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Double-Observer Line Transect Methods: Levels of Independence

Stephen T. Buckland,1,∗ Jeffrey L. Laake,2 and David L. Borchers1
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∗email: steve@mcs.st-and.ac.uk

Summary. Double-observer line transect methods are becoming increasingly widespread, especially for the estimation of
marine mammal abundance from aerial and shipboard surveys when detection of animals on the line is uncertain. The
resulting data supplement conventional distance sampling data with two-sample mark–recapture data. Like conventional
mark–recapture data, these have inherent problems for estimating abundance in the presence of heterogeneity. Unlike conven-
tional mark–recapture methods, line transect methods use knowledge of the distribution of a covariate, which affects detection
probability (namely, distance from the transect line) in inference. This knowledge can be used to diagnose unmodeled hetero-
geneity in the mark–recapture component of the data. By modeling the covariance in detection probabilities with distance,
we show how the estimation problem can be formulated in terms of different levels of independence. At one extreme, full
independence is assumed, as in the Petersen estimator (which does not use distance data); at the other extreme, independence
only occurs in the limit as detection probability tends to one. Between the two extremes, there is a range of models, including
those currently in common use, which have intermediate levels of independence. We show how this framework can be used to
provide more reliable analysis of double-observer line transect data. We test the methods by simulation, and by analysis of a
dataset for which true abundance is known. We illustrate the approach through analysis of minke whale sightings data from
the North Sea and adjacent waters.

Key words: Distance sampling; Double-observer methods; Full independence; Limiting independence; Line transect sam-
pling; Point independence.

1. Introduction
Distance sampling (Buckland et al., 2001) is widely used for
estimating animal abundance. In line transect sampling, an
observer travels along each of a number of lines, laid out
according to some randomized (usually systematic random)
scheme, and records each detected animal, together with its
perpendicular distance from the line. One of the key assump-
tions of the method is that animals on the line are certain to
be detected.

A number of authors have considered so-called double-
observer or double-platform methods to extend line tran-
sect sampling to the case that not all animals on the
line are detected (e.g., Buckland and Turnock, 1992; Palka,
1995; Alpizar-Jara and Pollock, 1996; Manly, McDonald, and
Garner, 1996; Quang and Becker, 1997; Chen, 2000; Innes
et al., 2002). The double-observer data can be regarded as
two-sample mark–recapture. However, heterogeneity in de-
tection probabilities generates bias in abundance estimates,
just as heterogeneity in capture probabilities generates bias
in mark–recapture estimates of abundance. Authors have at-
tempted to minimize this bias, for example, by modeling the
effects of covariates (Borchers, Zucchini, and Fewster, 1998;
Borchers et al., 1998, 2006; Borchers, 1999; Schweder et al.,
1999; Laake and Borchers, 2004), or by assuming indepen-
dence in the detections of instantaneous cues (such as whale
blows) rather than of animals (Schweder et al., 1999; Skaug
and Schweder, 1999).

In the absence of any heterogeneity in detection probabili-
ties, we might assume that observer j detects any given animal
in the surveyed strip with probability pj , j = 1, 2, and that
the probability that both observers detect a given animal is
p12 = p1p2. This is the “full independence” assumption. How-
ever, in line transect sampling, we allow detection probability
to fall off with distance y from the line so that pj = pj (y).
Thus it is natural to apply the full independence assumption
at each distance from the line, so that for an animal at y, we
assume p12(y) = p1(y)p2(y).

Laake (1999) introduced the concept of “point indepen-
dence” to reduce the impact of unmodeled heterogeneity in
detection probabilities. Knowledge of the distribution of dis-
tances allows the full independence assumption to be weak-
ened, as outlined below. (For the moment, we ignore variables
other than distance for simplicity.)

A double-observer line transect survey generates both con-
ventional distance sampling data and mark–recapture data.
Under the assumption of uniform animal distribution perpen-
dicular to the transect line (achievable by random line place-
ment or systematic placement with a random start), the shape
of the probability density function of observed distances is the
same as that of the detection function (Buckland et al., 2001,
p. 52–53). The mark–recapture data provide additional infor-
mation on the shape of the detection function based on an
assumption of independence of detection probabilities with-
out any assumption about the distribution of perpendicular
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distances of animals. If we retain the assumption of uni-
form perpendicular distance distribution, discrepancies be-
tween the shapes can be interpreted as failure of the assump-
tion of independence between detection probabilities.

We diagnose dependence by (a) modeling the shape of ob-
server j’s detection function (pj (y), j = 1, 2) under the uni-
form perpendicular distance assumption, (b) modeling the
conditional probability pj |j ′(y) that observer j detects an an-
imal at y, given that observer j ′ detected it (j = 1, 2, j ′ =
3 − j), and (c) modeling the covariance in the observers’ de-
tection probabilities as a function of y using a function δ(y)
defined below.

For real data, typically pj |j ′(y) does not decline as steeply
as pj (y). Hence the full independence assumption (pj |j ′(y) =
pj (y)) cannot be made at each distance. The reason for this
is that at greater distances, only the most detectable animals
tend to be recorded, and those that are detected by one ob-
server are therefore more likely to be detected by the other
observer. Laake (1999) argued that heterogeneity is less of a
problem on the line, where probability of detection is rela-
tively high, than away from the line, so that assuming inde-
pendence only on the line should yield less biased estimates
of abundance. The idea was further developed by Laake and
Borchers (2004) and Borchers et al. (2006).

Although we can anticipate less dependence between detec-
tions on the line than at greater distances, unless detection
on the line is certain, it seems possible that some dependence
remains. In this article, we consider levels of independence,
and show that the independence assumption can be weak-
ened further by assuming that, as detection probability tends
to unity, dependence tends to zero (i.e., independence). We
term this “limiting independence.”

We illustrate the methods through analyses of data from
a shipboard survey of minke whales in the North Sea and
adjacent waters.

2. Methods
Suppose detected animals within a strip extending a distance
W either side of the line are recorded. We assume that two
observers search independently from the same platform, or
from two platforms following the same route at almost the
same time. We also assume that duplicate detections can be
correctly classified, based on time and location of animals or
animal cues, for example.

2.1 Independence Assumptions
At the simplest level, we might assume that observer 1 de-
tects animals in this covered strip with probability p1, while
observer 2 independently detects animals with probability p2.
In this “full independence” case, an animal is detected by at
least one observer with probability p• = p1 + p2 − p1p2. A
Horvitz–Thompson estimator of Nc , the number of animals
in the strip, is thus N̂c =

∑
1
p •

= n
p •

where n is the number
of animals detected by at least one observer. Note that n =
n1 + n2 − n12, where nj is the number of animals detected by
observer j, j = 1, 2, and n12 is the number of animals detected
by both observers. If we estimate pj by p̂j = n12/nj ′ for j =
1, 2, j ′ = 3 − j, and substitute in, we find that N̂c = n 1n 2

n 12
,

which is the familiar Petersen estimator. This is the full max-
imum likelihood estimator of Nc (Borchers, Buckland, and
Zucchini, 2002, p. 111), or within a single animal of the

maximum likelihood estimator, if we allow for the fact that
Nc is integer.

Now suppose that probability of detection is a function
of distance y from the line. There may also be dependence
on additional covariates z, although we omit this dependence
below, for clarity. Full independence applied at each y gives
p•(y) = p1(y) + p2(y) − p1(y)p2(y), so that a model is now
needed for pj (y), j = 1, 2. We can then proceed to fit the
model, and hence to estimate abundance in the covered strip
(below).

We would like to relax the full independence assump-
tion. Allowing some degree of dependence (δ(y)), the in-
dependence assumption can be expressed more generally
such that p12(y) = δ(y)p1(y)p2(y), p•(y) = p1(y) + p2(y) −
δ(y)p1(y)p2(y), and pj | j ′(y) = δ(y)pj (y), j = 1, 2, j ′ = 3 − j.
The function δ(y) is related to the covariance σ12(y) between
detection probabilities p1(y) and p2(y) as follows: σ12(y) =
[δ(y) − 1]p1(y)p2(y). Various alternative expressions can be
derived for δ(y) including

δ(y) = p12(y)/{p1(y)p2(y)}
= {p1 | 2(y) + p2 | 1(y) − p1 | 2(y)p2 | 1(y)}/p•(y)

= pj |j ′(y)/pj (y)

for j = 1, 2. The latter expressions demonstrate that δ(y)
measures the discrepancy between the conditional detection
functions pj | j ′(y) derived from the mark–recapture data and
the unconditional detection functions pj (y), which are derived
from distance sampling data with the requirement that pj (y∗)
is known for some y∗. For distance sampling with a single
observer, the standard assumption is pj (0) = 1. With double
observers, this often untenable assumption can be replaced
with the assumption of full independence, δ(y) = 1 for all y,
or point independence, δ(y∗) = 1 at a specified y∗, usually
y∗ = 0 (Laake and Borchers, 2004). Fitting full independence
models to data requires a functional form for pj (y) and point
independence requires the same and a model for pj | j ′(y). Nei-
ther require a model for δ(y).

We now relax the assumption that δ(y∗) = 1 at a specified
y∗. Instead we assume that we achieve independence in the
limit as detection probability tends to one. This requires a
model for δ(y) with the following properties to ensure valid
probabilities:

(1) δ(y) ≤ U (y), where U (y) = min{1/p1(y), 1/p2(y)},
which ensures that pj |j ′(y) ≤ 1.

(2) δ(y) ≥ L(y), where L(y) = max{0, p 1(y )+p 2(y )−1
p 1(y )p 2(y ) }, which

ensures that p•(y) ≤ 1.

If we define δ0(y) = {δ(y) − L(y)}/{U (y) − L(y)}, it is re-
stricted to the unit interval and can be represented by an
appropriate functional form such as a logistic. Note also that
as pj (y) → 1, j = 1, 2 then δ(y) → 1.

Using a logistic formulation for δ0(y), we can write
loge{ δ0(y )

1−δ0(y )} as some linear function of y. Full and point inde-
pendence can be derived as special cases of the limiting inde-
pendence model if we include the following offset loge{ 1−L (y )

U (y )−1}
in δ0(y) which fixes δ(y) = 1. If we consider the following lo-
gistic model for limiting independence:

loge

{
δ0(y)

1 − δ0(y)

}
= α + βy + loge

{
1 − L(y)
U (y) − 1

}
, (1)
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then α = 0 specifies point independence at y∗ = 0, and α =
β = 0 specifies a full independence model. If β = 0 and α �= 0,
a model with constant dependence for all y can be specified.
Models restricted to independence or positive dependence can
be achieved by restricting α ≥ 0, β ≥ 0. Hence this general
formulation provides a model selection framework for a range
of models with varying degrees of independence.

2.2 Likelihood
The full likelihood for double-platform data may be expressed
as L = LnLzLy |zLω where Ln is the component accounting
for variation in total number of animals n detected by at least
one observer, Lz corresponds to any observation-specific co-
variates z, Ly |z corresponds to the conditional distribution of
distances y, given covariates z, and Lω corresponds to the
mark–recapture data (Laake and Borchers, 2004). Ly |z incor-
porates the assumption of uniform distribution of animals per-
pendicular to transect lines. We use just two components of
the full likelihood: Ly |z and Lω . By doing this, we can avoid
making distributional assumptions about n and z, as estima-
tion is not robust to failure of such assumptions. Instead, we
draw inference conditional on n and z, and use a design-based
approach to allow for variation in n. If there are no covariates
z, the full likelihood is L = LnLyLω , and we use the second
and third components only (in this case, Ly incorporates the
assumption of uniform distribution of animals perpendicular
to transect lines). Again for simplicity we consider this latter
case; the extensions to include covariates z are straightfor-
ward.

We have

Ly =
n∏

i=1

f•(yi ) =
n∏

i=1

p•(yi )π(yi )
E(p•)

,

where f •(yi ) is the probability density function (pdf) of detec-
tion distances y of animals detected by at least one observer,
evaluated at yi , p•(yi ) = p1(yi ) + p2(yi ) − δ(yi )p1(yi )p2(yi )
is the probability that an animal at distance yi from the line
is detected by at least one observer, π(yi ) is the uncondi-
tional pdf of distances y in the population (whether detected
or not), evaluated at yi , and E(p•) =

∫ w

0 p•(y)π(y)dy (Laake
and Borchers, 2004, p. 114). Random positioning of the lines
(or of a systematic grid of lines) ensures that π(y) = 1/W .

We also need

Lω =
n∏

i=1

Pr(ωi | yi )
p•(yi )

,

where

Pr{ωi = (1, 0) | yi} = p1(yi ){1 − p2(yi )δ(yi )},
Pr{ωi = (0, 1) | yi} = p2(yi ){1 − p1(yi )δ(yi )},
Pr{ωi = (1, 1) | yi} = p1(yi )p2(yi )δ(yi ).

The likelihoods for full, point, and limiting independence
only differ in the definition of δ(yi ). However, if the full in-
dependence assumption holds then it is only necessary to
use Lω (Borchers et al., 1998) and with the point indepen-
dence assumption, Lω and Ly can be maximized indepen-
dently using models for pj |j ′(y) and pj (y), which separate

into the two respective likelihood components (Borchers
et al., 2006). When the likelihood is specified in terms of mod-
els for pj (y) and δ(y), both components of the likelihood must
be maximized jointly.

We assume logistic forms for the detection functions:

pj (y) =
exp(λ0j + λ1j y)

1 + exp(λ0j + λ1j y)
for j = 1 or 2. (2)

2.3 Diagnostic for Reliable Estimation under Limiting
Independence

When fitting limiting independence models, the Hessian ma-
trix is sometimes nearly singular, due to high correlation be-
tween the estimates of pj (y) and δ(y) at y = 0. In these cases,
the models are unstable, typically yielding very large abun-
dance estimates and associated variances. We can still usefully
calculate Akaike’s information criterion (AIC), but if AIC in-
dicates that a limiting independence model is required, then
reliable estimation is not possible. To identify such cases, the
following diagnostic check was found useful. If the magnitude
of the estimated correlation between α̂ of equation (1) and λ̂0j

of equation (2) is found to be large, then estimated abundance
should be considered unreliable. The test can be conducted
for each of j = 1 and j = 2, or by arbitrarily choosing one of
the two; the two correlations tend to be similar when they are
close to ±1. We defined “large” to be greater than 0.99 in Sec-
tion 3 and 0.9 in Section 4; choices in the range of 0.9 to 0.99
were found to be effective. Lowering the correlation criterion
provides a more conservative approach to avoid overestima-
tion with the only cost being potential underestimation due
to the unmodeled dependence.

2.4 Estimating Abundance
Given models for p1(y), p2(y), and δ(y), the likelihood con-
ditional on n, LyLω , can be maximized, which allows us to
estimate E(p•). Estimated abundance in the covered area is
then

N̂c =
n∑

i=1

1

Ê(p•)
=

n

Ê(p•)
. (3)

This is a Horvitz–Thompson estimator in which the inclu-
sion probabilities have been estimated (Laake and Borchers,
2004, p. 116). When covariates z are present, the simplifica-
tion represented by the second equality does not hold. If the
covered area is of size a, and the entire survey region of size
A, then estimated abundance in the survey region is

N̂ =
A

a
N̂c =

A

a

n

Ê(p•)
, (4)

where a = 2wL and L is the total length of transect line.
For our limiting independence model, we cannot use

vâr(N̂c ) as defined in Borchers et al. (2006), because the con-
ditional and unconditional detection functions share param-
eters under the above formulation. Adapting their result, we
have

vâr(N̂c ) = S2(θ̂) + d̂
T
Î−1d̂,
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where S2(θ̂) =
∑n

i=1
1−Ê (p •)
{Ê (p •)}2 = n {1−Ê (p •)}

{Ê (p •)}2 , d̂ = dN̂ c
dθ

| θ̂ , and −Î
is the matrix of second derivatives of ln(Ly ) + ln(Lω ), evalu-
ated at θ̂, the vector of parameter estimates.

Adapting equation (11) of Marques and Buckland (2003),

vâr(N̂ ) =
(

A

a

)2
{

L

K∑
k=1

lk (N̂ck /lk − N̂c /L)2

K − 1
+ d̂

T
Î−1d̂

}
, (5)

where N̂ck =
∑n k

i=1
1

Ê (p •)
= n k

Ê (p •)
is estimated abundance for

strip k, which has half-width w and length lk , where
∑K

k=1 lk =
L.

An alternative to the above is to use the bootstrap, in which
bootstrap resamples are generated by sampling the lines with
replacement.

If animals occur in clusters, with si animals in the ith de-
tected cluster, then the above formula gives estimated clus-
ter abundance, and estimated animal abundance is given
by

N̂ =
A

a

n∑
i=1

si

Ê(p•)
.

Variance can be estimated as before, except that now,
S2(θ̂) = {1−Ê (p •)}

{Ê (p •)}2

∑n

i=1 s2
i , d̂ = dN̂ c

dθ
| θ̂ is evaluated using N̂c =∑n

i =1
s i

Ê (p •)
, and in the formula for variance of N̂ , N̂c =

∑n

i =1
s i

Ê (p •)

and N̂ck =
∑n k

i =1
s i

Ê (p •)
.

Table 1
Mean (standard error in parentheses) of 100 abundance estimates under full independence (FI), point independence (PI), and
limiting independence (LI) models for the eight simulation scenarios. The expected capture history frequencies are shown for

each scenario. Also shown is pAIC , the proportion of times each model was selected by AIC, and model-averaged (MA) estimates,
obtained by taking a weighted average of estimates from the above three models, using AIC weights. Where an LI model was

deemed to be parameter redundant ( | correl(α̂, λ̂01)| > 0.99), the model was not considered even if it had the best AIC value, and
the weighted average was over the FI and PI models only. The mean and standard error for LI models is across only those runs

for which the model was not deemed to be parameter-redundant. The number of runs (Nr) out of 100 contributing to the LI
results under each scenario is shown. True abundance is 1000. ∗Bias significant at 5% level.

Exp. capture
history freqs. FI PI LI MA

Scenario 10 01 11 Mean pAIC Mean pAIC Mean pAIC Nr Mean

1 101 101 315 607∗ 0.00 819∗ 0.23 1074∗ 0.77 95 1020
(3) (6) (14) (16)

2 33 33 383 450∗ 0.00 692∗ 0.04 1037∗ 0.96 97 1020
(1) (4) (18) (18)

3 89 89 126 499∗ 0.00 616∗ 0.93 971 0.07 60 685∗

(4) (6) (21) (7)
4 34 34 180 290∗ 0.00 454∗ 0.54 963 0.46 63 664∗

(3) (4) (21) (21)
5 87 87 135 512∗ 0.00 650∗ 0.65 1437∗ 0.35 76 1021

(4) (6) (124) (96)
6 34 34 189 296∗ 0.00 465∗ 0.23 1149∗ 0.77 86 962

(3) (5) (42) (41)
7 77 77 579 770∗ 0.00 915∗ 0.55 1064∗ 0.45 82 1001

(2) (3) (15) (14)
8 29 29 629 689∗ 0.00 850∗ 0.12 1057∗ 0.88 94 1032∗

(2) (4) (11) (12)

3. Simulation Study
Simulations were conducted to evaluate the performance of
the limiting independence model. We simulated a population
of N = 1000 animals that were uniformly distributed in a
strip of width two (w = 1) and undefined length. For each
of 100 simulation replicates, we generated capture histories
for two observers with identical detection probability func-
tions p1(y) = p2(y). We used four different logistic models
for pj (y) and two different logistic models for δ0(y) to create
eight scenarios. For models with a covariate z, the covariate
value was generated from a uniform (0, 1) distribution. We
fitted the simulated observed data (10, 01, 11 capture histo-
ries) with the model that generated the data, and with the
equivalent models under the point independence and full in-
dependence restrictions. We computed the AIC for each of
the fitted models. For model fits where the magnitude of the
correlation between α̂ and λ̂0j exceeded 0.99, results are not
reported.

The eight scenarios were as follows. The offset loge{ 1−L (y )
U (y )−1}

was used in each dependence model to simulate and fit the
data. The dependence model δ0(y) = (1 + e−1−y )−1 was
used in scenarios 1, 3, 5, and 7, whereas δ0(y) = (1 +
e−2−2y )−1 (representing stronger dependence) was used in
scenarios 2, 4, 6, and 8. The detection probability model
pj (y) = (1 + e−1.1+3y )−1, j = 1, 2, was used in scenar-
ios 1 and 2, pj (y) = (1 + e3y )−1 in scenarios 3 and 4,
pj (y, z) = (1 + e0.8417+3y−0.8417z )−1 in scenarios 5 and 6, and
pj (y, z) = (1 + e3y−5z )−1 in scenarios 7 and 8.

Simulation results appear in Table 1. Full independence
and point independence models had substantial negative bias
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Figure 1. Plot of log(N̂ ) against correl(α̂, λ̂01), illustrating
that the very high estimates of abundance from the simula-
tions all arose when correl(α̂, λ̂01) was very close to ±1.

in all scenarios, with full independence models consistently
more biased than point independence models. Within a sce-
nario, the bias was remarkably consistent, reflected in the very
small standard errors of Table 1, but the bias varied substan-
tially between scenarios. Although the data were simulated
from limiting independence models, significant upward bias
was found in six of the eight scenarios when the data were
analyzed using the true model. However, the size of the bias
in most cases was substantially smaller than for point inde-
pendence models. Model-averaged estimates had low bias, ex-
cept for scenarios 3 and 4, for which around 40% of analyses
under the limiting independence model were rejected due to
high correlation between α̂ and λ̂0j . Figure 1 shows the need
to reject such cases; all of the very high abundance estimates
obtained correspond to a correlation between α̂ and λ̂0j very
close to ±1. In all cases use of AIC correctly diagnosed the
presence of unmodeled heterogeneity, although in some cases
it did not differentiate well between point independence and
limiting independence scenarios.

4. Stake Data
Laake (1999) used data on a population of wooden stakes
of known size to illustrate independence issues in double-
observer surveys. We use the same dataset here. The sur-
veys were conducted in 1977 and 1978 (Laake, 1978); as in
Laake (1999), we consider only the 1977 data. Multiple ob-
servers traversed a 1 km line marked with poles at 100-m
intervals and searched a strip of sagebrush-grassland habi-
tat 20 m on either side of the line for 150 wooden stakes that
protruded 30 cm above ground. The stakes had a random uni-
form distribution throughout the 1000 m × 40 m strip. Eight
observers separately surveyed the stakes, remaining on the
line. Distances from the line were measured accurately by an
assistant.

For each pair of observers, we show estimates of abundance
in Table 2. Models were fitted corresponding to full indepen-
dence (α = β = 0), point independence (α = 0, β uncon-
strained), and limiting independence with α ≥ 0, β ≥ 0. In
each case, three models were fitted: the first with observer as
a factor and distance as a covariate, the second with the ad-
dition of an interaction term between the two, and the third
with the squared distance as an additional covariate, together
with interaction terms between observer and the two contin-
uous covariates.

It is clear from Table 2 that models with all three forms of
independence are useful for the analysis of these data. Overall
performance is remarkably good, with the average of the best
estimates (as judged by AIC) coming out close to the true
abundance of N = 150, as does the average of the model-
averaged estimates, using AIC weights (Buckland, Burnham
and Augustin 1997).

5. Shipboard Survey of Minke Whales
The second Small Cetacean Abundance in the North Sea
and adjacent waters (SCANS II) survey was a multina-
tional survey conducted in 2005 by ship and aircraft to
estimate cetacean abundance in the North Sea, Katte-
gat, Skagerrak, western Baltic, English Channel, and the
Celtic Sea. Double-observer line transect survey methods
were used because for many species detection of animals
on the trackline was expected to be less than unity. De-
tails of the survey and further information can be found at
http://biology.st-andrews.ac.uk/scans2/. Here we ana-
lyze only shipboard survey data on minke whales.

The methods used in the SCANS surveys were designed to
break up the dependence between the two observers, by en-
suring that they are not simultaneously searching the same
patch of sea. A “tracker” scans with high-powered binocu-
lars well ahead of the ship, and tracks detected animals in,
to check whether the primary platform, searching with hand-
held binoculars and naked eye, detects them (so-called dupli-
cate detections). Previously, we have had no means of testing
whether the method is successful in breaking up the depen-
dence between observers.

Using a truncation distance of 700 m, the tracker de-
tected 54 minke groups totaling 62 animals, while the primary
platform detected 57 groups totaling 59 animals; 17 groups
(19 animals) were detected by both tracker and primary
platform.

The full model of Table 3 is defined by

pj (y, z) =
exp(λ0j + λ1j y + λ2j z)

1 + exp(λ0j + λ1j y + λ2j z)
, (6)

δ(y, z) = L(y, z) + δ0(y, z){U (y, z) − L(y, z)}, (7)

where

L(y, z) = max

{
0,

p1(y, z) + p2(y, z) − 1
p1(y, z)p2(y, z)

}
,

U (y, z) = min{1/p1(y, z), 1/p2(y, z)},
and

δ0(y, z) =
{1 − L(y, z)} exp(α + βy)

{U (y, z) − 1} + {1 − L(y, z)} exp(α + βy)
.

Covariate z is sea state (Beaufort).
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Table 2
Estimates of abundance for the stake data for all combinations of the eight observers under full independence, FI (α = β = 0),

point independence, PI (α = 0, β unconstrained) and limiting independence, LI with α ≥ 0, β ≥ 0. Covariate model 1 has
covariate structure observer + distance, model 2 has structure observer ∗ distance, and model 3 has structure observer ∗
(distance + distance2). “Best” corresponds to the model with the smallest AIC (indicated by “#,” with standard error in

parentheses), and “MA” is the model-averaged estimate, using AIC weights. True abundance is 150. LI fits with
| correl(α̂, λ̂01) | > 0.9 were not used for the best or model-averaged estimates, and are indicated by “!”.

Cov model 1 Cov model 2 Cov model 3

Obs1 Obs2 n1 n2 n12 FI PI LI FI PI LI FI PI LI Best (se) MA

1 2 81 48 38 136 139 156 132# 134 136 133 138 137 132 (11) 134
1 3 81 68 60 125 146 160 125 154 195# 120 145 193 195 (23) 185
1 4 81 51 42 127 158 215# 126 149 176 123 146 196 215 (23) 172
1 5 81 49 43 127 141# 154 126 136 141! 128 140 142 141 (16) 136
1 6 81 72 58 126# 134 159 126 134 147 125 135 148 126 (10) 133
1 7 81 54 47 120 135 204 118 124 138 122# 125 127 122 (10) 126
1 8 81 84 63 136# 142 156 136 142 155 136 141 157! 136 (10) 140
2 3 48 68 34 147 154 254 141# 150 166 142 154 181 141 (14) 150
2 4 48 51 35 86 131# 140 86 130 139 84 131 139 131 (18) 133
2 5 48 49 38 78 117 124 77 132# 135 75 143 143 132 (32) 135
2 6 48 72 41 105 149 239 105 142# 144 105 153 161 142 (18) 162
2 7 48 54 36 92 130# 145 92 129 137 88 127 138 130 (17) 131
2 8 48 84 46 107 144 197 105 129 141 105 126# 131 126 (11) 132
3 4 68 51 40 129 157 276 124 152 175# 124 148 164 175 (22) 163
3 5 68 49 38 143 164 246 141 156 203# 140 155 220 203 (46) 181
3 6 68 72 55 122 139 177 122 144 166# 122 150 164 166 (17) 155
3 7 68 54 42 130 166 294 127 157 213# 124 143 185 213 (27) 193
3 8 68 84 58 136 147 151! 137 153# 172 135 153 171 153 (16) 153
4 5 51 49 33 105 156 167 105 157# 168 101 156 185 157 (17) 160
4 6 51 72 46 91 140 351! 93 130 178 94 137# 138 137 (15) 144
4 7 51 54 36 99 137# 148 99 137 160 97 133 152 137 (18) 140
4 8 51 84 48 107 141 222 106 124 145# 109 124 130 145 (29) 148
5 6 49 72 41 115 167# 170 115 176 179 114 177 181 167 (27) 171
5 7 49 54 39 91 142# 147 91 143 150 87 143 146 142 (23) 144
5 8 49 84 46 117 148# 163 117 142 156 115 141 158 148 (18) 151
6 7 72 54 48 96 132 214# 97 126 130 99 120 132 214 (39) 164
6 8 72 84 66 106 134 159 106 132# 134 106 133 139 132 (12) 137
7 8 54 84 53 86 152 253# 97 119 96 101 108 108 253 (129) 212

Average 114 144 194 113 140 160 113 140 156 158 153
Std dev. 19 12 55 18 13 23 18 14 25 34 21

The benefits of field methods to break up heterogeneity
are immediately apparent from Table 3. AIC favors models
with full independence (α = β = 0), and selects the model
with identical detection functions for the two observers, and
sea state as a covariate (model 12, Figure 2). Estimation is
largely unaffected by whether we assume full independence or
point independence. If we also relax the assumption of point
independence, AIC values are larger, but estimation is not
greatly affected, with the exception of model 2.

It is surprising that AIC favors models which assume the
same detection function for the two observers, given that
the tracker is searching much further ahead of the ship than
the primary platform. However, estimation is barely affected
by whether we make this assumption or not. The distribution
of distances from the line of detections from the two platforms
is clearly very similar out to the truncation distance of 700 m
(Figure 2), although beyond this distance, the tracker detects
more animals than the primary platform.

6. Discussion
Our methods allow assessment of whether the full indepen-
dence or point independence assumptions are reasonable. The
methods also provide a means of analyzing double-observer
surveys without having to assume independence between the
observers’ detection probabilities, even at distance zero. How-
ever, strong dependence between the observers’ detection
probabilities can lead to unreliable estimation. If possible,
field methods should be developed to ensure that there are
not animals in the population that are very unlikely to be de-
tected, even if they are on the line. However, this strategy can
create problems for identifying duplicate detections, so that
in some circumstances, it may be preferable to estimate the
proportion of animals that are essentially undetectable. For
example in aerial surveys of marine mammals, the observers
might record only those animals that are at the surface as they
pass abeam, and a separate study might be used to estimate
the proportion of animals at the surface at any time.
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Table 3
Models fitted to the minke whale survey data. The full model, denoted here by LI (limiting independence), platform ∗

(Dist+Beau), is defined by equations (6) and (7). The estimates N̂ and se(N̂ ) were obtained by appropriate extensions of
equations (3) and (4) for a stratified design. Correl for LI models with a platform effect corresponds to whichever of

| correl(α̂, λ̂01) | and | correl(α̂, λ̂02) | is closest to 1. PI indicates point independence (α = 0) and FI denotes Full Independence
(α = β = 0).

Nos. Dependence Covariate model No. par N̂ se(N̂ ) ΔAIC Correl

1 LI Platform ∗ (Dist+Beau) 8 16,912 6663 7.4 0.393
2 LI (β = 0) Platform ∗ (Dist+Beau) 7 26,453 18,422 7.0 −0.805
3 PI Platform ∗ (Dist+Beau) 7 17,156 5359 5.4 –
4 FI Platform ∗ (Dist+Beau) 6 17,935 5436 3.6 –
5 LI Platform ∗ (Dist) 6 ∗ ∗ 13.6 −1.000
6 LI (β = 0) Platform ∗ (Dist) 5 ∗ ∗ 11.7 −1.000
7 PI Platform ∗ (Dist) 5 16,192 4446 12.3 –
8 FI Platform ∗ (Dist) 4 15,195 3311 10.4 –
9 LI Dist+Beau 5 16,837 7130 3.9 0.073
10 LI (β = 0) Dist+Beau 4 16,091 4365 1.9 0.124
11 PI Dist+Beau 4 17,337 5647 1.9 –
12 FI Dist+Beau 3 18,173 5534 0.0 –
13 LI Dist 4 ∗ ∗ 9.8 1.000
14 LI (β = 0) Dist 3 ∗ ∗ 7.9 −1.000
15 PI Dist 3 16,209 4447 8.5 –
16 FI Dist 2 15,202 3313 6.6 –

∗|correl(α̂, λ̂0j ) | > 0.99 for j = 1 and 2 (models 1–8) or | correl(α̂, λ̂0) | > 0.99 (models 9–16).

Extension of the methods to point transect sampling is
straightforward. We now have π(y) = 2y/w2 if points are
positioned randomly. In equation (4), the covered area a is
now a = Kπw2, where K is the number of points. For vâr(N̂ ),
we obtain a similar result to equation (5) by adapting equa-
tion (3.48) from Marques and Buckland (2004).

It is knowledge of π(y) that allows us to weaken the full
independence assumption. In principle, the same approach
could be applied to conventional mark–recapture models, if
π(y) were known for some explanatory variable y, although
this seems unlikely in most applications.

If there is responsive movement prior to detection so
that the distances y available for detection differ in an un-
known way from that prior to movement (i.e., from π(y)),
then (a) δ(y) cannot be interpreted as above and (b) un-
der the assumption of full independence, δ(y) can be in-
terpreted as a measure of deviation from π(y) due to re-
sponsive movement. This can be seen from the following.
The pdf of observed distance for observer j is fj (y) =
pj |j ′(y)δ(y)−1π(y)/

∫
pj |j ′(y)δ(y)−1π(y)dy. If we assume full in-

dependence, then pj | j ′(y) is equal to the unconditional detec-
tion function for observer j, and hence π(y)δ(y)−1 is propor-
tional to the pdf of y after movement. Note that while the
interpretation of δ(y) is different in this case from the case
with no responsive movement, the abundance estimator is still
valid.

It is worth noting that although δ(y) is superficially similar
to α(z) of Chen (1999) and α of Chen and Lloyd (2000), it
is in fact quite different. To see this, consider a situation in
which distance y and other variables u affect detection prob-
ability but only y is recorded (in this case α(z) is a constant).
Whereas α(z) and α quantify the heterogeneity due to y, δ(y)
quantifies the heterogeneity at y due to the unrecorded vari-
ables u. This is an important difference because the formu-

lations of Chen (1999) and Chen and Lloyd (2000) do not
accommodate heterogeneity due to the unrecorded variables
u, and it is precisely this heterogeneity that is at issue here.
Chen (1999) and Chen and Lloyd (2000) assume that p•(y)
= p1(y) + p2(y) − p1(y)p2(y), whereas we assume that p•(y)
= p1(y) + p2(y) − δ(y)p1(y)p2(y). It is the discrepancy be-
tween the shapes of fj (y) and pj | j ′(y) (j = 1,2) that provides
the basis for modeling heterogeneity due to the unrecorded
variables (together with knowledge of π(y)); the formulations
of Chen (1999) and Chen and Lloyd (2000) model fj (y) but
do not include pj | j ′(y) and are therefore unable to exploit
the information in the discrepancy between the two. This ap-
plies equally to the case in which additional variables z are
recorded (but u remains unrecorded).

We have used AIC to select between models. We have
estimated detection functions by maximum likelihood, but
abundance is estimated using a Horvitz–Thompson estima-
tor in which the inclusion probabilities have been estimated
(by maximum likelihood). As the components of the abun-
dance estimators that are not estimated by maximum like-
lihood (corresponding to sample size, and to extrapolation
from the covered area to the entire survey area) are common
across models, it seems not unreasonable to use AIC to select
between abundance estimators. However, when some inclusion
probabilities are very small, modest error in estimating them
can generate large positive bias in the abundance estimate,
which would be undetectable by AIC.
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Figure 2. Estimated detection functions for minke whales, model 12 (see Table 3). The top left plot is the estimated
unconditional detection function for observer 1, and top right is the estimated unconditional detection function for observer
2. The corresponding conditional detection functions are shown in the center. Under this model, all four of these detection
functions are identical, but the data in each plot differ. The estimated detection function for the two observers combined is
shown at the bottom left. The bars are: relative frequencies of detections made by observer 1 (top left), relative frequencies of
detections made by observer 2 (top right), proportion of observer 2 detections made by observer 1 (middle left), proportion of
observer 1 detections made by observer 2 (middle right), and relative frequencies of detections made by at least one observer.
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