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DOUBLE LOGARITHMIC INEQUALITY
WITH A SHARP CONSTANT

S. IBRAHIM, M. MAJDOUB, AND N. MASMOUDI

(Communicated by Christopher D. Sogge)

Abstract. We prove a Log Log inequality with a sharp constant. We also
show that the constant in the Log estimate is “almost” sharp. These estimates
are applied to prove a Moser-Trudinger type inequality for solutions of a 2D
wave equation.

1. Introduction and statement of the results

By the Sobolev embedding theorem, it is well known that the Sobolev space
H1(R2) is embedded in all Lebesgue spaces Lp(R2) for 2 ≤ p < ∞ but not in
L∞(R2). Moreover, H1 functions are in a so-called Orlicz space, i.e. their expo-
nential powers are integrable functions. Precisely, we have the following Moser-
Trudinger inequality (see [1, 11, 14, 16]).

Proposition 1.1. Let α ∈ (0, 4π). A constant cα exists such that

(1)
∫

R2

(
exp

(
αu(x)2

)
− 1

)
dx ≤ cα‖u‖2

L2

for all u in H1(R2) such that ‖∇u‖L2(R2) ≤ 1. Moreover, if α ≥ 4π, then (1) is
false.

Remark 1.2. We point out that α = 4π becomes admissible in (1) if we require
‖u‖H1(R2) ≤ 1 rather than ‖∇u‖L2(R2) ≤ 1. Precisely, we have

(2) sup
‖u‖H1(R2)≤1

∫
R2

(
exp

(
4πu(x)2

)
− 1

)
dx < ∞,

and this is false for α > 4π.

In this paper, we show that we can control the L∞ norm by the H1 norm and
a stronger norm with a logarithmic growth or double logarithmic growth. The
inequality is sharp for the double logarithmic growth.

Recall that H1 is the usual Sobolev space endowed with the norm ‖u‖2
H1 =

‖∇u‖2
L2 + ‖u‖2

L2 . For any real number α ∈ ]0, 1[, we denote by Ċα the sub-space of
α- Hölder continuous functions endowed with the semi-norm

‖u‖Ċα := sup
x�=y

|u(x) − u(y)|
|x − y|α .
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Also, we denote ‖u‖Cα := ‖u‖Ċα +‖u‖L∞ and define Nα(u) to be the ratio Nα(u) :=
‖u‖Ċα

‖∇u‖L2
. For any bounded domain Ω in R

2, define H1
0 (Ω) to be the completion in

the Sobolev space H1(Ω) of smooth and compactly supported functions.

The main result of this paper is the following theorem.

Theorem 1.3 (Double logarithmic inequality). Let α ∈ ]0, 1[ and let B1 be the
unit ball in R

2. Any function in H1
0 (B1)∩ Ċα(B1) is bounded. Moreover, a positive

constant C0 exists such that for any function u ∈ H1
0 (B1) ∩ Ċα(B1), we have

(3) ‖u‖2
L∞ ≤ 1

2πα
‖∇u‖2

L2 log
[
e3 + C0Nα(u)

√
log(2e + Nα(u))

]
,

and the constant 1
2πα in (3) is sharp.

Note that log(e) = 1. Our second result concerns the following logarithmic
inequality.

Theorem 1.4 (Logarithmic inequality). Let α be in ]0, 1[. For any real number
λ > 1

2πα , a constant Cλ exists such that, for any function u ∈ H1
0 (B1) ∩ Ċα(B1),

we have

(4) ‖u‖2
L∞ ≤ λ‖∇u‖2

L2 log
(
Cλ + Nα(u)

)
.

Moreover, the above inequality does not hold for λ = 1
2πα .

2. A Littlewood-Paley proof

To prove the fundamental theorems, we start by showing that inequality (4) can
easily be obtained with an unknown absolute constant instead of 1

2πα . To do so,
we give a brief review of the Littlewood-Paley theory, and we refer the reader to [5]
for a thorough treatment. Denote by C0 the annular ring defined by

C0 = {ξ ∈ R
2 such that

3
4

<| ξ |< 8
3
},

and choose two nonnegative radial functions χ and ϕ belonging respectively to
D(B(0, 4/3)) and D(C0) such that

∀ ξ ∈ R
2, χ(ξ) +

∑
j∈N

ϕ(2−jξ) = 1,

∀ ξ ∈ R
2\{0},

∑
j∈Z

ϕ(2−jξ) = 1.

Denote h = F−1ϕ and define the frequency projectors ∆j and ∆̇j by

for j ∈ Z, ∆̇ju = ϕ(2−jD)u = 22j

∫
R2

h(2jy)u(x − y)dy,

if j ≥ 0, ∆ju = ∆̇ju,

∆−1u = χ(D)u = F−1 (χ(ξ)û(ξ)) ,

if j ≤ −2, ∆ju = 0 .

Recall that

‖∇u‖L2 ∼
( ∑

j∈Z

22j‖∆̇ju‖2
L2

)1/2
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and
‖u‖Ċα ∼ sup

j∈Z

(
2jα‖∆̇ju‖L∞

)
.

We mention that C will be used to denote a constant which may vary from line to
line.

We have the following result in the whole space.

Proposition 2.1. Let α be in ]0, 1[. For any function u ∈ Cα(R2) ∩ H1(R2), one
has

(5) ‖u‖2
L∞(R2) ≤ C‖u‖2

L2(R2) + C‖∇u‖2
L2(R2) log

(
e + Nα(u)

)
.

Proof. Write

u = ∆−1u +
∞∑

j=0

∆ju = ∆−1u +
l−1∑
j=0

∆ju +
∞∑
j=l

∆ju,

where l is a nonnegative integer which will be chosen later.
Using Bernstein’s inequality, we get

‖u‖L∞ ≤ C‖∆−1u‖L2 + C

l−1∑
j=0

2j‖∆ju‖L2 +
∞∑
j=l

2−jα
(
2jα‖∆ju‖L∞

)

≤ C‖u‖L2 + C
√

l
( l−1∑

j=0

22j‖∆ju‖2
L2

)1/2

+ C
( ∞∑

j=l

2−jα
)
‖u‖Ċα

≤ C

(
‖u‖L2 +

√
l ‖∇u‖L2 +

2−αl

1 − 2−α
‖u‖Ċα

)
,

so

‖u‖2
L∞ ≤ C

(
‖u‖2

L2 + l ‖∇u‖2
L2 +

2−2αl

(1 − 2−α)2
‖u‖2

Ċα

)
.

Denoting by ]x[ the integer part of the real number x and choosing

l := Max
(
1, 1 +

]
2 log2

(
Nα(u)2

) [)
,

the proof of Proposition 2.1 is achieved. �

Clearly, if u is supported in the unit ball B1, then using the Poincaré inequality
and Proposition 2.1, we get

(6) ‖u‖2
L∞ ≤ C‖∇u‖2

L2 log
(
C0 + Nα(u)

)
,

for some constant C0 big enough.

3. Proof of Theorem 1.3

To prove (3) and the fact that the constant is sharp, it is sufficient to show that

(7) 2πα = inf
u∈H1

0 (B1)∩Ċα(B1)

‖∇u‖2
L2 log

[
e3 + C0Nα(u)

√
log(2e + Nα(u))

]
‖u‖2

L∞
,
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for any C0 big enough. Let us start by proving the sharpness of the constant.
Define uk(x) = fk(−2 log |x|), where for all nonnegative integer k

fk(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 if t ≤ 0,√
k
4π

t
k if 0 ≤ t ≤ k,√

k
4π if t ≥ k.

These functions were introduced in [11] to show the optimality of the exponent 4π
in Trudinger-Moser inequality (see also [1] and [10]). An easy computation shows
that ‖∇uk‖2

L2 = 1. By interpolation and since fk is nonnegative, we have

‖uk‖Ċα ≤ ‖uk‖1−α
L∞ ‖uk‖α

Lip,

where ‖uk‖Lip = sup
x�=y

|uk(x) − uk(y)|
|x − y| . Hence

‖uk‖Ċα ≤ C k
1
2−α exp

(
αk

2

)
.

Denoting by

R(u) :=
‖∇u‖2

L2 log
[
e3 + C0Nα(u)

√
log(2e + Nα(u))

]
‖u‖2

L∞
,

it is clear that

R(uk) ≥ inf
u∈H1

0 (B1)∩Ċα(B1)

‖∇u‖2
L2 log

[
e3 + C0Nα(u)

√
log(2e + Nα(u))

]
‖u‖2

L∞
.

Taking the limit as k → ∞, we deduce that

2πα ≥ inf
u∈H1

0 (B1)∩Ċα(B1)

‖∇u‖2
L2 log

[
e3 + C0Nα(u)

√
log(2e + Nα(u))

]
‖u‖2

L∞
.

To prove (3), we start by noting that for any function u, the norms ‖∇u‖L2

and ‖u‖Ċα are nonincreasing under symmetric nonincreasing rearrangements, while
‖u‖L∞ remains unchanged.

Using the fact that for all C > 0

t → f(t) := t2 log

[
e3 +

C

t

√[
log(2e +

1
t
)
] ]

is increasing, it is sufficient to check the minimizer figured in (7) in the class of
nonnegative, nonincreasing and radially symmetric functions.

Without loss of generality, we can normalize ‖u‖L∞ to be equal to 1. Since
u vanishes on the boundary, we deduce that ‖u‖Ċα is larger than or equal to 1.
Moreover, if ‖u‖Ċα = 1, then necessarily, u(x) = 1 − |x|α and the inequality is
trivial. In the sequel, we will assume that ‖u‖Ċα > 1.

Let H1
0,rad(B1) be the space of all nonincreasing and radially symmetric functions

in H1
0 (B1). For any parameter D > 1, we denote by KD the closed convex subset

of H1
0,rad(B1) defined by

KD = {u ∈ H1
0,rad(B1) : u(r) ≥ 1 − Drα, r ∈ ]0, 1]}.(8)
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DOUBLE LOGARITHMIC INEQUALITY 91

Note that the set of radially symmetric functions which satisfy ‖u‖Ċα ≤ D is
included in KD. Hence, to get the result, it is sufficient to prove that

2πα ≤ inf
D≥1

inf
{u∈KD , ‖u‖L∞=1, ‖u‖Ċα=D}

‖∇u‖2
L2 log

[
e3 +

C0D

‖∇u‖L2

√
log(2e +

D

‖∇u‖L2
)

]

or just that

2πα ≤ inf
D≥1

inf
{u∈KD}

‖∇u‖2
L2 log

[
e3 +

C0D

‖∇u‖L2

√
log(2e +

D

‖∇u‖L2
)

]
.

Consider the problem of minimizing

I[u] := ‖∇u‖2
L2(B1)

(9)

among all the functions belonging to the set KD. This is a variational problem
with obstacle. It is well known (see, for example, Kinderlehrer-Stampacchia [9] and
L. C. Evans [6]) that it has a unique minimizer u∗ which is variationally character-
ized by ∫

B1

∇u∗ · ∇v dx ≥ ‖∇u∗‖2
L2(B1)

,(10)

for any v ∈ KD. Moreover u∗ is in the Sobolev space W 2,∞(B1). Hence the radially
symmetric set

O := {x ∈ B1 : u∗(x) > 1 − D|x|α}
is open and u∗ is harmonic in O. On the other hand, note that any radially
symmetric harmonic functions in R

2 can only coincide in a unique tangent point
with the function r → 1 − Drα. Note also that because of the boundary condition
at r = 1, u∗ cannot start to be harmonic near r = 0. Therefore there exists a
unique a ∈ ]0, 1[ such that

u∗(r) = 1 − Drα if r ∈ [0, a],(11)

u∗(r) = (1 − Daα)
log r

log a
if r ∈ [a, 1],

also satisfy the tangent condition

aα =
1 − Daα

D| log(aα)| .(12)

Note that if D → 1, then a → 1, and therefore (12) still makes sense in the limit
case.

In particular, note that ‖u∗‖L∞ = 1, ‖u∗‖Ċα = D, and

‖∇u∗‖2
L2 = παD2a2α − 2π(

1 − Daα

log(a)
)2 log(a).(13)

Substituting D from (12) into (13), we get

‖∇u∗‖2
L2 = 2πα

1/2 − log(aα)
(1 − log(aα))2

.

Denoting by x := aα ∈]0, 1[, we have

‖∇u∗‖2
L2 = 2πα

1/2 − log(x)
(1 − log(x))2

(14)
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and

‖u∗‖Ċα =
1

x(1 − log(x))
.(15)

Setting

g(x) :=
1

x
√

2πα(1/2 − log(x))
and

FC(x) :=
1
2 − log(x)

(1 − log(x))2
log

[
e3 + Cg(x)

√
log(2e + g(x))

]
,

it is sufficient to show that a constant C0 exists such that for all 0 < x ≤ 1, the
function FC0 satisfies

(16) FC0(x) ≥ 1.

First, observe that for every 0 < x ≤ 1
1
2 − log(x)

(1 − log(x))2
≥ 1

(2 − log(x))
.

Hence for any C > 0, (16) holds if 2 − log x ≤ 3, namely if x ≥ 1/e.
In the sequel, we suppose that x ≤ 1/e, hence

F (x) ≥ 1
(2 − log(x))

[
− log(x) + log(

C0√
2πα

) − 1
2

log(1/2 − log(x))

+
1
2

log(log(2e + g(x)))
]

≥ 1 +
1

(2 − log(x))

[
log(

C0

e2
√

2πα
) +

1
2

log
( log(2e + g(x))

(1/2 − log(x))

)]
.(17)

The function h(x) = log(2e+g(x))
(1/2−log(x)) is bounded away from zero on (0, 1/e). Hence,

we can find C0 big enough such that the second term on the right-hand side of (17)
is non-negative. This achieves the proof of Theorem 1.3. �

4. Proof of Theorem 1.4

The proof of Theorem 1.4 is similar to that of Theorem 1.3. Indeed, consider u∗

the minimizer of the Dirichlet norm (9) among all functions in KD defined in (8).
Note that according to (14) and (15), we have

‖∇u∗‖2
L2 log

(
Cλ + Nα(u∗)

)
:= H(x),

where

H(x) = 2πα
1/2 − log(x)
(1 − log(x))2

log

(
Cλ +

1
x
√

2πα(1/2 − log(x))

)
.

Taking Cλ = e in H(x), we see that H(x) goes to 2πα as x goes to 0. Hence, for
any λ > 1

2πα , there exists xλ > 0 such that λH(x) ≥ 1, for any 0 < x < xλ and
Cλ ≥ e. Now, if x ∈ [xλ, 1], choosing the constant Cλ > e big enough such that

1/2
(1 − log(xλ))2

log(Cλ) ≥ 1,

we see that λH(x) ≥ 1. Hence, by this choice of Cλ, we see that λH(x) ≥ 1 for all
0 < x ≤ 1. This achieves the proof of (4).
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Now, let us prove that (4) does not hold for λ = 1
2πα . More precisely, we will

prove that a sequence of functions (un)n exists such that un ∈ H1
0 (B1) ∩ Ċα(B1)

and for n big enough the following holds:

(18) ‖un‖2
L∞ >

1
2πα

‖∇un‖2
L2 log

(
n1/4 + n1/4Nα(un)

)
.

Let un be the radially symmetric function defined by

un(r) = 1 − enrα if r ∈ [0, an], and un(r) = (1 − enaα
n)

log r

log an
if r ∈ [an, 1],

where an is chosen such that aα
n := xn is the unique solution in (0, 1) of the equation

x = 1−enx
en| log(x)| . Note indeed that the function h(x) = en(x + x| log(x)|) is increasing

on (0, 1). Hence, we see easily that

(19)
e−n

n log(n)
≤ xn ≤ e−n

n
.

Obviously, this construction is inspired from the minimizer of the variational prob-
lem with obstacle described in Section 3 where we have chosen Dn = en. Hence,
according to (14) and (15), we have

‖∇un‖2
L2 = 2πα

1/2 − log(xn)
(1 − log(xn))2

and

‖un‖Ċα =
1

xn(1 − log(xn))
.

Now to prove (18), it is sufficient to prove that for n big enough we have

hn :=
1
2 − log(xn)

(1 − log(xn))2
log

[
n1/4 +

n1/4

xn

√
2πα(1/2 − log(xn))

]
< 1.

Note that using (19), we have

hn <
1
2 + n + log(n) + log log n

(1 + log(n) + n)2
log

[
n1/4 +

n1/4enn log n√
2παn

]
.

Hence hn < 1 − 1
4

log n
n + o( log n

n ), which is strictly less than 1 if n is sufficiently
large. The proof of (18) is achieved. �

5. Case of the whole space

Theorems 1.3 and 1.4 were stated in the ball of radius one. If the function u
is supported in a bigger ball BR = B(0, R), then a simple scaling argument shows
that

‖u‖2
L∞(BR) ≤

1
2πα

‖∇u‖2
L2(BR) log

[
e3 + C0R

αNα(u)
√

log
(
2e + RαNα(u)

) ]
.

Remark 5.1. Using symmetric nonincreasing rearrangement of functions, the re-
sults of Theorem 1.3 and Theorem 1.4 remain true for any bounded and regular
domain Ω of R

2. Precisely, if f ∈ H1
0 (Ω) ∩ Ċα(Ω), then its corresponding symmet-

ric nonincreasing function, usually denoted by f�, is in H1
0 (BR) ∩ Ċα(BR), where

R =
√

|Ω|
2π . We refer to [15], [2] for the definition, the properties and applications
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of rearrangements of functions. Applying the results of Theorem 1.3 and Theorem
1.4 to f� and using the fact that

‖f�‖L∞ = ‖f‖L∞ ,

‖∇f�‖L2 ≤ ‖∇f‖L2 , ‖f�‖Ċα ≤ ‖f‖Ċα ,

we get the result for a general domain Ω.

Note that this estimate cannot be extended to the whole space since Rα diverges.
Instead, we have the following result concerning the whole space.

Corollary 5.2. Let α ∈ ]0, 1[. For any λ > 1
2πα and any 0 < µ ≤ 1, a constant

Cλ > 0 exists such that, for any function u ∈ H1(R2) ∩ Cα(R2)

(20) ‖u‖2
L∞ ≤ λ‖u‖2

µ log
(

Cλ +
8αµ−α‖u‖Cα

‖u‖µ

)
,

where ‖u‖2
µ = ‖∇u‖2

L2 + µ2‖u‖2
L2 .

Proof. Let u be a function in H1(R2) ∩ Cα(R2), λ > 1
2πα and 0 < µ ≤ 1. Fix a

radially symmetric function ϕ in C∞
0 (B4) satisfying 0 ≤ ϕ ≤ 1, ϕ ≡ 1 for r near 0,

|∂rϕ| ≤ 1 and |∆ϕ| ≤ 1. Define ϕµ by ϕµ(x) = ϕ(µ
2 |x|).

Without loss of generality, we can assume that ‖u‖L∞ = |u(0)|. Note that in
particular one has

‖ϕµu‖Ċα ≤ ‖u‖Cα ,

‖∇(ϕµu)‖2
L2 ≤ ‖∇u‖2

L2 +
µ2

4
‖u‖2

L2 + 2
∫

R2
ϕµu∇ϕµ∇udx.

Integrating by parts,

2
∫

R2
ϕµu∇ϕµ∇udx = −1

2

∫
R2

∆ϕ2
µu2dx = −µ2

8

∫
R2

∆ϕ2(
µ

2
x) u2dx.

Hence,
‖∇(ϕµu)‖2

L2 ≤ ‖∇u‖2
L2 + µ2‖u‖2

L2 .

Applying Theorem 1.4 in the ball B8/µ and using the fact that for any constant
C > 0 the function x → x2 log(Cλ + C

x ) is increasing, the proof of Corollary 5.2 is
achieved. �

We also have the following result.

Corollary 5.3. Let α ∈ ]0, 1[. For any λ > 1
2πα , a constant Cλ > 0 exists such

that, for any function u ∈ H1(R2) ∩ Cα(R2),

(21) ‖u‖L∞ ≤ ‖u‖L2 + ‖∇u‖L2

√
λ log

(
e + Cλ

‖u‖Cα

‖∇u‖L2

)
.

For the proof of Corollary 5.3, we take the Littlewood-Paley decomposition of u,
u = ∆−1u+v, where v =

∑∞
j=0 ∆ju. Hence ‖v‖L2 ≤ C‖∇v‖L2 and ‖v‖Cα ≤ ‖u‖Cα .

So
‖u‖L∞ ≤ ‖∆−1u‖L∞ + ‖v‖L∞ .

Then, we apply Corollary 5.2 to v with λ′ and µ′ such that λ′(1 + C2µ′2) < λ. �
Of course, we have similar inequalities for the Log Log inequality (3) in R

2 with
the sharp constant 1

2πα .
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6. Application to the wave equation

Corollary 5.2 is useful in the study of the Cauchy problem associated with the
following type of 2D-nonlinear wave equation

∂2
t u − ∆u + u + u

(
exp(4πu2) − 1

)
= 0,(22)

with initial data u(0, ·) = f, ∂tu(0, ·) = g, where (f, g) ∈ H1(R2) × L2(R2) (see [8]
for more details). For such a problem, only global (in time) wellposedness for small
data or local wellposedness for radially symmetric data (0, g) satisfying ‖g‖L2 ≤ 1
are known so far. See [12], [13] and [3]. To establish an energy estimate for solutions
of (22), we need to estimate the source term u(exp(4πu2) − 1) in L1

t (L2
x) (or any

other dual Strichartz norm). The problem with taking the L2
x norm is that the

factor 4π appearing in the exponential will be doubled, and hence, we cannot apply
the Moser-Trudinger inequality if ‖u‖H1 > 1√

2
.

In the following, we show how Corollary 5.2 enables us to overcome this difficulty
and allows us to deal with solutions such that ‖u‖H1 ≤ 1. This seems to be
optimal [8]. For simplicity, we assume that u solves the “linearized problem”; this
corresponds to the first iteration in a proof based on the Picard scheme.

In the sequel, we assume that (f, g) ∈ H1(R2) × L2(R2) such that

‖f‖2
H1 + ‖g‖2

L2 ≤ 1.(23)

Denote by v the solution of the 2D linear Klein-Gordon equation

∂2
t v − ∆v + v = 0,(24)

v(0, ·) = f, ∂tv(0, ·) = g.

Since the energy ‖∇v(t, ·)‖2
L2(R2) + ‖v(t, ·)‖2

L2(R2) + ‖∂tv(t, ·)‖2
L2(R2) is conserved,

v(t, ·) remains in the unit ball of H1 uniformly in time. So according to (2) we have

sup
t∈R

∫
R2

(
e4πv(t,x)2 − 1

)
dx ≤ C,

which means that exp(4πv2) − 1 ∈ L∞(R; L1(R2)). For any µ > 0, denote

Eµ(t) := ‖∇v(t, ·)‖2
L2(R2) + µ2‖v(t, ·)‖2

L2(R2).

The following result will enable us to estimate exp(4πv2) − 1 in L1
loc(R; L2(R2)).

Proposition 6.1. Let v be the solution of (24) with initial data satisfying (23).
For any T > 0 and 0 < µ < 1, a nonnegative constant C exists such that∫ T

0

‖ exp(4πv2(t, ·)) − 1‖L2(R2) dt ≤ C.

Proof. Recall that since v ∈ C(R, H1) ∩ C1(R, L2), the function t −→ Eµ(t) is
continuous. The energy conservation satisfied by v shows that

‖∂tv(t, ·)‖2
L2(R2) + E1(t) = E1(0) + ‖g‖2

L2 ≤ 1.

Now, fix µ < 1 and T > 0. There exists a time τ = τ (µ, T ) ≤ T such that

sup
t∈[0,T ]

Eµ(t) = Eµ(τ ) < 1.

For almost every t we have

(25)
∫

R2

(
exp(4πv2(t, x)) − 1

)2
dx ≤ ‖ exp(4πv2(t, ·)) − 1‖L1 exp(4π‖v(t, ·)‖2

L∞).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



96 S. IBRAHIM, M. MAJDOUB, AND N. MASMOUDI

Note that, thanks to the conservation of the energy and the Moser-Trudinger in-
equality, the first factor in the above inequality is uniformly bounded. On the other
hand, choosing α = 1

4 in (20) we obtain, for any λ > 2
π ,

(26) exp(2π‖v(t, ·)‖2
L∞) ≤

(
C +

‖v(t, ·)‖C1/4

Eµ(τ )1/2

)2πλEµ(τ)
.

Using the fact that the bound given on the right-hand side of (26) is increasing in
Eµ(τ ), we can assume that Eµ(τ ) > 1/2. Since Eµ(τ ) < 1, one can choose λ > 2

π
such that β := 2πλEµ(τ ) < 4. Hence, we have∫ T

0

exp(2π‖v(t, ·)‖2
L∞)dt ≤ C

∫ T

0

(
C + ‖v(t, ·)‖C1/4

)β
dt

≤ CT 1− β
4

( ∫ T

0

(
C + ‖v(t, ·)‖C1/4

)4
dt

) β
4
.

Now, thanks to the so-called Strichartz estimates (see [4, 7]), we have v ∈
L4(R, C1/4(R2)), and therefore Proposition 6.1 is proved. �

Remark 6.2. To study the Cauchy problem for (22), we need a bound in L1
T (L2)

for u
(
exp(4πu2) − 1

)
. Using Hölder inequality we have

‖v(exp(4πv2(t, ·)) − 1)‖L2(R2) ≤ ‖ exp(4πv2(t, ·)) − 1‖L2(1+ε)(R2)‖v(t, ·)‖
L2(1+1

ε )(R2)
.

Following the same proof as that of the above proposition and suitably choosing
ε > 0, we can prove a bound for ‖ exp(4πv2) − 1‖L1

T (L2+2ε).
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