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Abstract. - We present a kinetic theory for swarming systems of interacting, self-propelled dis-
crete particles. Starting from the Liouville equation for the many-body problem we derive a kinetic
equation for the single particle probability distribution function and the related macroscopic hydro-
dynamic equations. General solutions include flocks of constant density and fixed velocity and other
non-trivial morphologies such as compactly supported mills. Our kinetic theory approach allows
us to identify macroscopic structures otherwise not recognized as solutions of the hydrodynamic
equations, such as double mills of two superimposed flows. We find the conditions that lead to the
existence of such solutions and compare to the case of single rotating mills.

Introduction. – Viewed as a collective, interacting individuals often flow into spec-
tacular coherent patterns [1]. Systems that self-organize can be observed in nature across a
wide variety of spatio-temporal scales: schools of fish, flocks of birds and swarms of insects
among animals, morphogenetic and bacterial growth at the cellular and subcellular levels.
While each of these aggregates follow specific biophysical laws, all of them are able to orga-
nize internally, allowing order to arise from an initially disordered state and in the absence
of a leader [2].

The ubiquity of the self-organizing phenomenon has lead to the development of several
minimal models to describe a collection of interacting agents, both as discrete particles [3–5]
or as a continuous density [6,7]. In particular, models of individuals driven by self-propelling
forces and pairwise attractive and repulsive interactions have been shown to self-organize
in various morphologies. Translationally invariant flocks, rotating mills, rings and clumps
have all been observed and classified, so that specific interaction and propulsion values can
be associated to specific collective configurations [8–10].

However, as the number of particles grows, it becomes increasingly difficult to follow the
dynamics of each individual agent. Indeed, given N individuals, there are about N2 inter-
actions to compute at each time step, which in the limit of large N may yield to prohibitive
calculations. A more compact, continuum approach where particles are represented by a
density field, becomes thus desirable. While several continuum models based on heuristic
derivations have been presented in the literature, few attempts have been made at trying to
derive the hydrodynamic equations starting from discrete models [11–14].

p-1



M. R. D’Orsogna et al.

Furthermore, even when parallels between microscopic and macroscopic descriptions
exist, there might be cases in which the fullness of a microscopic solution is not necessarily
captured by the corresponding macroscopic one. For example, in simulations of rotating
mills, discrete particle systems show the possibility of two compactly supported structures
of roughly the same number of particles circulating in opposite directions. The corresponding
macroscopic solution would be a “boring” stationary density since the two mills average out
their velocities to zero. Due to the non-linearity of the problem, the trivial superposition
of two rotating mills which are solutions to the macroscopic problem, is not necessarily a
solution itself.

This paper aims to bridge general microscopic descriptions of self-propelled interacting
swarming systems to their macroscopic counterparts, using kinetic theory [15,16] as middle
ground. Here, the exact location and velocity of particles are considered irrelevant, but not
to the extent that average velocities can be computed tout court at every position and every
time step. Rather, several velocities may be possible, so that the focus is on determining the
probability f(x,v, t) that at time t a particle is at position x with velocity v. Starting from
a set of discrete swarming equations we shall thus derive the kinetic equation for f(x,v, t)
and hence present the corresponding hydrodynamic description. Solutions will be matched
to the discrete case and most importantly, our kinetic model will allow us to identify the
presence of a new class of solutions, those of double mills, which elude a strictly macroscopic
derivation.

Discrete Model. – We consider N interacting, self-propelled particles with Rayleigh
friction, governed by the following equations of motion [8, 10,12,17]

ẋi = vi,

miv̇i = mi(α− β |vi|2)vi −mi∇xi

∑
j 6=i

mjU(|xi − xj |).

Here U is a pairwise interaction potential per unit mass and α, β > 0 are effective values
for propulsion and friction forces per unit mass. We will mostly focus our discussion on this
“per unit mass” case. On the other hand, the full mass description can be written by simply
letting α, β, U refer to global quantities and by setting mi = 1. A common choice for U is
the Morse potential composed of attractive and repulsive components

U(r) = −Cae−r/`a + Cre
−r/`r ,

with Ca, Cr attractive and repulsive strengths and `a, `r their respective length scales. While
the Morse potential is a widely spread choice for interacting swarming systems, in this
formulation we keep U general. For simplicity, we assume identical particles and with total
mass fixed at M = Nmi such that

ẋi = vi, (1)

v̇i = (α− β |vi|2)vi −
M

N
∇xi

∑
j 6=i

U(|xi − xj |). (2)

The mass normalization can be considered a scaling assumption for the potential amplitude,
the so-called “weak coupling limit” [18]. It allows total kinetic and potential energy to bear
the same N dependence since, in the unnormalized case, the total kinetic energy is a sum
of N terms and the total potential energy scales as N(N − 1)/2. In the normalized case of
Eq. 2 the interaction amplitudes are now N dependent but the fundamental character of the
resulting morphologies do not change since we simply introduce a multiplicative factor for U .
As an example, in the case of the Morse potential, patterns of aggregation depend on the
relative amplitudes C = Cr/Ca and ` = `r/`a [10]. Both the normalized and unnormalized
potentials (where M = N in Eq. 2) thus yield the same type of patterns, whether they be
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Fig. 1: Area of unidirectional milling structures as a function of N and for α = 1.6 and α = 1.0.
The decreasing curves represent the unnormalized potential and the increasing ones the normalized
potential, where M = 1000. Milling parameters are chosen as Ca = 0.5, Cr = 1.0, `a = 3, `r = 0.5
and β = 0.5. At fixed α, the normalized and unnormalized curves match at N = 1000, corresponding
to mi = 1, the reference point for the unnormalized potential. As N → ∞, the asymptotic areas
A∞ differ. The unnormalized curves scale as |A − A∞| ∼ N−1.2 and the normalized ones as
|A−A∞| ∼ N−1.

mills or flocks, however the way these structures scale with N is very different. In Fig. 1 we
show mill areas of discrete particle systems as a function of N in the so called catastrophic
regime, where, in the unnormalized case, rotating mills are expected to collapse to a finite
region as the number of agents increases. As can be seen, mills areas scale very differently
in the unormalized regime compared to the normalized case.

Collisionless Kinetic Model. – We denote by f (N)({xi}, {vi}, t) the N -particle
probability density function of the system, so that the probability of finding each
of the i particles at position xi and velocity vi within a volume dxi dvi in phase space
is f (N)({xi}, {vi}, t)

∏
i dxi dvi. Conservation of mass allows to write the time evolution

of f (N) according to the following Liouville equation

∂f (N)

∂t
+

N∑
i=1

[
divxi

(ẋif (N)) + divvi(v̇if
(N))

]
= 0, (3)

where we have now set M = 1 in Eq. 1. The one-particle distribution function f (1)(x1,v1, t)
is defined as

f (1)(x1,v1, t) =
∫
f (N) dx2 . . . dxNdv2 . . . dvN .

Our goal is to find the time evolution of f1 in the collisionless case using standard tools
from kinetic theory [18, 19] and utilizing a mean-field type approach where particles are
considered uncorrelated. The kinetic equation for f (1) is in Eq. 5. Here we present its
derivation. Integrating the Liouville equation 3 we find that the only term in the sums not
to vanish are those for i = 1, since the probability density function is assumed to be zero at
infinity in phase space. We thus obtain

∂f (1)

∂t
+

∫
divx1(v1f

(N)) dΩ1 +
∫

divv1(v̇1f
(N)) dΩ1 = 0,
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where dΩ1 = dx2 . . . dxNdv2 . . . dvN is the volume element. The spatial divergence term
reduces to v1 · ∇x1f

(1) while the momentum term decomposes into

divv1 [(α− β|v1|2)v1f
(1)],

and

divv1

∫
(∇x1

∑
j 6=1

U1,j) f (N) dΩ1,

where U1,j ≡ U(|x1 − xj |. Since particles are indistinguishable the last term can be recast
as ∫

(∇x1

∑
j 6=1

U1,j) f (N) dΩ1 = (N − 1)
∫
∇x1U1,2 f

(N) dΩ1.

The last integral can be simplified by letting dΩ1 = dx2dv2 dΩ2 and performing the integral
over dΩ2 so that∫

∇x1U1,2 f
(N) dx2 dv2 dΩ2 =

∫
∇x1U1,2 f

(2) dx2dv2,

where f (2) is the pair correlation function

f (2)(x1,x2,v1,v2) =
∫
f (N)dΩ2.

We assume f (2) to be factorizable as

f (2)(x1,x2,v1,v2) = g(2) f (1)(x1,v1) f (1)(x2,v2).

The fundamental idea is that the two-body probability density function is the product
of single particle probability density functions multiplied by a pair correlation function
g(2)(x1,x2,v1,v2). If we assume that particles are not strongly correlated, we may fix the
correlation coefficient g(2) = 1 and further simplify the interaction term as∫

∇x1U1,2 f
(2) dx2dv2 = f (1)

∫
∇x1U1,2 f

(1) dx2dv2. (4)

We simplify the notation by f (1)(x1,v1) ≡ f(x,v) such that its integral in the velocity
coordinate is defined as the macroscopic density of the system

ρ(x, t) =
∫
f(x,v, t)dv.

Since the interaction term in Eq.4 is independent of v we may finally write∫
∇x1U1,2 f

(1) dx2dv2 = (∇U ? ρ) f,

where the ? notation implies convolution between its arguments in position. Eqn. 3 thus
reduces to

∂f

∂t
+ v · ∇xf +divv[(α− β|v|2)v f ]

−N − 1
N

divv [(∇U ? ρ)f ] = 0,
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which in limit of very large N can be approximated by

∂f

∂t
+ v · ∇xf +divv[(α− β|v|2)v f ]

−divv [(∇U ? ρ)f ] = 0. (5)

The kinetic Eq. 5 is one of the main results of this paper and determines the spatio-temporal
evolution of the one particle probability distribution function. From this derivation we find
the total energy E defined as the sum of the potential and kinetic energies, EU and EK ,
respectively

E(t) =
1
2

∫
U(|x− y|)ρ(x, t)ρ(y, t)dxdy

+
1
2

∫
|v|2f(x,v, t)dxdv. (6)

The total energy can be shown to evolve as

dE

dt
=

∫
|v|2(α− β|v|2)f(x,v, t)dxdv.

The system thus tends towards energy equilibration whenever particle velocities lie on the
velocity sphere β|v|2 = α.

Macroscopic-Hydrodynamic equations. – Starting from Eq. 5 we now derive the
time evolution for the density ρ by integrating over dv and, by integrating Eq. 5 over vdv,
for the coarse grained velocity field u(x, t). The latter is defined through

ρu =
∫

vf(x,v) dv.

Integrating Eq. 5 over dv we obtain the continuity equation

∂ρ

∂t
+ divx(ρu) = 0. (7)

Integrating the same equation over vdv and using integration by parts, we find

∂(ρu)
∂t

+
∫ {

divx(vf)v − [(α− β|v|2)v]f
}
dv = (∇U ? ρ)ρ.

To simplify this expression, we introduce the vector qK , the tensor σ̂K and the scalar δK
defined as

qK =
1
2

∫
|v − u|2(v − u)f dv,

σ̂K =
∫

(v − u)⊗ (v − u)f dv,

δK =
∫
|v − u|2f dv = d ρ θ,

where ⊗ represents a tensor product. The above terms represent fluctuations about the
coarse grained velocity fields, and are deviations of at least second order. We isolate them
so as to neglect them if locally particle velocity fluctuations can be assumed to be small.
The temperature of the system, θ(x, t) is defined by the normalized-mass variance of the
distribution in velocity, where d is the dimension. In this case d = 2. Using this notation,
we can compute all terms in the velocity equation∫

divx(vf)vdv = divx σ̂K + divx(ρu⊗ u),
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α

∫
vfdv = αρu,

and

β

∫
|v|2vfdv = 2qK + 2u σ̂K + |u|2ρu + δKu.

Collecting all three we can finally write the momentum equation

∂(ρu)
∂t

+ divx(ρu⊗ u) = (α− β|u|2)ρu− (∇U ? ρ) ρ

−divx σ̂K − 2β qK − 2β u σ̂K
−β δK u. (8)

In order to close the moment system we may assume that fluctuations are small and that
the distribution is mono-kinetic, i.e., f(x,v, t) = ρ(x, t) δ(v − u(x, t)), where δ stands for
the Dirac delta. In this case, the macroscopic system reduces to the continuity equation
Eq. 7 coupled to

∂u
∂t

+ u · ∇xu = (α− β|u|2)u−∇U ? ρ. (9)

Eqs. 7-9 were already proposed in [12] based on computations of the empirical measure
associated to N particles [20]. Here, they are rediscovered and understood as a first-order
closure hydrodynamic system to the kinetic Eq. 5. We can also write the equations for energy
transport. The kinetic energy density EK and potential energy density EU are defined,
respectively, as

EK =
1
2

∫
|v|2fdv = ρ

|u|2

2
+
δK
2

= ρ
|u|2

2
+
d

2
ρθ,

and

EU =
1
2
(U ? ρ) ρ.

In order to determine the evolution of the kinetic energy density we multiply Eq. 5 by |v|2/2,
integrate over dv and integrate by parts to obtain

∂EK
∂t

+
∫

|v|2

2
v · ∇xfdv−

∫
|v|2(α− β|v|2) f dv

+
∫

v(∇U ? ρ)f dv = 0.

As before, we can rewrite all integral terms as∫
|v|2

2
v · ∇xfdv = divx EKu + divx qK + divx u σ̂K ,

∫
(∇xU ? ρ) f v dv = (∇xU ? ρ) ρu,

and ∫
(α− β|v|2)|v|2 fdv = 2αEK + β

∫
|v|4 fdv.
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Using the chain rule and the continuity equation for ρ we find

∂EU
∂t

= −divx EUu +
1
2

[(∇xU ? ρu) + (∇xU ? ρ)u] ρ,

so that upon defining E = EK + EU we can write

∂E
∂t

+divxE u + divx(qK + u σ̂K) = −β
∫
|v|4fdv

+
1
2

[(∇xU ? ρu)− (∇xU ? ρ)u] ρ+ 2αEK . (10)

Finally, the latter term can be expressed as∫
|v|4fdv = |u|2(2EK + δK) + 8u · qK + τK + 4gK ,

where τK and gK are defined as

τK =
∫
|v − u|4fdv

and

gK =
∫

[u · (v − u)]2 dv.

Again, in the limit of small fluctuations θ ' 0, the above reduces to 2EK = |u|2 + δK ∼ |u|2,
and the energy density transport Eq. 10 can be written as

∂E
∂t

+ divxE u = 2α|u|2 − β|u|4

+
1
2

[(∇xU ? ρu)− (∇xU ? ρ)u] ρ.

Eqs.7, 8 and 10 constitute the hydrodynamic description of our general swarming system.

Single-Milling and Flocking Patterns: Mono-Kinetic solutions. – We now try
to find weak solutions to the kinetic Eq. 5 of the mono-kinetic form

f(x,v, t) = ρ(x, t) δ(v − u(x, t)), (11)

where the constraints on ρ and u will be imposed by the weak formulation analysis. Note
that ρ is the macroscopic density obtained by integrating f over dv, and that integrating
Eq. 11 over vdv leads to the macroscopic velocity u. Furthermore, in this ansatz all fluctu-
ating terms are strictly zero, since all microscopic velocities are identically set to u. Upon
substituting Eq. 11 into Eq. 5, we multiply by a test function ψ(x,v, t), in order to find weak
form solutions. Integrating over dv, we find that all v values turn into u. The other spatial
and temporal integrations can be resolved via integration by parts so that∫

∂f

∂t
ψ dtdx dv = −

∫
∂[ψ]
∂t

ρ dt dx, (12)

where the [·] notation is meant as the partial derivative of ψ evaluated at its arguments
(x,u(x, t), t). This quantity can be written through the chain rule as follows

∂ψ

∂t
=
∂[ψ]
∂t

+
∂u
∂t

· ∇vψ,
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where ∂ψ
∂t refers to the derivative in time of the function ψ(x,u(x, t), t). Following this

notation for all terms in the kinetic equation, we find time derivative to be∫
∂f

∂t
ψ dtdx dv = −

∫
∂ψ

∂t
ρ dt dx +

∫
∂u
∂t

· ∇vψ ρ dt dx.

Similarly for the transport term we find∫
divx(vf)ψ dt dx dv = −

∫
ρu · ∇xψ dt dx

+
∫
ρu · (∇xu · ∇vψ) dt dx.

We need not perform the same operations of completing the derivative in the interaction
term, U ? ρ since there is no implicit dependence of ψ on u. If we now impose that
β|u(x, t)|2 = α the frictional terms balance each other, so that the weak formulation of
the kinetic equation for this particular mono-kinetic distribution reads∫ [

ρ
∂u
∂t

+ ρu · ∇xu + (∇xU ? ρ) ρ
]
· ∇vψ dt dx

+
∫ (

∂ρ

∂t
+ divx(uρ)

)
ψ dt dx = 0.

By choosing ψ to be velocity independent, ψ = ψ(x, t) or ψ = ψ(x, t)v the continuity and
momentum balance equations, Eqs. 7 and 8, are recovered with the additional constraint
β|u(x, t)|2 = α. Moreover, it follows from the procedure above that the ansatz in Eq. 11 is
a weak solution to Eq. 5 if and only if Eqs. 7 and 8 are satisfied for the density and mean
velocity. In the particular case of steady solutions, we find the following equations for the
density and mean velocity of the solutions

divx(ρu) = 0, (13)
u · ∇xu = −(∇xU ? ρ) (14)
β|u(x)|2 = α. (15)

One family of solutions for these equations of the form in Eq. 11 is given by constant ρ
and u. This corresponds to the translationally invariant, flocking solution. We can obtain
another family of mono-kinetic solutions by assuming that particles undergo a circular mo-
tion with constant speed

√
α/β. These single milling solutions were proposed in [8] and

found numerically. We will come back to this particular set of solutions below.

Double Milling Patterns: Hydrodynamic Superpositions at Kinetic Level. –
In the previous section, we showed that a possible solution to the kinetic equation is found
by imposing that all particles travel at a fixed speed given by β|u(x, t)|2 = α describing
a macroscopic density ρ that satisfies the proper continuity and momentum equations in
Eqs. 14 and 15. Here, we look for the conditions that must be met in order to ensure
that a superposition of such solutions exist. For concreteness, we consider the case of the
superposition of two densities ρ1 and ρ2, with velocity u1 and u2 respectively

f = ρ1δ(v − u1(x, t)) + ρ2δ(v − u2(x, t)), (16)

satisfying β|ui(x, t)|2 = α, i = 1, 2. With this definition we find

ρ = ρ1 + ρ2, (17)
ρu = ρ1u1 + ρ2u2. (18)
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Upon inserting Eq. 16 into Eq. 5, multiplying by the test function ψ and completing the
temporal and spatial integrals we find∫ [

ρ1
∂u1

∂t
+ ρ1 u1 · ∇xu1 + (∇xU ? ρ) ρ1

]
· ∇vψ1 dt dx

+
∫ [

ρ2
∂u2

∂t
+ ρ2 u2 · ∇xu2 + (∇xU ? ρ) ρ2

]
· ∇vψ2 dt dx

+
∫ (

∂ρ1

∂t
+ divx(u1ρ1)

)
ψ1 dt dx

+
∫ (

∂ρ2

∂t
+ divx(u2ρ2)

)
ψ2 dt dx = 0, (19)

where the subscripts ψ1,2 signify that the quantities of interest are evaluated at v = u1

and v = u2 respectively. As before, choosing ψ to be a function only of x and t leads to the
following conservation equation

∂(ρ1 + ρ2)
∂t

+ divx(ρ1u1 + ρ2u2) = 0,

which in light of Eqs. 17 and 18 is the continuity equation 7. We can also choose ψ = v so
that the only non zero terms of Eq. 19 give

∂u1

∂t
ρ1 +

∂u2

∂t
ρ2 +(∇xU ? ρ)(ρ1 + ρ2) (20)

+ ρ1u1 ·∇xu1 + ρ2u2 ·∇xu2 = 0.

This is the general condition for the two subpopulations to satisfy. The steady state as-
sumption with time independent u1 and u2 leads to

ρ(∇xU ? ρ) + ρ1u1 · ∇xu1 + ρ2u2 · ∇xu2 = 0.

The above formulation differs from the mono-kinetic case of Eq. 11 in a non-trivial way.
We can nonetheless recast the above result by assuming 2ρ1 = 2ρ2 = ρ and by imposing
u1 = −u2 so that

ρ(∇xU ? ρ) + ρu1 · ∇xu1 = 0.

Dividing by ρ we find, that similarly to the mono-velocity case, the superposition in Eq. 16
is a solution to the kinetic equation if and only if

u1 · ∇xu1 + (∇xU ? ρ) = 0. (21)

We may thus conclude that double milling solutions, where half the particles travel at the
same speed u and the rest at its exact opposite −u, exist provided the continuity equation 7,
the modified momentum equation 21 and the speed constraints are met. Furthermore, this
result allows us to conclude that finding steady solutions ρ,u for the single mill case, au-
tomatically yields double milling solutions with dual velocities since Eqs. 7 and 21 and the
speed constraints are the same. Note that in the dual-velocity case the average macroscopic
velocity is zero and therefore, double milling solutions cannot be explained at the macro-
scopic hydrodynamic level. The true nature of these solutions arise solely from a kinetic
theory approach.

Density profiles for Single and Double Milling Patterns. – We can now find
steady state solutions for Eqs. 13-15. Milling solutions can be found by setting u in a rotatory
state:

u =
√
α

β

x⊥

|x|
.
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In this case the transport term can be rewritten as

u · ∇xu =
α

β

x
|x|2

so that, as shown in [8]
U ? ρ = D − α

β
ln |x|, (22)

where D is a constant. Solutions to Eq. 22 were numerically found in [8] and matched
to single mill particle patterns in [12]. From our previous discussion, these solutions also
apply to superimposed mills of velocities u1,−u1. While the total velocity is zero, the
two populations coexist rotating in opposite directions such that the total density satisfies
Eq. 22.

Conclusions. – We have developed a kinetic theory aimed at describing self-propelling
swarming systems driven by general pairwise interactions. This description allows us to find
a new class of macroscopic solutions to swarming systems corresponding to double, super-
imposed mills of interacting particles. These are indeed observed in discrete simulations but
they cannot be identified from the corresponding hydrodynamic equations since the inherent
dual velocity distributions yield a macroscopic average of zero. We find the conditions under
which double mills can coexist. Due to the non-linearity of the problem these solutions are
not trivial since the superposition of two existing solutions does not necessarily satisfy the
governing equations of motion. Future development includes a full numerical solution of the
kinetic equations, both in one and two dimensions and the introduction of noise effects into
the dynamics.
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