negative. On

the other hand, in the BTZ phase, we find the initial increasing of ∆SA and it approaches

to a positive constant. This is because there exists non-vanishing entanglement entropy

between [−b, b] and its complement, namely the black hole entropy (5.10) only in the BTZ

phase. We can also estimate this final values as follows:

∆SA ≃ 1

6
log

2(−x1 − b)

ǫ
+

1

6
log

2(x2 − b)

ǫ
− 1

3
log

x2 − x1
ǫ

+ η̃ · π
6
s

=
1

6
log

4(x2 − b)(x1 + b)

(x2 − x1)2
+ η̃ · π

6
s, (5.27)

where η̃ = 0 in thermal AdS phase and η̃ = 1 in the BTZ phase. This leads to the estimation

∆SA ≃ −0.190 in thermal AdS phase and ∆SA ≃ 2.575 in the BTZ phase and indeed these

agree with our results in both thermal AdS and BTZ phase up to an error we expect.

5.4 Boundary surface in holographic double splitting local quenches

Similarly to the single/double joining quench, there should also exist boundary surfaces in

double splitting quench. Unfortunately, we cannot use technics introduced in section 4.4

to explicitly figure out the boundary surface this time. Nevertheless, we can still provide

its intuitive description.

Let us start by reviewing the bulk geometry of the gravity dual of a single splitting

quench at x = 0 [26]. As figure 40 shows, there is a boundary surface extending towards

+z direction. Besides, there exists a surface in the bulk given by equation (4.35), which is

realized as an identification surface. That is, we should identify +x part and −x part of

this surface to get the true bulk geometry. The metric is given by (4.28). In a sentence,
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Figure 41. Time slice t = 0 of the bulk in double splitting quench. The left figure shows case (I)

thermal AdS phase and the right figure shows case (II) BTZ phase. This is the expected description

of how the Hawking-Page transition should be realized in (x, t, z) coordinate.

there is a boundary surface extending from the quench point to +z direction, and other

parts of the bulk are connected.

With the knowledge of the single joining quench, let us give an intuitive description

of boundary surfaces in a double joining quench at x = ±b. In (I) thermal AdS phase,

b/a < r∗, we know that we have only one connected boundary surface in the Euclidean

setup (cf. figure 33). Therefore, the time slice t = 0 is expected to be roughly given by the

left figure of figure 41. The existence of this boundary surface separate the bulk into two

part. This is reduced to the boundary surface of a single splitting quench at b/a → 0. On

the other hand, in (II) BTZ phase, b/a > r∗, we know that we have two connected boundary

surface in the Euclidean setup (cf. figure 34). Therefore, the time slice t = 0 is expected to

be roughly given by the right figure of figure 41. This is the expected description of how

the Hawking-Page transition should be realized in (x, t, z) coordinate.

We can check that this expectation of boundary surfaces is consistent with the asymp-

totical behaviors of energy stress tensor (5.14) and connected EE (5.15). At b/a → 0, the

double splitting quench is simply reduced to a single splitting quench and thus we have

qD/qS = 1. When b/a is large, we have two heavy boundary surfaces. For an observer at

distant x or at distant t, the two boundary surfaces are almost at the same location. At

the same time, there is two times of mass because the existence of two boundary surfaces.

Thus we have qD/qS = 2.

5.5 Double splitting local quenches in massless free Dirac fermion CFT

Now we move on to the double splitting quenches in the Dirac Fermion CFT. Using the

result in [36] of the two point function on a cylinder (ν, ν̄), we can calculate the EE under

the double splitting local quenches as follows:

SA=
1

12
log

[

|dw1
dν1

|2|dw2
dν2

|2
(2πǫ)4

]

+
1

6
log

[

θ1 (ν1−ν2|is)θ1 (ν̄1−ν̄2|is)θ1
(

ν1−ν̄1+
is
2 |is

)

θ1
(

ν2−ν̄2+
is
2 |is

)

η(is)6 ·θ1
(

ν1−ν̄2+
is
2 |is

)

θ1
(

ν2−ν̄1+
is
2 |is

)

]

. (5.28)
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Figure 42. The ratio ∆SD
A − (∆S

S(x=b)
A + ∆S

S(x=−b)
A ) under the time evolutions of EE in the

splitting quenches of Dirac fermion CFT. We chose the subsystem (i) and set a = 2 and b = 50.

In the late time limit t → ∞ or the distant limit of subsystem x → ∞ with the

subsystem size and quench parameters kept finite, we obtain the following results:

∆SD
A ≃ ∆SS

A ≃ 1

6
log

4x1x2
(x1 + x2)2

< 0 (t → ∞),

∆SD
A ≃ 2∆SS

A ≃ − a4l2

12x6
(x → ∞). (5.29)

The result for t → ∞ is easy to understand as it coincides with the entanglement entropy

for vacuum state of a CFT defined on a half line. The late time t → ∞ result shows that the

inequality (4.18) is violated. Refer also to figure 42 for an explicit numerical computation.

5.5.1 EE between two disconnected regions

In the same way as in the holographic CFTs, we can regard the EE between the interval

[−b, b] and its complement as the thermal entropy of the Dirac fermion CFT on a strip (in

NS sector). The partition function at the inverse temperature β is given by

Z = e
β

24

∞
∏

m=1

(1 + e−β(m−1/2))2 =
θ3(0, iβ/2π)

η(iβ/2π)
, (5.30)

where we set the normalized inverse temperature (such that the width of strip is π)

β =
2π

s
. (5.31)

The entanglement entropy between the interval and its complement is computed as

Sth = β2 ∂

∂β

[

− logZ

β

]

= 2

∞
∑

m=1

log(1 + e−β(m−1/2)) + 2β

∞
∑

m=1

m− 1/2

1 + eβ(m−1/2)
. (5.32)

In the limit b/a → ∞ (i.e. s → ∞), we find Sth ≃ π2

3β , which coincides with the black hole

entropy SBH in the BTZ phase of holographic CFT.
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Figure 43. The time evolutions of EE in the Dirac Fermion CFT for the choices (i), (ii), (iii), (iv)

of subsystem A. We chose b = 50 and a = 50 (this corresponds to s = 0.945 . . . (< 1)).
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Figure 44. The time evolutions of EE in the Dirac Fermion CFT for the choices (i), (ii), (iii), (iv)

of subsystem A. We chose b = 50 and a = 0.05 (corresponding to s = 5.28 . . . (> 1)).

5.5.2 Numerical plots of time evolutions of EE

We plotted numerical computations of time evolutions of EE for the four different choices

of the subsystem A (see figure 16) in figure 43 for a = 50 and a = 5 in figure 44. We always

chose b = 50 for the quench parameter. We find physical interpretations of these results in

a way similar to those in holographic CFTs and thus we will not repeat them.
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6 Double operator local quenches

A milder version of a local quench state can be modeled by inserting a local operator

at some given position into the vacuum and performing the time evolution with original

Hamiltonian [27]. We call this an operator local quench. The distribution of the energy

density in such state depends only on the conformal dimension of the local operator [54].

In particular, if it is a primary operator with the conformal dimension ∆O = c
16 , then the

energy stress tensor of the operator local quench is identical to the joining [25] and the

splitting local quench [26] as pointed out in [33]. As we reviewed in section 2, it has been

also known that the growth of EE under the operator local quench scales as log t as is true

for the joining quenches.

In this section, we will analyze basic properties of a quantum state excited by insert-

ing two local primary operators. In particular, we will focus on the energy density and

compare it with the double joining quench results in the previous sections. We will also

compute the difference between this energy density and the sum of energy densities from

two “independent” local quenches. We will find that this change in the energy density is

negative supporting the interpretation in terms of the gravitational energy.

Generally, the evolution of entanglement entropy in double local operator quench re-

quires more details from the underlying CFT. Nevertheless, in configurations for which

we can apply the first-law [81], we expect entanglement entropy to show similar features

to the energy density itself. We will test this expectation by comparing our computations

in the double local operator quench with double joining quench results from the previous

section.

6.1 Setup

Our setup consists of two local primary operators O1 and O2 of conformal dimensions

∆1 = 2h1 = 2h̄1 and ∆2 = 2h2 = 2h̄2. We insert them at positions l1 and l2 respectively,

into the vacuum state of a CFT on the real line and then evolve such excited state with

original CFT Hamiltonian (the state breaks translational invariance and has a non-trivial

time evolution). We then define a double local operator quench state at time t as

|Ψ(t)〉 = e−iHtO2(l2 − iǫ2)O1(l1 − iǫ1) |0〉 , (6.1)

where in the above formula we “smeared” the operators in Euclidean time in order to

regulate the infinite energy from inserting them locally. More precisely we have

Oi(li − iǫi) ≡ e−ǫiHOi(li)e
ǫiH , (6.2)

so that ǫi is a cut-off associated to the operator Oi.

The density matrix is then given by

ρ(t) = N e−iHtO2(l2 − iǫ2)O1(l1 − iǫ1) |0〉 〈0| O†
1(l1 + iǫ1)O†

2(l2 + iǫ2)e
iHt, (6.3)
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τ

x

O
†
1
(z1, z̄1)

O
†
2
(z2, z̄2)

O2(z3, z̄3)

O1(z4, z̄4)

✏1

−✏1

−✏2

✏2

l1l2

Figure 45. Path integral representation of the density matrix of our setup.

and following the standard trick, we treat time t as purely imaginary so that, after inserting

the identity (exponents of ±iHt) between the operators and the vacuum, we can write

ρ(t) = NO2(l2 − i(ǫ2 + it))O1(l1 − i(ǫ1 + it)) |0〉 〈0| O†
1(l1 + i(ǫ1 − it))O†

2(l2 + i(ǫ2 − it))

≡ NO2(z3, z̄3)O1(z4, z̄4) |0〉 〈0| O†
1(z1, z̄1)O†

2(z2, z̄2). (6.4)

The normalisation N of the density matrix assures Trρ(t) = 1 and is given by the inverse

of the 4-point function that we denote by C4

N−1 = 〈0| O†
1(z1, z̄1)O†

2(z2, z̄2)O2(z3, z̄3)O1(z4, z̄4) |0〉 ≡ C4. (6.5)

In the above, we also introduced complex coordinates (z, z̄) = (x+ iτ, x− iτ) such that

z1 = l1 + i(ǫ1 − it), z̄1 = l1 − i(ǫ1 − it),

z2 = l2 + i(ǫ2 − it), z̄2 = l2 − i(ǫ2 − it),

z3 = l2 − i(ǫ2 + it), z̄3 = l2 + i(ǫ2 + it),

z4 = l1 − i(ǫ1 + it), z̄4 = l1 + i(ǫ1 + it). (6.6)

The path integral representation of our density matrix is shown in figure 45.

In the following, we will use the four-point function in 2d CFTs defined by a general

form

C4 = |z14|−4h1 |z23|−4h2 |1− z|4h2 〈0| O†
1(0)O†

2(z, z̄)O2(1)O1(∞) |0〉 ,
≡ |z14|−4h1 |z23|−4h2G(z, z̄), (6.7)
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where O1(∞) ≡ limz4,z̄4→∞ |z4|4h1O1(z4, z̄4) and the conformal cross-ratios are

z =
z12z34
z13z24

, z̄ =
z̄12z̄34
z̄13z̄24

. (6.8)

Finally, for later purpose, we can evaluate the cross-ratios for our complex insertion points.

They are independent on time t and equal to

0 < z = z̄ =
(l2 − l1)

2 + (ǫ1 − ǫ2)
2

(l2 − l1)2 + (ǫ1 + ǫ2)2
< 1. (6.9)

This way the geometry of our problem dictates particular limits of the CFT correlators.

Next, we will consider universal properties of the energy density in our double local

quench states.

6.2 Energy density

Now we consider the energy density in the double local operator excited state. We compute

it by analytic continuation from the Euclidean regime where it is evaluated as

Tzz(x) + T̄z̄z̄(x) ≡ Tr
[

ρ(t)(T (x) + T̄ (x))
]

, (6.10)

where T and T̄ denotes chiral and anti-chiral components of the energy-momentum tensor.

In two-dimensions, the energy density is universally fixed by the OPE of the stress-

tensor with the primary operator. Namely, we have the chiral one-point function of T (x)10

computed as

Tzz(x) =
〈T (x)O†

1(z1)O†
2(z2)O2(z3)O1(z4)〉
C4

=
1

C4

4
∑

i=1

(

hi
(x− zi)2

+
∂i

x− zi

)

C4, (6.11)

where h4 = h1 and h3 = h2 and derivatives are ∂i = ∂zi .

For example, in a free theory, our four-point function is given by

CF
4 = |z14|−4h1 |z23|−4h2 (6.12)

so G(z, z̄) = 1 in conventions of (6.7), such that the expectation value of the chiral stress

tensor becomes

TF
zz(x) =

h1z
2
14

(x− z1)2(x− z4)2
+

h2z
2
23

(x− z2)2(x− z3)2
. (6.13)

After analogous computation for the anti-chiral part and insertion of our points (6.6), we

get the Lorentzian energy density11

TF
zz(x) + T̄F

z̄z̄(x) =
4h1ǫ

2
1

((x− l1 − t)2 + ǫ21)
2
+

4h1ǫ
2
1

((x− l1 + t)2 + ǫ21)
2
,

+
4h2ǫ

2
2

((x− l2 − t)2 + ǫ22)
2
+

4h2ǫ
2
2

((x− l2 + t)2 + ǫ22)
2
. (6.14)

10Anti-chiral part is obtained by complete analogy.
11After analytic continuation, the Lorentzian energy is defined with an overall minus sign. With a slight

abuse of notation, and consistently with previous sections, we still denote it by Tzz(x) and similarly T̄z̄z̄(x)

for the anti chiral part.
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At t = 0, this energy describes two pulses (delta-function profiles regulated by ǫi) at

the insertion points of the operators. As time progresses, each pulse splits into left and

right-moving parts that propagate from the insertion points with the speed of light (for us

c = 1). Without the loss of generality, we can assume l2 < l1. Then the left-moving part

from point l1 scatters with the right-moving part from l2 and, after this scattering process,

both right-moving parts and left-moving parts continue propagation to the right and to

the left respectively.

The total energy inserted to the system is a constant of motion and in free theory it

becomes12

EF ≡
∫ ∞

−∞

(TF
zz(x) + T̄F

z̄z̄(x))
dx

2π
=

∆1

ǫ1
+

∆2

ǫ2
. (6.15)

For interacting theories the four point function is more complicated and G(z, z̄) 6= 1. Then,

the expectation value of the (chiral) energy momentum tensor becomes

Tzz(x) = TF
zz(x) +

4
∑

i=1

∂i logG(z, z̄)

x− zi
. (6.16)

Since we will be interested in genuine interacting CFTs, it is natural to define the difference

∆Tzz(x) = Tzz(x)− TF
zz(x) =

4
∑

i=1

∂i logG(z, z̄)

x− zi
, (6.17)

which can be further simplified to

∆Tzz(x) =
z14z23

∏4
i=1(x− zi)

z∂z logG(z, z̄), (6.18)

where we rewrote the derivatives w.r.t. zi in terms of ∂z. This way, the difference in the

energy density in double local operator quench state between interacting and free theories

can be computed as

∆Tzz(x) + ∆T̄z̄z̄(x) =

[

z14z23
∏4

i=1(x− zi)
z∂z +

z̄14z̄23
∏4

i=1(x− z̄i)
z̄∂z̄

]

logG(z, z̄). (6.19)

Note that in our setup, the dependence on t and x is universal and identical for all 2d

CFTs (z = z̄ does not depend on t or x). However, the sign and the “magnitude” of the

change in the energy depends on all the details of the interacting theory that are captured

by G(z, z̄).

More precisely, inserting points (6.6) we have

∆Tzz(x) =
4ǫ1ǫ2 z∂z logG(z, z̄)

((x− l1 − t)2 + ǫ21)((x− l2 − t)2 + ǫ22)
, (6.20)

and similarly for ∆T̄z̄z̄(x) with replacing t → −t.

12We conveniently normalize it by 2π.
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Clearly, the denominators of the left- and the right-moving contributions are positive

and the signs of the energy are determined by signs of derivatives of G with respect to the

real cross-ratios 0 < z, z̄ < 1.

Moreover, in the limit of large distance or the late time, the energy vanishes with the

fourth power of x or t respectively and with the same coefficient given by the derivatives

of logG, e.g.

∆Tzz(x) + ∆T̄z̄z̄(x) ≃
4ǫ1ǫ2 (z∂z + z̄∂z̄) logG(z, z̄)

x4
, (6.21)

and similarly for late t.

Finally, we can compute the total energy in the double local operator quench state in

interacting CFTs (that is constant in time)

E =
∆1

ǫ1
+

∆2

ǫ2
+

2(ǫ2 + ǫ1)(z∂z + z̄∂z̄) logG(z, z̄)

(l2 − l1)2 + (ǫ2 + ǫ1)2
. (6.22)

Next, we will study a few canonical examples of the above energy density in rational (2d

Ising model) and large-c holographic CFTs.

6.3 Examples

In the 2d Ising Model we have the energy operator ε with dimensions ∆ε = hε + h̄ε = 1

and σ operator ∆σ = hσ + h̄σ = 1
8 . We can use the three relevant correlators13

〈ε1ε2ε3ε4〉 = |z14z23|−2

∣

∣

∣

∣

1− z + z2

z

∣

∣

∣

∣

2

, (6.23)

〈σ1ε2ε3σ4〉 = |z14|−
1
4 |z23|−2

∣

∣

∣

∣

1 + z

2
√
z

∣

∣

∣

∣

2

(6.24)

〈σ1σ2σ3σ4〉 = |z14z23|−
1
4
|1 +

√
1− z|+ |1−

√
1− z|

2|z|1/4 . (6.25)

The first and second correlator get contributions only from a single conformal block since

the fusion rules are ε×ε = 1 and σ×ε = σ. However the third correlator gets contributions

from two blocks since σ × σ = 1 + ε.

On the other hand, as an example of a holographic correlator, we will take the Heavy-

Light 4-point function given by

〈OH
1 OL

2OL
3OH

4 〉 = |z14|−4hH |z23|−4hL

∣

∣

∣

∣

∣

z
1−α
2 (1− zα)

α(1− z)

∣

∣

∣

∣

∣

−4hL

(6.26)

with 0 < α =
√

1− 24hH

c ≤ 1.

We can show that for each of these correlators, the change in the energy density is

negative with respect to the free theory

∆Tzz(x) ≤ 0. (6.27)

13The subscripts of the operators denote their positions e.g. εi = ε(zi, z̄i).
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z ∂z log Gεε
z ∂z log Gεσ
z ∂z log Gσσ
z ∂z log GHL

Figure 46. Plots of z∂z logG that are all negative for our examples. We used hL = 2 and α = 0.7.

This sign is determined by the sign of the derivative of the logarithm of G(z, z̄) which for

the above examples14 becomes

z∂z logGεε = −(1− z)(1 + z)

1− z(1− z)
, (6.28)

z∂z logGεσ = − (1− z)

2(1 + z)
, (6.29)

z∂z logGσσ|z̄=z = −1

8
, (6.30)

z∂z logGOHOL
= −hL

[

1 + z

1− z
− α

1 + zα

1− zα

]

. (6.31)

Clearly, in each of the case above, for 0 < z < 1 and 0 < α < 1, these expressions (as

well as their anti-chiral counterparts) are negative hence the energy is smaller than in free

theories (see figure 46). Interestingly, for two σ excitations, the derivative is independent

on z for z = z̄.

For the Heavy-Light operators, this is consistent with our observation that the attrac-

tive gravitational force is manifested in holographic CFTs by the decrease in the energy

density relatively to free theories. On the other hand, results for the Ising model suggest

that even in complicated quantum gravity theories, holographically dual to rational CFTs,

gravitational force should remain attractive.

6.4 Change in energy in holographic CFTs

Let us now elaborate more on the holographic CFTs where the change in the energy and

derivatives of logG(z, z̄) can be interpreted geometrically.

For example, if we focus on the Heavy-Light correlator, function G(z, z̄) can be

written as

GOHOL
(z, z̄) = |1− z|4hL〈OH |OL(z, z̄)OL(1)|OH〉 ≃ V0(z)V̄0(z̄), (6.32)

where the V0(z)V̄0(z̄) are the vacuum conformal blocks.

14The subscript of G denotes the pair of operators used to excite the state.
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First, in order to get a geometric picture behind our computations, recall that the two

point function in the Heavy state (correlator in the middle) can be written in terms of a

geodesic length between points z and 1 at the boundary of the AdS3 conical singularity

geometry dual to the Heavy state. More precisely, we have

〈OH |OL(z, z̄)OL(1)|OH〉 ≃ exp
[

−hL(Lα
γ (z, 1) + Lα

γ (z̄, 1))
]

, (6.33)

where the geodesic length is given by

Lα
γ (z, 1) = 2 log

(

z
1−α
2 (1− zα)

αǫ

)

. (6.34)

Using this length, we can in fact rewrite the derivative of logGOHOL
as

∂z logGOHOL
= −hL ∂z

(

Lα
γ (z, 1)− L1

γ(z, 1)
)

, (6.35)

where the second term on the right is the geodesic length in the vacuum α = 1 and comes

from the |1− z|4hL pre-factor in (6.32). To write it as a geodesic length we added a cut-off

term that can be freely included under the z derivative. Analogous expression is obtained

for z̄’s.

We claim that, gravity and attractive gravitational force in particular, imply that the

above derivative is negative. A physical interpretation of this claim is as follows. The

derivative of the geodesic length with respect to z ∈ (0, 1) tells us how much the length

decreases once we move the end-point of the geodesic closer to 1 (decrease the distance

between the points). This decrease in the geodesic length is much bigger if the spacetime is

empty or there is nothing in spacetime that interacts gravitationally. On the other hand, if

there is a massive object in the bulk of AdS3 (as the conical singularity above) the decrease

in the length is smaller and constrained by the gravitational force from the object. That is

why the derivative of the difference between these lengths is always positive in holography

or the derivative of the logarithm of G is negative in holographic CFTs.

Let us see if/how these arguments could be generalized to arbitrary heavy correlators

in holographic CFTs. One of the features of the so-called “holographic CFTs” in two

dimensions, that are expected to have at least a large central charge and a sparse spectrum,

is that four-point correlators are dominated by the vacuum conformal block. In such

theories, the 4-point correlators take the form

CHOL
4 ≃ |z14|−4h1 |z23|−4h2 V0(z)V̄0(z̄), (6.36)

where G(z, z̄) ≃ V0(z)V̄0(z̄) is approximated by the product of the vacuum blocks. At large

central charge, blocks are represented by the exponential form

V0(z) ≃ exp
(

− c

6
f(z)

)

, (6.37)

where function f(z) depends on the cross-ratios as well as the dimensions of external op-

erators. Function f(z), as well as general conformal blocks, can in principle be determined

using the Virasoro algebra, the monodromy method etc. (see e.g. [85])
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In our setup, using this correlator we can again compute the expectation value (6.17)

∆Tzz(x) = − c

6

4
∑

i=1

∂if(z)

x− zi
≡ − c

6

4
∑

i=1

ci
x− zi

, (6.38)

where in the second equation we used the “accessory parameters” defined as derivatives of

∂if(z) = ci. The negativity of this expression implies that, for our insertion points and x

on the real line, the sum with ci is always positive.

Next, from the behaviour of the one-point function of T (x) at large x (forth-order

pole), we can get the following constraints between the parameters

4
∑

i=1

ci = 0,
4
∑

i=1

(

cizi −
6hi
c

)

= 0,
4
∑

i=1

(

ciz
2
i −

12hi
c

zi

)

= 0. (6.39)

From which we can determine three parameters, say c1, c3 and c4 such that, even for the

simplest case of all equal operators, ∆T (x) is expressed in terms of the dimensions h1/c

and one function c2. Hence, it is still a complicated expression that makes it not entirely

obvious why the change in the energy should be negative. To make further progress along

this route, one would have to impose further monodromy constraints what is beyond the

scope of this work.

On the other hand given the simplicity of (6.38) we believe that there may exist a

simple physical argument to prove that this quantity is negative and we leave it as an

interesting open problem.

6.5 Comparison with double joining quenches

Let us finally compare the results with the double joining quench and rewrite more general

computations of the previous section in terms of parameters used before. Connecting to

parameters of the double joining quench, for l2 = −l1 = b and ǫ2 = ǫ1 = a the cross-ratios

become

z = z̄ =
(b/a)2

1 + (b/a)2
. (6.40)

For the operator quench in free theories we have the energy density given as the sum of

two independent quenches

TD,F
zz = TS

zz(l1) + TS
zz(−l1). (6.41)

If we use parameters l2 = −l1 = b and ǫ2 = ǫ1 = a then explicitly

TF
zz(x) + T̄F

z̄z̄(x) =
4h1a

2

((x− b− t)2 + a2)2
+

4h1a
2

((x− b+ t)2 + a2)2

+
4h2a

2

((x+ b− t)2 + a2)2
+

4h2a
2

((x+ b+ t)2 + a2)2
. (6.42)

In particular, at t = 0 and for b = 0, when we bring operators together, the energy looks

like a single quench at t = 0 with the effective energy h1 + h2

TF
zz(x) =

4(h1 + h2)a
2

(x2 + a2)2
. (6.43)

This is analogous to what we observed in joining quenches.
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In interacting theories, we have generally

Tzz(x) = TF
zz(x) + ∆Tzz(x), (6.44)

where

∆Tzz(x) =
4a2z∂z logG

((x− b+ t)2 + a2) ((x+ b+ t)2 + a2)
(6.45)

and similarly for the anti-chiral part with t → −t.

At t = 0, the change in the energy density becomes

∆Tzz(x) =
4a2z∂z logG(z, z̄)

((x− b)2 + a2)((x+ b)2 + a2)
. (6.46)

Finally, for large x we can compute the total (chiral) energy density at t = 0

Tzz(x) ≃
4a2(h1 + h2 + z∂z logG)

x4
. (6.47)

This way, we can analytically compute the energy in double operator quench as a function

of b/a at t = 0 in our examples. Namely, we define at large x

∆TD
zz(x) =

4a2z∂z logG

x4
≡ 4a2

x4
J(b/a). (6.48)

Now, since we have15

Jεε (b/a) = − 1 + 2 b2

a2

1 + b2

a2
+ b4

a4

, (6.49)

Jεσ (b/a) = − 1

2(1 + 2 b2

a2
)
, (6.50)

Jσσ (b/a) |z̄=z = −1

8
, (6.51)

JOHOL
(b/a) = −hL











1 + 2
b2

a2
+ α

1 +

(

1+ b2

a2

b2

a2

)α

1−
(

1+ b2

a2

b2

a2

)α











, (6.52)

we can plot functions J(b/a) in the above examples in figure 47.

Clearly, the changes in the energy density are always negative. They start from the

dimension of the operator −2hi for the same operators and −hε for the mixed correlator as

well as−hL(1−α) for Heavy-Light at b/a = 0 and decrease with the separation distance b/a.

It is also interesting to consider the total energy density (6.44) divided by the total

energy density in free theories (6.43) in the limit of large x (at t = 0)

TD
zz(x)

TF
zz(x)

≃
(

1 +
z∂z logG

h1 + h2

)

=

(

1 +
J(b/a)

h1 + h2

)

. (6.53)

We plot this ratio for our examples in figure 48.

15In all cases (z∂z + z̄∂z̄) logG = 2z∂z logG = 2z̄∂z̄ logG since z = z̄.
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Figure 47. Plots of J(b/a) in our examples. We used hL = 2 and α = 0.7.

2 4 6 8 10

b

a

-0.2

0.2

0.4

0.6

0.8

1.0

T
D
zz/Tzz

F
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HL

Figure 48. Plots of the ratio (6.53). We used hL = 2 and α = 0.7 and hH = 10.

For σ’s this ratio is identically zero. At small separations this ratio vanishes for ε and

is equal to 1/9 for the mixed ε-σ case. For the Heavy-Light correlator we have the initial

value of the ratio given by 1 − hL(1−α)
hL+hH

. At large b/a the energy density approaches the

free theory result and the ratio is given by 1. We can also see that the ε and mixed ε-σ

examples have a minimum at b/a =
√

1
2

(√
3− 1

)

and b/a = 0 respectively.

From this behaviour we can see that from a large distance x the two local excitations

look independent when separated by large b/a. On the other hand, when they are close from

each other, the energy is always decreased due to interactions which result in “screening”

of the actual content of the two operators. These features are indeed similar to what we

observed for both the double joining quench (refer to the middle picture of figure 14) and the

double splitting quench (refer to the right picture of figure 35). This monotonically behavior

of the ratio common to all three local quenches when b is large, can be understood from

perturbative gravitational attractive force. However we would like to notice a difference

that when the two quenches occur at the same location i.e. b = 0, the ratio TD/TS goes
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back to 1 in the double joining and splitting quench (3.3), while in the operator local

quench the ratio is still monotonically decreasing and is smaller than 1 as b gets smaller.

7 Conclusions and discussions

In this work, we studied the dynamics of double local quenches in two dimensional CFTs.

We discussed three different types of double local quenches: (a) joining, (b) splitting, and

(c) operator.

In section 4 and 5, we analyzed the first two types of double quenches (a) and (b),

respectively. We showed that we can calculate the energy density via conformal transfor-

mations into an upper half plane (case (a)) and a cylinder (case (b)), respectively. Thus

the setups of (a) and (b) can be treated as examples of boundary conformal field the-

ories (BCFTs). For holographic CFTs, we constructed their gravity duals by using the

framework of AdS/BCFT and this allows us to calculate the entanglement entropy (EE).

Moreover, we worked out how the boundary surface Q looks like in the original coordinate

for the joining quench by directly performing the coordinate transformation. We also gave

a qulitative discussion about the boundary surface Q in splitting quench. For a Dirac

fermion CFT, we can explicitly write the twist operator by the bosonization procedure and

thus we can calculate the EE exactly by the conformal maps.

For the double operator local quench (c), we manage to calculate the values of energy

stress tensor using known expressions of conformal blocks in section 6. Besides free CFTs,

certain examples in the Ising model and holographic CFTs are examined.

Throughout our discussions in this paper, we focus on the inequality (3.1): qD(x=±b)−
qS(x=b) − qS(x=−b) ≤ 0, where q is a quantity which measures local excitation due to initial

local quenches. This inequality means that q for the double quench is upper bounded by

that for the simple sum of two single local quenches and it is inspired by the attractive

nature of the gravitational force.

Below let us give a more detailed summary of our new results in this paper. From

our explicit calculations, we find that the energy stress tensor for the double quench is

always upper bounded by that for the simple sum of two single local quenches, i.e. the

inequality (4.11). This is true for any 2d CFTs in the case of (a) joining (4.13) and (b)

splitting quench (5.14). In the case of (c) operator quench, we were able to confirm this

inequality analytically for the free, Ising as well as holographic CFT where one of the

operator is heavy and the other is light. For the free CFT in the case (c), we found that

the inequality is always saturated, while not in the other cases, for which refer to (6.48).

It will be an intriguing future problem to confirm that this inequality of energy stress

tensor is true for any double operator quenches. For holographic CFTs, we argued that

this inequality is due to the attractive nature of gravitational forces, because they will

make two heavy objects dual to the double quench get closer and because this will make

the back reactions to a far away observer smaller.

Moreover, we analyzed the time evolutions of EE under double (a) joining and (b)

splitting local quenches. In the former (a), we were able to interpret the evolutions of

the EE in terms of relativistic particle propagations both for the holographic CFT (refer
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to figures 17 and 19) and Dirac fermion CFTs (refer to figure 28) except the logarithmic

growth ∆SA ∼ c
3 log t when the subsystem A is semi-infinite. Interestingly this growth is

a half of the simple sum of two single joining local quenches (4.24). In the latter case (b),

again we find that the qualitative behaviors can be explained by the particle picture and

there is no logarithmic growth found as was so in the single quench case. However, only

for the holographic CFTs, there is a phase transition dual to the Hawking-Page transition,

when we change the value of the quench parameters (a, b), where a is the regularization

parameter of the quench and 2b is equal to the distance of the two quench points.

Moreover, the difference between the holographic CFTs and free Dirac fermion CFT

becomes sharp when we consider the inequality (4.19). For the holographic entanglement

entropy (HEE), this inequality is always satisfied if the subsystem A is enough separated

from the quench points. Refer to (4.21) and (4.23) for (a) joining case and to (5.15) for

(b) splitting case. However, the inequality (4.19) is violated in the free Dirac fermion CFT

even in such a case as in (4.37) for (a) joining case and (5.29) for (b) splitting case. Note

also that the inequality (4.18) is always true for the connected geodesic. This inequality

for the HEE can be regarded as a non-linear extension of that (4.11) for the energy stress

tensor. Indeed if we take the limit of vanishing size of the subsystem A, the first law of EE

tells us that (4.19) is reduced to (4.11).

There will be several future directions to study the double local quenches from differ-

ent viewpoints. For example, it will be interesting to probe the double quenches by other

quantum information theoretic quantities such as the computational complexity, informa-

tion metric and related quantities [86–92] (see [93, 94] for such calculations under a single

holographic local quench). Another direction will involve higher dimensional generaliza-

tions, where the AdS/BCFT construction will play an important role because the CFT

analysis will become very difficult.

Finally, we have to admit that our discussions about the relation between quantities in

CFT and gravitational force in its AdS gravity dual are not quantitative enough. This is

mainly because in 3D gravity there is no dynamically propagating gravitons in the bulk [95]

and thus there is no gravitational force which obeys a standard Newton’s law. Instead,

what we have in mind as gravitational force in this paper is that due to so called boundary

gravitons or Brown-Henneaux boundary excitations [96, 97], which is expected to lead to

attractive back-reactions (see e.g [85]). To make a quantitative comparison between CFT

quantities and gravitational force, it will be an interesting direction to try to repeat a

similar analysis of energy density and entanglement entropy in higher dimensional CFTs.
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A Analytical expressions of EE in single joining/splitting local quench

In this appendix, we summarize all the analytical expressions for the EE after a single

joining/splitting local quench, in both holographic CFT and Dirac free fermion CFT. These

are worked out under a → 0 and ǫ → 0. The subsystem A is chosen to be A = [x1, x2]

where 0 < |x1| < x2. This is a general choice due to the symmetry.

A.1 Single joining local quench

EE in holographic CFT. The connected EE Scon
A (t) and the disconnected EE Sdis

A (t)

are shown below. At 0 < t < |x2|,

Scon
A =











c

3
log(x2 − x1)/ǫ, (x1 > 0),

c

6
log

4(x21 − t2)(x22 − t2)

a2ǫ2
, (x1 < 0)

Sdis
A =

c

6
log
(

4x2|x1|/ǫ2
)

+ 2Sbdy. (A.1)

At |x1| < t < x2,

Scon
A =

c

6
log

2(x2 − x1)(t− x1)(x2 − t)

aǫ2
, Sdis

A =
c

6
log

4x2(t
2 − x21)

aǫ2
+ 2Sbdy. (A.2)

At late time t > x2,

Scon
A =

c

3
log(x2 − x1)/ǫ, Sdis

A =
c

6
log

4(t2 − x22)(t
2 − x21)

a2ǫ2
+ 2Sbdy. (A.3)

EE in Dirac free fermion CFT. The EE SA(t) are shown below. At 0 < t < |x1|,

SA =
1

6
log

4|x1|x2(x2 − x1)
2

(x2 + |x1|)2ǫ2
. (A.4)

At |x1| < t < x2,

SA =
1

6
log

4(x2 − x1)x2(x2 − t)(t2 − x21)

a(x1 + x2)(x2 + t)ǫ2
, (A.5)

At t > x2,

SA =
1

3
log(x2 − x1)/ǫ. (A.6)
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A.2 Single splitting quench

EE in holographic CFT. The connected EE Scon
A (t) and the disconnected EE Sdis

A (t)

are shown below. At 0 < t < |x1|,

Scon
A =

c

3
log(x2 − x1)/ǫ,

Sdis
A =

c

6
log

4(x21 − t2)(x22 − t2)

a2ǫ2
+ 2Sbdy. (A.7)

At |x1| < t < x2,

Scon
A =











c

6
log

2(x2 − x1)(t− x1)(x2 − t)

αǫ2
, (x1 > 0)

c

6
log

2(x2 − x1)(t+ x1)(x2 + t)

αǫ2
, (x1 < 0)

Sdis
A =

c

6
log

4|x1|(x22 − t2)

aǫ2
+ 2Sbdy. (A.8)

At t > x2, we have

Scon
A =











c

3
log(x2 − x1)/ǫ, (x1 > 0)

c

6
log

4(t2 − x21)(t
2 − x22)

a2ǫ2
, (x1 < 0)

Sdis
A =

c

6
log

4|x1|x2
ǫ2

+ 2Sbdy. (A.9)

EE in Dirac free fermion CFT. The EE SA(t) are shown below. At 0 < t < |x1|,

SA =
1

3
log(x2 − x1)/ǫ. (A.10)

At |x1| < t < x2,

SA =
1

6
log

4|x1|(x2 − x1)(t− |x1|)(x22 − t2)

(x1 + x2)(t+ |x1|)aǫ2
. (A.11)

At t > x2,

SA =
1

6
log

4|x1|x2(x2 − |x1|)2
(x2 + x1)2ǫ2

. (A.12)

B Time evolution of connected EE in single joining quench from the

length of geodesic

Take a time slice t = const. of the boundary surface (figure 22) and then let us focus on

the point who gives the minimal z. We call this a “tip” and clearly we can see that, at

t > 0, there is exactly one tip on ±x side respectively. Figure 49 shows numerical evidence

for that the z coordinate of plus side tip is proportional to
√
at at t ≫ a.
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Figure 49. Numerical evidence for that z coordinate of the tip is proportional to
√
at at t ≫ a.

(Left figure) Vertical axis: z2, horizontal axis: t. Green line: a = 1, yellow line: a = 1/2, blue line:

a = 1/4. We can see that the curve becomes linear at late time. (Right figure) Vertical axis: z2

ratio for different a, horizontal axis: t. Blue line: (z2 at a = 1/2)/ (z2 at a = 1), yellow line: (z2

at a = 1/4)/ (z2 at a = 1). We can see that at late time they goes to 1/2 and 1/4 respectively.

x

z

(t,
√

lt(1− l/t)1/2)

(t2/l, t(1− t2/l2)(1/2))

∝
√
at

lt

Figure 50. Evaluating the contribution of making a detour at the sharp corner of the boundary

surface on a time slice. We approximately regard the boundary surface as a half circle x2 + z2 = t2

and a vertical line x = t with a cut off
√
at at the tip.

Let us consider a large subregion A = [l1, l2] where 0 < l1 ≪ l2 and focus on the

connected entanglement entropy at l1 ≪ t ≪ l2: (refer to equation (2.24))

Scon
A − S

(0)
A

≃
c

6
log

t

a
+ . . . (B.1)

This contribution is expected to be given by making a detour at the tip of the boundary

surface. For simplicity, let us set l1 = 0, l2 = l, and evaluate the effect by making a detour

on a time slice t = const. (figure 50). We approximately regard the boundary surface as

a half circle x2 + z2 = t2 and a vertical line x = t with a cut off at the tip. Besides,

we approximately regard the metric as Poincaré metric. The variation of the geodesic is

expected to be roughly given by (red line+yellow line−blue line). Noting that the length
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of a quarter circle with radius R and cut off ǫ is given by

log(
R+

√
R2 − ǫ2

ǫ
), (B.2)

we can evaluate the length of the three lines:

(length of red line) ≃ log

(

t√
at

)

− log

(

t+
√

t2 − t2 + t4/l2
√

t2 − t4/l2

)

≃ log
√

t/a, (B.3)

(length of yellow line) ≃ log

(√
lt(1− t/l)1/2√

at

)

≃ log
√

l/a, (B.4)

(length of blue line) ≃ log

(

l/2 +
√

l2/4− t2 + t4/l2
√

t2 − t4/l2

)

− log

(

l/2 +
√

l2/4− lt+ t2√
lt− t2

)

≃ log
√

l/t. (B.5)

Thus, (red line+yellow line−blue line) gives a (1/2) log(t/a× l/a×t/l) = log(t/a) length

variation, which exactly matches the connected entanglement entropy variation (B.1).

C A derivation of some asymptotic behaviors of entanglement entropy

in joining quenches in Dirac fermion CFT

In this section, we derive analytically ∆SA = − l2

24x2 + · · · for A = [x − l
2 , x + l

2 ] in the

x → ∞ limit with fixed l at t = 0 for both of single joining local quenches and double

joining local quenches in Dirac fermion CFT. The entanglement entropy is given by

SDirac
A =

1

6
log

( |ξ1 − ξ2|2|ξ1 − ξ̄1||ξ2 − ξ̄2||g′(ξ1)||g′(ξ2)|
ǫ2(ξ1 − ξ̄2)(ξ2 − ξ̄1)

)

. (C.1)

In both cases, ξ takes the value on the unit circle and we can write as ξ = eiθ. In single

joining local quenches, the conformal map to the UHP is

w = g(ξ) = ia
ξ2 + 1

ξ2 − 1
. (C.2)

Using ξ = eiθ, we can write as

w = a cot θ, θ = arctan
a

w
,

g′(eiθ) =
iae−iθ

sin2 θ
(C.3)

Entanglement entropy in θ variable becomes

SDirac
A =

1

6
log

(

4a2 sin2 θ1−θ2
2

ǫ2 sin2 θ1+θ2
2 sin θ1 sin θ2

)

. (C.4)

For calculating the x−2 term in entanglement entropy, we need up to next next leading

term in (C.3):

θ =
a

w
− a3

3w3
+ · · · = a

w

(

1− a2

3w2

)

+ · · · . (C.5)
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In our setting, w1 = w̄1 = x − l
2 and w2 = w̄2 = x + l

2 . Therefore, we can evaluate

entanglement entropy as

SDirac
A ∼ 1

6
log

[

l2

ǫ2

(

1− l4

4x2

)]

∼ 1

3
log

l

ǫ
− l2

24x2
. (C.6)

This show that the subleading part of entanglement entropy is given by − l2

24x2 and therefore

∆SA ∼ − l2

24x2 .

Similarly, we can compute the x−2 term in double joining local quenches. The confor-

mal map from double local quenches to the UHP is

w = g(ξ) = i
a

a0(α)

(

1

2
sin2 α log(−iξ) +

ξ2 + 1

2(ξ2 − 1)
cos2 α

)

, (C.7)

where a0(α) =
1
2 sin

2 α log(cot α
2 ) +

1
2 cosα. In ξ = eiθ coordinate, the map becomes

w = g(θ) =
a

a0(α)

(

1

2
cos2 α cot θ +

(π

2
− θ
)1

2
sin2 α

)

,

g′(eiθ) = i
a

2a0(α)
e−iθ

(

sin2 α+
cos2 α

sin2 θ

)

, (C.8)

and entanglement entropy is written as

SDirac
A =

1

6
log

(

a2 sin2 α

a0(α)2
sin2 θ1−θ2

2 sin θ1 sin θ2

ǫ2 sin2 θ1+θ2
2

(

sin2 α+
cos2 α

sin2 θ1

)(

sin2 α+
cos2 α

sin2 θ2

)

)

.

(C.9)

What we need is to invert (C.8) analytically when w is large (θ is small). Generically, we

can determine the inverse of δ = f(ǫ) order by order. When δ and ǫ are small and f has

an expansion f(ǫ) = f1ǫ+ f2ǫ
2 + f3ǫ

3 + · · · , the inverse function is expanded as

ǫ =
1

f1
δ − f2

(f1)3
δ2 +

(

2(f2)
2

(f1)5
− f3

(f1)4

)

δ3 + · · · . (C.10)

To apply this technique, it is convenient to rewrite the map (C.8) as

a

2a0(α)

cos2 α

w − b
=

tan θ

1− (tan2 α)θ tan θ
= θ +

(

1

3
+ tan2 α

)

θ3 + · · · , (C.11)

where b = a b0(α)
a0(α)

and b0(α) = π
4 sin

2 α. Then, when w is large we can invert this map

using (C.10) as

θ =

(

a

2a0(α)

cos2 α

w − b

)

−
(

1

3
+ tan2 α

)(

a

2a0(α)

cos2 α

w − b

)3

+ · · · . (C.12)

Using this expansion and expression for entanglement entropy (C.9) with w1 = x− l
2 and

w2 = x+ l
2 , we can read off the x−2 term as

SDirac
A =

1

3
log

l

ǫ
− l2

24x2
+ · · · . (C.13)
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This show that the subleading part of entanglement entropy is given by − l2

24x2 even in

double joining local quenches and therefore ∆SA ∼ − l2

24x2 .

In the same manner, we can derive the t → ∞ limit of entanglement entropy for

A = [x − l
2 , x + l

2 ] with fixed x and l in single joining local quenches. In time dependent

cases, ξ 6= ξ̄ and therefore θ 6= θ̄. Entanglement entropy in single joining local quenches is

SDirac
A =

1

6
log

(

4a2 sin θ1−θ2
2 sin θ̄1−θ̄2

2 sin θ1+θ̄1
2 sin θ2+θ̄2

2

sin θ1+θ̄2
2 sin θ2+θ̄1

2 sin θ1 sin θ̄1 sin θ2 sin θ̄2

)

. (C.14)

The conformal map (C.3) is expanded as

θ =
a

w
− a3

3w3
+

a5

5w5
− a7

7w7
+O(w−8). (C.15)

In our choice of the branch, the expansion in large negative real w becomes

θ = π +
a

w
− a3

3w3
+

a5

5w5
− a7

7w7
+O(w−8). (C.16)

Using this expansion and expression for entanglement entropy (C.9) with w1 = x− t− l
2 ,

w̄1 = x+ t− l
2 , w2 = x− t+ l

2 and w2 = x+ t+ l
2 , we can read off the t−6 term as

SDirac
A =

1

3
log

l

ǫ
+

a2l2x2

3t6
+ · · · . (C.17)

Similarly, we can derive the t → ∞ limit of entanglement entropy for A = [x − l
2 , x + l

2 ]

with fixed x and l in double joining local quenches. Entanglement entropy in double joining

local quenches becomes

SDirac
A =

1

6
log

(

a2

a0(α)2
sin θ1−θ2

2 sin θ̄1−θ̄2
2 sin θ1+θ̄1

2 sin θ2+θ̄2
2

sin θ1+θ̄2
2 sin θ2+θ̄1

2

×
√

sin2 α+
cos2 α

sin2 θ1

√

sin2 α+
cos2 α

sin2 θ̄1

√

sin2 α+
cos2 α

sin2 θ2

√

sin2 α+
cos2 α

sin2 θ̄2

)

.

(C.18)

The conformal map for double joining local quenches is expanded up to the fifth order of

θ as

a

2a0(α)

cos2α

w−b
=

tanθ

1−(tan2α)θ tanθ
= θ+

(

1

3
+tan2α

)

θ3+

(

2

15
+
2

3
tan2α+tan4α

)

θ5+· · · .
(C.19)

The inverse of δ = f(ǫ) with the expansion f(ǫ) = f1ǫ+ f2ǫ
2 + f3ǫ

3 + f4ǫ
4 + f5ǫ

5 + · · · is

given by

ǫ =
1

f1
δ − f2

(f1)3
δ2 +

(

2(f2)
2

(f1)5
− f3

(f1)4

)

δ3 +

(

−5(f2)
3

(f1)7
+

5f2f3
(f1)6

− f4
(f1)5

)

δ4

+

(

14(f2)
4

(f1)9
− 21(f2)

2f3
(f1)8

+
3(f3)

2

(f1)7
+

6f2f4
(f1)7

− f5
(f1)6

)

δ5 +O(δ6). (C.20)

– 65 –



J
H
E
P
0
9
(
2
0
1
9
)
0
1
8

Using this expansion, we can invert the map (C.8) up to the order of w−5 as

θ =

(

a

2a0(α)

cos2 α

w − b

)

−
(

1

3
+ tan2 α

)(

a

2a0(α)

cos2 α

w − b

)3

+

(

1

5
+

4

3
tan2 α+ 2 tan4 α

)(

a

2a0(α)

cos2 α

w − b

)5

+O(w−6). (C.21)

When w is large in negative real direction, we get the following expansion in our choice of

the branch:

θ = π +

(

a

2a0(α)

cos2 α

w + b

)

−
(

1

3
+ tan2 α

)(

a

2a0(α)

cos2 α

w + b

)3

+

(

1

5
+

4

3
tan2 α+ 2 tan4 α

)(

a

2a0(α)

cos2 α

w + b

)5

+O(w−6) (C.22)

From these expansions and (C.18), we obtain the t→∞ behavior in double local quenches as

SDirac
A =

1

3
log

l

ǫ
+

cos2 α sin2 α

a0(α)2
a2l2

24t4
+ · · · . (C.23)

Through the relation b
a = b0(α)

a0(α)
, the coefficient of the subleading term cos2 α sin2 α

a0(α)2
becomes

the function on b
a . This function G(b/a) = cos2 α sin2 α

a0(α)2
is the one that is given in the main

part of this paper.
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[65] A. Štikonas, Scrambling time from local perturbations of the rotating BTZ black hole, JHEP

02 (2019) 054 [arXiv:1810.06110] [INSPIRE].

– 69 –

https://doi.org/10.1007/JHEP03(2018)046
https://arxiv.org/abs/1706.09652
https://inspirehep.net/search?p=find+EPRINT+arXiv:1706.09652
https://doi.org/10.1103/PhysRevLett.67.161
https://inspirehep.net/search?p=find+J+%22Phys.Rev.Lett.,67,161%22
https://doi.org/10.1007/JHEP05(2015)152
https://arxiv.org/abs/1412.6226
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.6226
https://arxiv.org/abs/1809.01197
https://inspirehep.net/search?p=find+EPRINT+arXiv:1809.01197
https://doi.org/10.1007/JHEP07(2019)065
https://arxiv.org/abs/1810.10601
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.10601
https://arxiv.org/abs/1811.03597
https://inspirehep.net/search?p=find+EPRINT+arXiv:1811.03597
https://doi.org/10.1007/JHEP05(2015)107
https://arxiv.org/abs/1405.5469
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5469
https://doi.org/10.1103/PhysRevD.90.041701
https://arxiv.org/abs/1403.0702
https://inspirehep.net/search?p=find+EPRINT+arXiv:1403.0702
https://doi.org/10.1093/ptep/ptu122
https://arxiv.org/abs/1405.5946
https://inspirehep.net/search?p=find+EPRINT+arXiv:1405.5946
https://doi.org/10.1103/PhysRevD.89.066015
https://arxiv.org/abs/1311.4173
https://inspirehep.net/search?p=find+EPRINT+arXiv:1311.4173
https://doi.org/10.1007/JHEP01(2015)102
https://arxiv.org/abs/1410.2287
https://inspirehep.net/search?p=find+EPRINT+arXiv:1410.2287
https://doi.org/10.1007/JHEP07(2015)168
https://arxiv.org/abs/1412.7520
https://inspirehep.net/search?p=find+EPRINT+arXiv:1412.7520
https://doi.org/10.1007/JHEP04(2015)099
https://arxiv.org/abs/1501.00757
https://inspirehep.net/search?p=find+EPRINT+arXiv:1501.00757
https://doi.org/10.1007/JHEP10(2015)173
https://arxiv.org/abs/1507.01157
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.01157
https://doi.org/10.1007/JHEP02(2016)150
https://arxiv.org/abs/1507.04352
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.04352
https://doi.org/10.1103/PhysRevD.93.105032
https://arxiv.org/abs/1512.08132
https://inspirehep.net/search?p=find+EPRINT+arXiv:1512.08132
https://doi.org/10.1103/PhysRevD.92.065010
https://doi.org/10.1103/PhysRevD.92.065010
https://arxiv.org/abs/1507.00582
https://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00582
https://doi.org/10.1093/ptep/ptw157
https://arxiv.org/abs/1602.06542
https://inspirehep.net/search?p=find+EPRINT+arXiv:1602.06542
https://doi.org/10.1007/JHEP08(2015)011
https://arxiv.org/abs/1503.08161
https://inspirehep.net/search?p=find+EPRINT+arXiv:1503.08161
https://doi.org/10.1007/JHEP02(2019)054
https://doi.org/10.1007/JHEP02(2019)054
https://arxiv.org/abs/1810.06110
https://inspirehep.net/search?p=find+EPRINT+arXiv:1810.06110


J
H
E
P
0
9
(
2
0
1
9
)
0
1
8

[66] M. Rangamani, M. Rozali and A. Vincart-Emard, Dynamics of Holographic Entanglement

Entropy Following a Local Quench, JHEP 04 (2016) 069 [arXiv:1512.03478] [INSPIRE].

[67] A. Sivaramakrishnan, Localized Excitations from Localized Unitary Operators, Annals Phys.

381 (2017) 41 [arXiv:1604.00965] [INSPIRE].

[68] P. Caputa and M.M. Rams, Quantum dimensions from local operator excitations in the Ising

model, J. Phys. A 50 (2017) 055002 [arXiv:1609.02428] [INSPIRE].

[69] T. Numasawa, Scattering effect on entanglement propagation in RCFTs, JHEP 12 (2016)

061 [arXiv:1610.06181] [INSPIRE].

[70] M. Nozaki and N. Watamura, Quantum Entanglement of Locally Excited States in Maxwell

Theory, JHEP 12 (2016) 069 [arXiv:1606.07076] [INSPIRE].

[71] J.R. David, S. Khetrapal and S.P. Kumar, Universal corrections to entanglement entropy of

local quantum quenches, JHEP 08 (2016) 127 [arXiv:1605.05987] [INSPIRE].

[72] P. Caputa, Y. Kusuki, T. Takayanagi and K. Watanabe, Evolution of Entanglement Entropy

in Orbifold CFTs, J. Phys. A 50 (2017) 244001 [arXiv:1701.03110] [INSPIRE].

[73] M. Nozaki and N. Watamura, Correspondence between entanglement growth and probability

distribution of quasiparticles, Phys. Rev. D 96 (2017) 025019 [arXiv:1703.06589] [INSPIRE].

[74] A. Jahn and T. Takayanagi, Holographic entanglement entropy of local quenches in

AdS4/CFT3: a finite-element approach, J. Phys. A 51 (2018) 015401 [arXiv:1705.04705]

[INSPIRE].

[75] I.Y. Aref’eva, M.A. Khramtsov and M.D. Tikhanovskaya, Thermalization after holographic

bilocal quench, JHEP 09 (2017) 115 [arXiv:1706.07390] [INSPIRE].
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