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ABSTRACT 

Purpose: The purposes of this paper are testing an efficiency algorithm based on LBM 

and using it to analyze two-dimensional natural convection with low Prandtl number.  

Design/methodology/approach: Steady state or oscillatory results are obtained using 

double multiple-relaxation-time thermal lattice Boltzmann method. The velocity and 

temperature fields are solved using D2Q9 and D2Q5 models, respectively. 

Findings: With different Rayleigh number, the tested natural convection can either 

achieve to steady state or oscillatory. With fixed Rayleigh number, lower Prandtl 

number leads to a weaker convection effect, longer oscillation period and higher 

oscillation amplitude for the cases reaching oscillatory solutions. At fixed Prandtl 

number, higher Rayleigh number leads to a more notable convection effect and longer 

oscillation period. 

Originality/value: Double multiple-relaxation-time thermal lattice Boltzmann method 

is applied to simulate the low Prandtl number (0.001 – 0.01) fluid natural convection. 

Rayleigh number and Prandtl number effects are also investigated when the natural 

convection results oscillate.  

Keywords: lattice Boltzmann method, multiple-relaxation-time model, natural 

convection, low Prandtl number 

 

NOMENCLATURE 

c  lattice speed 

pc  specific heat (J/kgK) 

sc  sound speed 

ie  particle speed 

if  density distribution 

iF  body force 

Fo Fourier number 

g  gravity acceleration  2/m s  

G  effective gravitational acceleration  2/m s  

gi  energy distribution 

k  thermal conductivity (W/m k) 

M transform matrix for density distribution 

im  moment function for density distribution 

Ma  Mach number 
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N transform matrix for density distribution 

in  moment function for energy distribution 

p  pressure (Pa) 

P  non-dimensional pressure 

Pr  Prandtl number 

Q  collision matrix for energy distribution 

Ra  Rayleigh number 

s  relaxation time in density distribution 

S  collision matrix for density distribution 

t  time (s) 

T  temperature  K  

u  velocity in x-direction (m/s) 

iu  particle speed in energy distribution 

U  non-dimensional velocity in x-direction 

v  velocity in y-direction (m/s) 

V  non-dimensional velocity in y-direction 

V  velocity 

  thermal diffusivity  2 /m s  

  thermal expansion (K-1) 

t  time step (s) 

  non-dimensional temperature 

  viscosity (Kg/ms) 

  Density (kg/m3) 

  relaxation time in energy distribution 

  non-dimensional time 

  kinematic viscosity  2 /m s  

1. Introduction 
Lattice Boltzmann method (LBM) has been developed into a promising numerical 

method in the last two decades. It can be used to solve different fluid flow problems, 

such as incompressible fluid flow (Guo and Zhao, 2002), compressible fluid flow 

(Kataoka and Tsutahara, 2004) and multiphase fluid flow (Luo, 2000). Instead of 

solving the macroscopic continuum and momentum equations as the traditional 

computational fluid dynamics (CFD), the LBM is based on solving the discrete 

Boltzmann equation in statistical physics via two basic steps: collision step and 

streaming step (Succi, 2001). There are different LBM models for fluid flow problems. 

Lattice Bhatnagar-Gross-Krook (LBGK) simplifies the collision term with one 

relaxation time (Chen and Chen, 1991; Chen and Doolen, 1998).  Based on LBGK 

model, Li et al. (2014a) and Li et al. (2014b) use combined LBM and finite volume 

method to solve lid driven flow and natural convection, respectively. Although it is 

widely used, LBGK is limited by the numerical instability (Lallemand and Luo, 2000). 

To overcome this limitation, entropy LBM (ELBM) (Chikatamarla et al., 2006; 

Chikatamarla and Karlin, 2006), two-relaxation-time model (TRT) (Ginzburg, 2005; 

Ginzburg and d’Humieres, 2007) and multiple relaxation time model (MRT) 

(Lallemand and Luo, 2000; Lallemand and Luo, 2003) have been proposed. The 

difference among these models lies in the ways to simplify the collision term while their 

streaming steps are the same. Luo et al. (2011) compared these models by using them 
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to solve the lid driven flow problem. It was concluded that the MRT was preferred due 

to its advantages in accuracy and numerical stability. 

The fluid flow problem with heat transfer also can be solved using LBM. Multispeed 

approach (MS), hybrid method and double distribution functions (DDF) are the 

common thermal LBM models. The MS approach obtains the temperature field by 

adding more discrete velocities to the density distribution (Chen et al., 1994). It is 

limited by numerical instability and narrow range of temperature variation (Guo et al., 

2002). Hybrid method uses LBM to solve the velocity field and employs other 

numerical method, such as finite volume method (FVM), to obtain the temperature field. 

Li et al. (2014c) and Li et al. (2014d) used hybrid LBM-FVM to solve the natural 

convection and melting problems. The DDF employs two independent distributions to 

analyze the momentum and energy equations (He et al., 1998). It has been applied to 

solve different kinds of heat transfer problems (Peng et al., 2003; Huber et al., 2008; 

Gao and Chen, 2011). 

Most of the reported DDF results are based on LBGK. Several double MRT models are 

proposed for the fluid flow and heat transfer problem in the recent years. Mezrhab et al. 

(2010) used double MRT thermal LBM for simulating air convective flow in a cavity 

respectively for Rayleigh number up to 
81 10 . Wang et al. (2013) discussed the 

convective flow for Prandtl number of 0.71 and 7.0 with the double MRT thermal LBM. 

On the other hand, convective flow of low-Prandtl number fluid is important in many 

industry applications (Li et al., 2015). Low Prandtl number convection problem 

involves highly nonlinear fluid dynamics. It has more possibility to reach oscillatory 

results. Li et al. (2015) discussed low Prandtl number melting problem with double 

LBGK model. Kosec and Sarler (2013) reported the solution of a low Prandtl number 

natural convection benchmark problem. Kosec and Sarler (2014) solved low Prandtl 

number solidification problems using a meshless method. The objective of this paper is 

to employ the double MRT (Wang et al. 2013) to analyze the low Prandtl number natural 

convection problems. 

2. Problem Statement 
As shown in Fig. 1, the considered natural convection domain is a square-shaped cavity 

filled with incompressible fluid. The cavity height and width are H . The left boundary 

is kept a constant temperature hT  and the right boundary has a lower constant 

temperature of cT . Meanwhile, the top and bottom boundaries are adiabatic. Non-slip 

boundary condition is applied to all boundaries. Applying Boussinesq assumption, the 

problem can be described by the following governing equations:   
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Equations (1) – (4) are subject to the following boundary conditions: 

0, 0, 0, hx u v T T                        (5) 
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, 0, 0, cx H u v T T                        (6) 

0, 0, 0, / 0y u v T y                    (7) 

, 0, 0, / 0y H u v T y                      (8) 

Defining the following non-dimensional variables  
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where cs,   and   are the speed of sound, kinematic viscosity and thermal 

diffusivity resepectively.  Equations. (1) to (8) can be nondimensionalized to: 
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U V
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0, 0, 0, 1X U V                         (14) 

1, 0, 0, 0X U V                          (15) 

0, 0, 0, / 0Y U V Y                     (16) 

1, 0, 0, / 0Y U U Y                     (17) 

Heat transfer is evaluated based on Nusselt number Nu , which is the ratio of 

convection to conduction heat transfer across the boundary: 

0 0/ x x

h
Nu

k H X
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where h  is the convective heat transfer coefficient. Average Nusselt number can be 

obtained by the following equation: 
1

0
avgNu Nu dY                  (19)  

It represents the average heat transfer rate through the left heat wall. Meanwhile, the 

Fourier number Fo  which is defined as 
2/Fo t H                   (20) 

is another non-dimensional time parameter. It has a relation to the non-dimensional time 

  as following: 

/ 3Fo Ma Ra Pr                     (21) 

3. Double MRT thermal lattice Boltzmann model 
Double MRT thermal LBM model (Wang et al., 2013) is selected to solve the natural 

convection problem. D2Q9-MRT is applied to analyze the velocity flied and the 

temperature field is solved by D2Q5-MRT. 

3.1 D2Q9-MRT for fluid flow 
Lattice Boltzmann equation can describe the statistical behavior of a fluid flow. 
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   , ,     f t t t f t Fr e r                  (22) 

where f  is the density distribution, t  is the time step，  is the collision term and 

F  is the body force. D2Q9 model is preferred for the velocity field because the 

problem in consideration is two-dimensional. Each computing nodes has nine local 

particle velocities shown in Fig. 2. These velocities are given by: 

(0,0) 1

( cos , sin ) 2,3,4,5
2 2

(2 1) (2 1)
2 ( cos , sin ) 6,7,8,9

4 4
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where c  is the lattice speed and relates to the sound speed 
sc  as: 

2 23 sc c                   (24) 

Then Eq. (22) can be expressed as: 

   , , ,   1,2,...9      i i i i if t t t f t F ir e r            (25) 

The force term in the equation above can be obtained as: 

  eq

i iF t f
p


   ie V

G                (26) 

where G is the effective gravitational force:  

 l    G g                (27) 

To satisfy the continuum and momentum conservations, the collision term in MRT is: 

   1 , , ,   1,2,...9         
eq

i i iM S m t m t ir r        (28) 

where  ,im tr  and  ,eq
im tr  are moments and their equilibrium functions; M

and S  are the transform matrix and collision matrix respectively (Mezrhab et al., 

2010). 

For the D2Q9 model the nine macroscopic moments are: 
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Consequently, the transform matrix M and is: 

1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

4 1 1 1 1 2 2 2 2

0 1 1 1 1 0 0 0 0

0 0 0 0 0 1 1 1 1

0 2 0 2 0 1 1 1 1

0 0 2 0 2 1 1 1 1

4 2 2 2 2 1 1 1 1

M

 
    
   
 
     
   
 

  
   
 

   
     

         (30) 

Correspondingly, the collision matrix S  is: 

 0, 1, 1, , , , , ,e q qS diag s s s s s s             (31) 

In the present simulations, the unknown parameters in Eq. (31) are defined as following: 
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Then  , 
xj and 

yj  are related with density distribution if by the following equation:  
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Adding 0  can reduce round-off errors in the simulation process (Wang et al. 2013). 

Accordingly, the equilibrium functions eq
im  are 

 2 2

1 2 0 2 0 4 0 5 0

6 0 7 0 8 0 9 0

, , , 2

, , , 3

eq eq eq eq eq

eq eq eq eq

m m u m v m m u v

m uv m u m v m

     

    

         


       

u u,

u u
     (34) 

Bounce-back scheme is employed for the no-slip boundary conditions (Latt and 

Chopard, 2008). 

3.2 D2Q5-MRT for heat transfer 
The D2Q5 model is used to obtain the temperature field. Each computing node has five 

discrete velocities shown is Fig. 3:  

(0,0) 1

( cos , sin ) 2,3,4,5
2 2

 


 
  

i

i

u i i
c i

             (35) 

Similar to the density distribution, the energy distribution gi  can be obtained by: 

       1, , , , ,   1,2,...5g g             
eq

i i i i it t t t N Q n t n t ir u r r r    (36) 

where  ,eq
in tr  are the equilibrium functions for  ,in tr , N and Q  are the 

transform matrix and collision matrix for the energy distribution (Wang et al. 2013): 

1 1 1 1 1

0 1 0 1 0

0 0 1 0 1

4 1 1 1 1

0 1 1 1 1

N

 
  
  
 
 

  

             (37) 

 0, , , ,k k e vQ diag                  (38) 

where 
1 1 1 1 1

2 2 6v k 
  

    
  

            (39) 

The unknown parameters in Eq. (38) are defined as following (Wang et al. 2013): 

1 1 1 1 3

2 2 3

1 1 3
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             (40) 

The temperature at each computing node can be obtained as: 
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Then the equilibrium functions  ,eq
in tr  are: 

1 2 3 4 5, , , , 0eq eq eq eq eqn T n uT n vT n aT n                  (42) 

where a  is related to the thermal diffusivity   by: 

 4 1 1

10 2k

a



  

  
 

                (43) 

It is necessary that 1a  to avoid instability (Ginzburg, 2012). The natural convection 

problem under consideration involves two types of boundary conditions: constant 

temperature and adiabatic. Assuming 
fx  is a fluid computing node adjacent to the 

boundary, only one direction energy distribution  ,i fg x t  among the five directions 

in D2Q5 model is unknown on each boundary nodes. On its opposite direction, energy 

distribution  ,fi
g x t  is known after the streaming process. The top and bottom of the 

cavity are adiabatic and bounce-back scheme (Wang et al. 2013) is employed to fulfill 

them:  

   , ,i f fi
g x t g x t               (44) 

For the boundary with constant temperature 
w , the anti-bounce-back boundary 

condition is employed (Mezrhab et al., 2010).  

   , 2 3 ,i f w fi
g x t g x t                (45) 

4. Results and discussions 
The natural convection problem is governed by Rayleigh number and Prandtl number. 

The Rayleigh number, Ra  is depending on the temperature difference h cT T , cavity 

height H  and thermal properties of fluid. Meanwhile, the Prandtl number, Pr  is a 

fluid thermal property that varies from 
310

(liquid metal) to 
510 (functional oil) 

(Kosec and Sarler, 2013). The objective of this paper is to study natural convection of 

low Pr  (orders of magnitude from 
310
 to 

210
) fluid. Four test cases are solved 

with double MRT model. Their Rayleigh numbers and Prandtl numbers are listed in 

Table 1. 

Natural convection in a square enclosure with 410Ra   and 0.01Pr =  is considered 

first (referred to as Case 1 thereafter). Figure 4 shows the variation of the average 

Nusselt number with time. It can be seen that the average Nusselt number become a 

constant after Fo = 3; this indicates the heat transfer rate through the left heat wall 

reaches a fixed value of 1.95 which agrees with that in Kosec and Sarler (2013) well. 

Figure 5 shows the streamlines for Case 1 that one vortex exists in the center of cavity 

due to the convection effect; it agrees with that in Kosec and Sarler (2013) as well. This 

convection effect is also evident in the temperature field shown in Fig. 6. The local 

Nusselt number along the vertical direction is shown in Fig. 7. The maximum Nusselt 

number maxNu of 3.02 occurs at the location of 
maxNuY = 0.30. 

Simulation is then carried out for Case 2 that Rayleigh number increases to 
45 10  

while the Prandtl number is kept at 0.01 .  Figure 8 shows the variation of the average 

Nusselt number with time. It is different from the Case 1 that steady state cannot be 

reached; After Fo =1, the average Nusselt number oscillates around 2.80, which agrees 

with that in Kosec and Sarler (2013). The amplitudes and periods of the oscillations 
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turn to be constant (0.01 and 0.092) as the time increasing. The streamlines and 

temperature fields in one oscillation at different times are presented in Figs. 9 and 10, 

respectively. Convection effect is more evident than that in Case 1 due to the higher 

Rayleigh number. A stronger vortex exists in the cavity and changes with time. It leads 

to temperature fields changing with times. The streamlines difference is more evident 

than that in temperature fields.  

Simulation is now carried out for a lower Prandtl number of  0.005  with Ra =  
45 10 . Similar to Case 2, it can still reach oscillatory solution.  The variation of 

average Nusselt number with time is shown in Fig. 11. It oscillates around 2.65 after 

Fo =1.5, and the mean value of the Nusselt number is lower than that of Case 2. In 

other words, the convection effect weakens as Prandtl number decreases. The amplitude 

and period of oscillation are 0.05 and 0.093, respectively. Figures 12 and 13 show 

streamlines and temperature fields in one oscillation at different times. It is clear that 

lower Prandtl number leads to a lower convection effect, longer oscillation period and 

higher oscillation amplitude. 

To further study the effects of Rayleigh number on the natural convection, another case 

is studied for Ra = 
51 10  and Pr = 0.01  (Case 4). This case also reaches the 

oscillatory solution. Instead of oscillating round a constant value as that in Cases 2 or 

3, average Nusselt number for Case 4 varies round a wave as shown in Fig. 14. The 

streamlines and temperature fields in one period (0.073) at different times are shown in 

Figs. 15 and 16, respectively. Comparing with case 2, the convection effect is more 

notable because of the higher Rayleigh number. And the oscillation period is also longer 

than that for Case 2.      

Conclusions 
Double MRT thermal LBM is applied to simulate the natural convection of fluid with 

low Prandtl number (
310
 – 

210
). The natural convection can reach to steady state or 

oscillate, which agree with the reference results well. Therefore, the double MRT 

thermal LBM is valid for simulation of natural convection of the fluid with low Prandtl 

numbers. With fixed Rayleigh number, lower Prandtl number leads to a weaker 

convection effect, longer oscillation period and higher oscillation amplitude for the 

cases reaching oscillatory solutions. At fixed Prandtl number, higher Rayleigh number 

leads to a more notable convection effect and longer oscillation period. 
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Table 1 Rayleigh numbers and Prandtl numbers in four cases 

 Case 1 Case 2 Case 3 Case 4 

Ra  41 10  
45 10  

45 10  
51 10  

Pr  0.01  0.01  0.005  0.01  
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Figure Captions 
Fig. 1 Natural convection model 

Fig. 2 Nine directions in D2Q9 model 

Fig. 3 Five directions in D2Q5 model 

Fig. 4 Case 1: average Nusselt number  

Fig. 5 Case 1: streamlines 

Fig. 6 Case 1: temperature field 

Fig. 7 Case 1: local Nusselt number along the heat wall 

Fig. 8 Case 2: average Nusselt number tendency 

Fig. 9 Case 2: streamlines 

Fig. 10 Case 2: temperature field 

Fig. 11 Case 3: average Nusselt number tendency 

Fig. 12 Case 3: streamlines 

Fig. 13 Case 3: temperature field 

Fig. 14 Case 4: average Nusselt number tendency 

Fig. 15 Case 4: streamlines 

Fig. 16 Case 4: temperature field 
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Fig. 2 
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Fig. 3 
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Fig. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5 
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Fig. 6 
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Fig. 7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 8 
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Fig. 9 
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Fig. 10 
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Fig. 11 
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Fig. 12 
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Fig. 13 
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Fig. 14 
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Fig. 15 
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Fig. 16 


