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Abstract—Double patterning lithography (DPL) is considered
as a most likely solution for 32 nm/22 nm technology. In DPL,
the layout patterns are decomposed into two masks (colors),
and manufactured through two exposures and etch steps. If
the spacing between two features (polygons) is less than certain
minimum coloring distance, they have to be assigned opposite
colors. However, a proper coloring is not always feasible because
two neighboring patterns within the minimum distance may be
in the same mask due to complex pattern configurations. In that
case, a feature may need to be split into two parts to resolve the
conflict, resulting in stitch insertion which causes yield loss due to
overlay and line-end effect. While previous layout decomposition
approaches perform coloring and splitting separately, in this
paper, we propose a simultaneous conflict and stitch minimization
algorithm with an integer linear programming (ILP) formulation.
Since ILP is in class NP-hard, the algorithm includes three
speed-up techniques: 1) grid merging; 2) independent component
computation; and 3) layout partition. In addition, our algorithm
can be extended to handle design rules such as overlap margin
and minimum width for practical use as well as off-grid layout.
Our approach can reduce 33% of stitches and remove conflicts
by 87.6% compared with two phase greedy decomposition.

Index Terms—Double patterning lithography, integer linear
programming, layout decomposition.

I. Introduction

A
S the minimum feature size decreases, semiconductor

industry is facing the limitation of patterning sub-32 nm

due to the delay of the next generation lithography equipment

such as extreme ultraviolet [1]. Double patterning lithogra-

phy (DPL) [2]–[5] emerges almost the only alternative for

32 nm/22 nm nodes and it is already used for NAND-flash

production. In DPL, a single layout is decomposed into two

masks and manufactured through two exposure/etching steps.

As a benefit, the pitch size is doubled, which enhances the

resolution as illustrated in Fig. 1. Although DPL requires two

masks and increases the design cost, it is widely considered

as a most likely solution for 32 nm, 22 nm, and even 16 nm.

Double patterning layout decomposition [6]–[8] is a process

that assigns two features within the given minimum space
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Fig. 1. One single design is decomposed into two masks and the pitch size
is increased effectively in DPL.

to different masks. A layout may contain a pattern which

is unable to assign a color. In this case, a feature may be

split into two parts and colored differently to resolve the

conflict, which generates stitches. Stitches will cause yield

loss and increase manufacturing cost due to overlay errors,

which is 5 nm or 6 nm under current 32 nm double patterning

lithography. Some mask misalignment direction [4] could be

actually beneficial for printability. However, on the presence of

various process uncertainties, such as dose, focus, and mask

errors, the printed stitch width could be easily smaller than

25 nm and result in design failure. Pushing overlay below

3 nm [9] is very challenging. Moreover, the additional line-

ends may cause more pattern degradation and reduce yield

in case of defocus and dose variation. After splitting, a few

unresolved or even unresolvable conflicts may remain and will

be corrected by time consuming layout redesign. Therefore, it

is important to produce high quality decomposition solution

with less conflicts and stitches.

There are a few works focusing on stand-alone layout

decomposition. A heuristic approach is proposed in [7] to

cut troublesome patterns after finding the coloring conflicts.

The patterns are prefragmented into smaller pieces in [8] to

perform coloring. All these works do not have a systematical

way to minimize the number of conflicts and stitches. Coloring

and splitting are considered in separate steps while they are

highly correlated tasks. Pattern matching technique is proposed

in [10] to decompose the layout. However, it might not be

able to work on large scale problem, hence limits the solution

quality. Recently, a practical layout decomposition flow is

proposed in [11] to address design needs for double patterning.

They first detect the features associated with unresolvable

conflict cycles for layout modification. The remaining design

is then decomposed to minimize the number of stitches based

on an ILP formulation. However, in their work, the number

of unresolvable conflict cycles and splitting stitches are not

optimized together, and conflict elimination technique is quite

greedy.

0278-0070/$26.00 c© 2010 IEEE
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Fig. 2. Concept of conflict and stitch.

In this paper, we propose an algorithm to decompose layout

for minimizing conflicts and stitches simultaneously. The

proposed approach reduces the conflicts by 87.6% with 33%

less stitches compared to a greedy two phase decomposition

flow. When compared to a methodology based on [11], we are

also able to achieve averagely 87.2% and 10% reduction on

conflicts and stitches, respectively. Although our approach is

comparatively slower, we can obtain coloring solutions for all

the test cases within a few minutes. The runtime shows linear

complexity with respect to problem size.

Our main contributions are as follows.

1) We propose a new grid model to enable bigger solution

space than previous works [7], [8] and perform simul-

taneous conflict and stitch optimization.

2) We develop an ILP algorithm to minimize the number

of conflicts and stitches for a high quality solution.

3) We propose three speed-up techniques (grid merging,

independent component computing and layout partition)

to improve the runtime and scalability of our algorithm.

For layout partition, we identify and solve a coloring

flip optimization problem to minimize the conflicts and

stitches across the boundary of different partitions.

4) We discuss how to extend our proposed grid model

to handle various splitting rules and design patterns in

practice.

The rest of the paper is organized as follows. Section II

provides the preliminaries and motivates. In Section III, we

discuss the problem formulation with related model and defi-

nitions. The basic ILP formulation is described in Section IV

with three speed-up techniques. The extensive discussion

on grid model for practical design issues is presented in

Section V. Section VI presents the experiment results and

Section VII concludes this paper.

II. Preliminaries and Motivation

A. Double Patterning Layout Decomposition Considerations

As explained in Section I, in DPL, the original design will

be assigned into two masks. There are two critical issues with

this layout decomposition: coloring conflict and splitting stitch.
1) Coloring Conflict: If the distance between two separate

features is less than minimum coloring spacing mincs, they

Fig. 3. Shortcoming of two phase layout decomposition flow in previous
works [7], [8]. An unplanned coloring will need much extra effort during
splitting.

should be assigned to different masks (colors). Otherwise,

there will be a coloring conflict.

Fig. 2(a) shows a layout with three features, and any two

of them are required to have different colors because of the

insufficient spacing. A coloring conflict will be unavoidable

as in Fig. 2(b). Sometimes, such a violation can be eliminated

by appropriately splitting the features like Fig. 2(c). There

are also unresolvable conflicts, as Fig. 2(d) indicates, which

requires modifying the design.
2) Splitting Stitch: The stitch exists when two touched

features are assigned to different masks. The stitch can be

inserted to split some features to resolve the conflict as shown

in Fig. 2(c). However, stitch insertion can have negative effects

on yield due to overlay error between the two masks as

Fig. 2(e) illustrates. In addition, the line-end will cause pattern

degradation.

There are several practical guidelines for splitting. As

Fig. 2(f) shows, in order to control the overlay, there is a

minimum overlap length, minol, requirement for stitch inser-

tion. The segments h1 and h2 on different masks should be

overlapped to certain amount ensuring better manufacturabil-

ity. Moreover, we do not want to have any minimum width,

minwi, rule violation during splitting, as marked by the circle

in Fig. 2(f).

Without altering layout in the scope, the general objective

of layout decomposition can be stated as minimizing the

unresolved conflicts by introducing as few as possible stitches.

B. Simultaneous Optimization

The previous works insert stitches after coloring to resolve

conflicts. Without planning possible splitting during coloring,

it is hard to eliminate the conflict. Considering a layout in

Fig. 3(a), we have a coloring solution in Fig. 3(b). During

the splitting, the U feature should be cut into two parts to

remove the conflict but we have to further check whether

the splitting will result in another conflict like Fig. 3(c). In

such case, the coloring of the neighborhood features needs to

be reconsidered to avoid unnecessary stitches like Fig. 3(d)

and enable optimal solution in Fig. 3(e) or (f). This is a

simple example, but as we can see, given the complexity

of modern design, the two-phase approach will have extreme

difficulty handling the exploding consideration and producing
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Fig. 4. Different stitch candidates can lead to different solution qualities.

Fig. 5. Difficulty of predicting where the splitting is needed.

high quality solution. This motivates us simultaneous conflict

and stitch minimization during layout decomposition.

III. Problem Formulation

In this section, we will first motivate and introduce our grid

model in Section III-A. The basic terms will be defined in the

following Section III-B. The formal problem definition will be

described in the end.

A. Grid Layout Model

Considering splitting during coloring is a challenging prob-

lem. First of all, the stitch configurations are highly correlated

and all the potential locations need to be considered for global

optimality. Fig. 4(a) is a case with two conflicts. As we can see,

two possible splitting choices on feature A lead to two different

solutions, Fig. 4(b) and (c). The first one has two stitches,

where the latter one associates with only one. Moreover, we

can even hardly predict where we could have a splitting due

to some chain effect. For example, the right most feature D is

not expected to be cut in Fig. 5(a) because it is only adjacent

to one single feature A. However, given a coloring assignment

as shown in Fig. 5(b), feature A will be split to resolve the

conflict between A and B like Fig. 5(c). As a result, feature

D also needs to be broken into two segments as shown in

Fig. 5(d).

In order to overcome these issues, we will map the whole

layout into grids with its size to be half the pitch of the

original design. Each grid is either empty or fully occupied

by the pattern, and each occupied grid will be assigned one

color. Therefore, any boundary between grids is a potential

splitting location. This is shown in the Fig. 6. Essentially, we

provide fine resolution for splitting options. This model is able

to offer sufficient stitch candidates for all the features across

the design in practice and the solution space is much bigger

than previous works [7], [8]. The discretization is reasonable

because a design usually follows underlying regular pitches

Fig. 6. Proposed grid layout model.

Fig. 7. Concept of blocking path. The solid rectangle marks the bounding
box.

in modern layout. Minimum coloring spacing mincs is taken

as two-grid size to double the spacing for each mask in this

paper and also subject to change according to given mincs.

B. Terms and Problem Formulation

Before formulating our problem, we will first define the

terms in the grid layout model.

Definition 1 (Occupied Grid, OG): The grid filled by the

layout.

The OG must be assigned one of the two colors: gray and

black.

Definition 2 (Blocking Path, BP): Given two occupied grids

OG1 and OG2, a blocking path is a path when:

1) it is fully composed of OGs and connects OG1 and

OG2;

2) OG1 and OG2 are touching its two ending grids, re-

spectively, but not belonging to this path;

3) this path is within the bounding box of OG1 and OG2.

The main usage of blocking path is to identify neighboring

but locally isolated layout grids. These grids, even belonging

to the same connection, need to be considered as different

features, and could form a coloring conflict.

As shown in Fig. 7(a), C–D is a blocking path for grid A

and B. In another example Fig. 7(b), C–F is not a BP for A–B,

because not all of them are in the bounding box of A–B as the

third rule defines. Some part of it (C–E) is beyond the box,

and hence locally A–B can be considered as isolated.

Definition 3 (Potential Conflict Grid Pair, PCGP, and

Potential Stitch Grid Pair, PSGP): Given two occupied grids

OG1 and OG2.

1) If the distance between OG1 and OG2 is less than mincs

and the two grids are not touching, they form a potential

conflict grid pair.

2) If OG1 and OG2 are touching, they form a potential

stitch grid pair.

The distance between a pair of OGs is the minimum

distance between any two points from the OGs. For example
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Fig. 8. Stitch grid pair and conflict grid pair. Dashed box in (c) and (d) is
the bounding box of A and B.

in Fig. 7(b), the distance for untouched B and C is
√

2 grid

size due to two closest corners, which is smaller than mincs.

Therefore, they form a PCGP.

Definition 4 (Stitch Grid Pair, SGP): If the grids of a PSGP

are assigned different colors, it is a stitch grid pair.

Definition 5 (Conflict Grid Pair, CGP): If a PCGP is in

the identical color, and there is no blocking path connecting

them in the same mask, it is a conflict grid pair.

The definition of SGP is straightforward as grids A and B

shown in Fig. 8(a). Fig. 8(b) shows the normal CGP cases,

where a PCGP is colored identically and unconnected. B–F

and A are within the minimum coloring spacing. There are

even no paths connecting them, not to mention blocking path.

The rule one of Definition 2 is violated. As a result, any of

B–F and A are a CGP.

There are also some special CGP cases that we need

to further consider blocking path in order to avoid false

recognition of lithography friendly pattern. If two nontouching

grids are electrically connected through a blocking path, we

should not consider them belonging to different features. The

printability will not be an issue. As shown in Fig. 8(c), grid

A and B have a BP C–D in the same mask between them,

so they do not form a CGP. It is indeed a normal jog, and

can be printed well. In contrast, although there is a path C–F

connecting A and B in Fig. 8(d), C–E is out of their bounding

box. In consequence, the path is not a blocking path. This

violates the third rule of Definition 2, so grid A and B form

a CGP. In this case, A and B are in fact locally isolated

but neighboring within the bounding box. This configuration

is a typical U shape pattern, and would have weak printa-

bility.

C. Problem Description

In our work, we use the number of SGPs and CGPs

as the cost, which assigns higher weight to the grids that

are associated with more conflicts/stitches. Formally, we for-

mulate the layout decomposition optimization problem as

follows:

Problem Formulation: Given a grid layout, color it into two

parts (gray and black). The primary objective is to minimize

the number of CGPs and the second objective is to minimize

the number of SGPs.

We prefer a solution with less CGPs than one with smaller

number of SGPs but more CGPs, because a layout with

nonzero CGPs is essentially not manufacturable and a solution

with less CGPs reduces expensive redesign effort.

Fig. 9. Overall layout decomposition flow.

TABLE I

Notation for Basic ILP Formulation

ogi,j Occupied grid of which i and j are coordinates.

xi,j Binary variable that denotes the color of ogi,j .
xi,j = 1 if the color is gray, otherwise, it is black.

sij,mn Binary variable sij,mn = 1 if ogi,j and
ogm,n is a SGP.

cpq,uv Binary variable cpq,uv = 1 if ogp,q and ogu,v

is a CGP.

SP Set of PSGPs.

CP Set of PCGPs.

Ppq,uv Set of BPs connecting ogp,q and ogu,v.

pk
pq,uv kth BP connecting ogp,q and ogu,v.

nk
pq,uv Number of grids in pk

pq,uv.

gk
pq,uv Binary variable gpq,uv = 1 if pk

pq,uv

is a gray BP.

bk
pq,uv Binary variable bpq,uv = 1 if pk

pq,uv

is a black BP.

IV. Algorithm

In this section, we will present our ILP-based layout de-

composition algorithm. The entire flow is shown in Fig. 9.

After mapping the design to grid model, we will process

the grids and formulate the basic ILP formulation. Since the

timing complexity for ILP is very high, we will then propose

three speed-up techniques by either eliminating unnecessary

variables or dividing the whole problem into several smaller

ones. Finally, the layout decomposition for the entire design

can be obtained by merging the subproblem solutions. For

better solution reunion, we formulate a problem of coloring

flipping optimization through ILP.

A. Basic ILP Formulation

To better present our method, we first describe the notation

in Table I. The simultaneous coloring and splitting optimiza-

tion can be formulated as follows:

min

⎛

⎝

∑

sij,mn∈SP

sij,mn + α
∑

cpq,uv∈CP

cpq,uv

⎞

⎠ (1)

subject to

xi,j + (1 − xm,n) ≤ 1 + sij,mn ∀sij,mn ∈ SP (2)

(1 − xi,j) + xm,n ≤ 1 + sij,mn ∀sij,mn ∈ SP (3)
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∑

xe,f ∈pk
pq,uv

xe,f ≤ (nk
pq,uv − 1) + gk

pq,uv ∀pk
pq,uv ∈ Ppq,uv (4)

∑

xe,f ∈pk
pq,uv

(1 − xe,f ) ≤ nk
pq,uv(1 − gk

pq,uv) ∀pk
pq,uv ∈ Ppq,uv (5)

∑

xe,f ∈pk
pq,uv

(1 − xe,f ) ≤ (nk
pq,uv − 1) + bk

pq,uv ∀pk
pq,uv ∈ Ppq,uv (6)

∑

xe,f ∈pk
pq,uv

xe,f ≤ nk
pq,uv(1 − bk

pq,uv) ∀pk
pq,uv ∈ Ppq,uv (7)

xp,q + xu,v ≤ 1 + cpq,uv +
∑

k

gk
pq,uv ∀cpq,uv ∈ CP (8)

(1 − xp,q) + (1 − xu,v) ≤ 1 + cpq,uv +
∑

k

bk
pq,uv ∀cpq,uv ∈ CP. (9)

The objective function (1) is to minimize the weighted

summation of SGPs and CGPs. Parameter α is used to tune

the relative importance between SGP and CGP, and can be set

to ensure the priority of CGP elimination. All the PCGPs and

PSGPs are predetermined by examining the neighboring grids

for each OG.

Constraints (2) and (3) are used to identify SGP from

PSGP. According to the definition of SGP, we need to know

whether the PSGP grids have opposite colors. Whenever xi,j

and xm,n have opposite values, the left hand side of one of the

constraints will be two. As a result, sij,mn must be assigned

one to satisfy the constraints, which detects a SGP.

The usage of Constraints (4)–(9) is to determine whether

a PCGP forms a CGP. Identifying CGP takes more effort.

Besides checking the colors of PCGP, we need to know

whether there is a blocking path in the same mask. All the

possible BPs Ppq,uv can be easily enumerated by depth first

search on the occupied grids within the bounding box. We

can investigate their coloring using Constraints (4)–(7). The

corresponding binary variable gk
pq,uv/bk

pq,uv will be true only

if the grids of some blocking path are in the same mask.

Constraints (8) and (9) evaluate the conditions for CGP. A

conflict will be reported only if PCGP grids are assigned same

color and the possible BPs gk
pq,uv/bk

pq,uv do not exist.

Let nog be the number of occupied grids, the basic formu-

lation contains at most O(nog) variables. The constraints are

specified for detecting either PSGPs or PCGPs. Suppose there

are nsp PSGPs and ncp PCGPs, the complexity of nsp is O(nog).

ncp is linearly related to nog, but quadratically proportional to

mincs. The complexity of constraints due to PSGPs is O(nsp).

The constraint number for PCGPs is linear proportional to ncp.

It is also exponentially related to mincs, which results from

the enumeration of blocking paths. Although this formulation

shows exponential complexity in terms of mincs, when we fix

the value of mincs as the presetting for layout decomposition,

the number of variables and constraints is quadratic with

respect to nog.

The proposed integer linear formulation can minimize the

number of conflicts and stitches simultaneously. However,

because ILP is nondeterministic polynomial time-complete, it

is not affordable to directly apply a basic ILP formulation for

large modern designs.

Fig. 10. Main idea of grid merging.

Fig. 11. Example of breaking big layout into two independent components,
having no interacted PSGPs/PCGPs and marked by the dashed circle.

B. Speed-Up Techniques

In this section, we will discuss three speed-up techniques.

The clustering methodology is applied in grid merging to

reduce the number of variables and constraints. In contrast,

the key idea of the other two techniques is to use a divide

and conquer algorithm to convert the problem into smaller

subproblems.

1) Grid Merging: In the proposed grid model, we aim to

provide very fine resolution for stitch candidates. This may be

over skilled under certain situations.

Consider the layout segment L in Fig. 10(a) with unit grids

A–B–C–D. Only the two ending grids A and D may have

coloring interaction with other layout objects besides L. B and

C can be considered as isolated to some extent, because there

are no occupied grids outside A–B–C–D which are touching

them or within mincs of their boundary. Therefore, it is not

possible for B or C to form a stitch or conflict with other

layout apart from the grids of segment L.

We can make advantage of above property to reduce prob-

lem size by combining this type of connected grids into a big

super grid. As graphically shown in Fig. 10(b), B and C can

be treated as a united grid T. This is equivalent to enforce B

and C the same color. It will not deteriorate the conflict and

stitch optimization. For this super grid, it does not have any

chance to form a conflict or stitch with surrounding grids other

than its two adjacent grids A and D.

Generally speaking, the elimination of internal splitting

candidates is not a problem for solution quality. For any

optimized solution obtained under original grid model with

internal stitches, it can be mapped to one solution in the

merged model with the stitch propagated to its ending grids,

such as from (c) to (d) in Fig. 10.

2) Independent Component Computation: We propose

independent component computation for reducing the ILP

problem size without losing optimality. In real layout, we

observe many isolated occupied grid clusters, i.e., there are

no PSGPs or PCGPs formed between them. Therefore, we can
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Algorithm 1 Independent Components Finding

Require: The grid layout
Ensure: The independent components, having no PSGPs/PCGPs

between any pair of components
1: Build a graph G(V, E), V ∈ φ, E ∈ φ.
2: for each OG ogi,j do
3: Create one graph node vi,j .
4: end for
5: for each PSGP/PCGP (ogi,j , ogm,n) do
6: Create one edge between vi,j and vm,n.
7: end for
8: Perform the depth first search on the graph G to find the

independent components.
9: Map the graph nodes in each component back to OGs ogi,j and

return.

Fig. 12. Example of layout partition. The dotted line cuts the layout into
two parts while the dashed circle marks PCGP and PSGP locations across the
boundary of the two partitions.

break down the whole design into several independent compo-

nents as shown in Fig. 11, and apply a basic ILP formulation

for each one. The overall solution can be taken as the union

of all the components without affecting the global optimality.

The runtime of ILP formulation scales down dramatically with

the reduction of the variables and constraints.

Our independent component finding algorithm is given in

Algorithm 1. The timing complexity of this algorithm is O(V +

E), which V is the total number of the OGs and E is the total

number of PSGPs and PCGPs.

3) Layout Partition: Some component may still have

prohibitive problem size even after independent component

computation. Our heuristic is to divide a big component

into several small connected partitions and perform an ILP

approach for each one, indicated in Fig. 12. Different from

the independent component computation, there will be some

PSGPs/PCGPs between different partitions. Although we solve

each partition by ILP, the united solution does not guarantee

to be optimal for the whole component in terms of ILP

objective since the partition boundaries are not considered in

the optimization.

In order to minimize the loss of global optimality, we

need to partition the circuit with as few as possible cuts

while ensuring that each partition can be efficiently solved

by ILP. Balanced min-cut partition method is applied in our

work. We first construct a graph G which is the same as in

independent component computing. For each vertex (OG), we

assign a weight as its edge degree plus one, taking into account

the number of both variables and constraints it associates

with. A threshold Wt is predefined for the maximum node

weight summation we allow for each partition. The number

of partitions can be calculated as ⌈ W
Wt

⌉, where W is the total

Fig. 13. “Internal” and “external” concepts. The wide solid line is the
boundary of different partitions.

vertex weight of G. Suppose W is 10 000 and Wt is 3000, the

component will be partitioned into four parts.

C. Solution Merging

After solving the solution for each component/partition, we

need to merge the coloring assignment as a whole. While

it is trivial to combine the solutions for smaller independent

components, there comes a coloring flip optimization problem

when we try to merge the solutions of all the partitions for

the bigger components with partitioning applied.

In layout partition, the PSGPs and PCGPs for each par-

tition can be divided into two disjoint subsets: the internal

stitch/conflict grid pairs PSGP is/PCGP is, and external ones

PSGPes/PCGPes. If the associated grids, which are needed

for identifying whether a PSGP /PCGP is a SGP /CGP ,

are all within the same partition, this PSGP /PCGP be-

longs to PSGP is/PCGP is, otherwise, it is considered as

a PSGPe/PCGPe. Similarly, during the unitization, the

SGPs and CGPs for each partition can be categorized as

SGP is/CGP is and SGPes/CGPes. SGP is/CGP is are from

PSGP is/PCGP is, and SGPes/CGPes are from PSGPes/

PCGPes.

As illustrated in Fig. 13(a), there are two partitions A

and B. Suppose we are considering two PCGPs, (G1, G2)

and (G1, G3), (A1, A2) and (A3, B1) are their additional as-

sociated grids, respectively, for correctly identifying a CGP ,

indicated by Fig. 13(b). (G1, G2) is a PCGP i because the

grids which are related to (G1, G2, A1, A2) are all in partition

A. In contrast, (G1, G3) is a PCGPe while (G1, A3) belongs

to partition A and (G3, B1) is in partition B. Similarly, in one

possible coloring configuration in Fig. 13(c), (G1, G2) is a

CGP i and (G1, G3) is a CGPe.

During the solution union, it is possible to reduce the

number of SGPes/CGPes by flipping the coloring of some

partition. More importantly, such flipping will not change

the status of SGP is/CGP is. In detail, it will not introduce

new SGP is/CGP is, and any existing SGP i/CGP i will not

go away as well. Based on the above definition, the related

grids for identifying a SGP i/CGP i are in a single partition.

Their coloring will be either flipped or not simultaneously.

The conclusion of whether the respective PSGP i/PCGP i is a

SGP i/CGP i will not be changed.

The effect of coloring optimization is illustrated in Fig. 14,

which has three partitions. The coloring merging in Fig. 14(a)

produces one SGP and one CGP across the boundaries. If we

flip the coloring of partition C from the black to gray, it be-

comes a SGP/CGP free assignment in Fig. 14(b). To optimize
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Fig. 14. Different coloring flips have distinct numbers of SGPs/CGPs across
the boundaries, marked by the dotted lines.

TABLE II

Notation for Coloring Flipping Problem

fi Binary variable fi = 1 if partition i flips its coloring.

f 0
i,j Binary variable f 0

i,j = 1 if both partitions flip

or do not flip the coloring.

f 1
i,j Binary variable f 1

i,j = 1 if only one partition

between i and j flips its coloring.

se0
i,j Number of stitches between partition i and j

if both flip or do not flip the coloring.

ce0
i,j Number of conflicts between partition i and j

if both flip or do not flip the coloring.

se1
i,j Number of stitches between partition i and j

if only one partition flips its coloring.

ce1
i,j Number of conflicts between partition i and j

if only one partition flips its coloring.

the flipping scheme, we define coloring flip optimization as

follows.

Coloring Flip Optimization: Given a number of partitions

and their coloring solutions for one independent component,

choose the best flipping scheme to minimize total cost of

SGPe and CGPe, which cross the boundaries among all the

partitions.

Because the number of partitions is usually not large, we

also use an ILP formulation to solve this problem. The relevant

notation can be found in Table II.
The formulation is as follows:

min
∑

(f 0
i,j(se0

i,j + αce0
i,j) + f 1

i,j(se1
i,j + αce1

i,j)) ∀i, j (10)

subject to

fi + fj ≤ 1 + f 0
i,j (11)

(1 − fi) + (1 − fj) ≤ 1 + f 0
i,j (12)

fi + (1 − fj) ≤ 1 + f 1
i,j (13)

fj + (1 − fi) ≤ 1 + f 1
i,j (14)

f 0
i,j + f 1

i,j = 1. (15)

Our objective function (10) is to minimize the number of

SGPe and CGPe. The same α as basic ILP formulation in

Section IV-A is used for balancing the cost. For each pair

of partitions, there are two cases: 1) only one of them is

flipped; and 2) flipping both or none of them. We can easily

precompute the cost for each case, stored as (se0
i,j + αce0

i,j) or

(se1
i,j + αce1

i,j).

Constraints (11) and (12) specify the case if both or neither

of the partitions flip their coloring. Constraints (13) and

(14) specify the case if only one of two partitions flips the

coloring. Only one case can happen and this is formulated as

Constraint (15).

It should be noted that, in our implementation, we do not

explicitly impose Constraint (15). Instead, we substitute f 1
ij by

(1 −f 0
ij) in (10)–(14) based on (15). This helps further reduce

the number of variables and constraints.

V. Grid Model for Practical Design Issues

In this section, we will present how our proposed grid

model can handle various splitting rules and design patterns

in Section V-A and Section V-B, respectively.

A. Practical Splitting Rules

Various manufacturability issues could impose many practi-

cal constraints on the locations of the stitches. Our grid model

can be extended to satisfy these requirements. In the following,

we will mainly focus on two major DPL-related guidelines,

minimum width and minimum overlapping requirements.

1) Minimum Width: The minwi violation can result from

careless splittings as Fig. 15 shows. It could be located in the

ending parts of polygons like Fig. 15(a) and (d), or created by

two close stitches as Fig. 15(b) and (e) show.

In most process technology, minwi is smaller than or equal

to the half pitch, 0.5 mincs, which is illustrated in Fig. 15(a)

and (b). Our grid model can successfully avoid these extra con-

straints implicitly. By only allowing splitting on the boundary

of the grids as shown in Fig. 15(c), the resulting small layout

segments from splitting will be bounded from lower side by

one grid size, i.e., 0.5 mincs. The minimum width rule will be

automatically satisfied, and there will be no pitfalls when we

work on grids.

For the technology which has a minwi larger than one

grid width additional constraints can be augmented into our

ILP formulation to ensure minimum width rule. We assume

minwi is still less than two-grid width here just for illustration

purpose, and similar ideas can be applied for even larger minwi

requirement. For the example in Fig. 15(d), we can enforce the

coloring of grid A and B identical to avoid minimum width

violation. We are also able to specify constraints to eliminate

the situation resulting from adjacent stitches as Fig. 15(e)

indicates. A pair of stitches, S1 and S2, within one grid distance

will not allowed to be selected simultaneously.

2) Minimum Overlapping Margin: The possible minol

violation comes from the extra extension over the splitting

locations, which may result in additional coloring conflict,

such as the case from (a) to (b) in Fig. 16. A and B initially

do not form a PCGP based on the definition in Section III-B,

although they are in the same color. On the existence of some

possible splitting, the extended metal could bring them into a

distance smaller than mincs, which causes a coloring conflict.

This issue does exist in the process with 5–6 nm overlay er-

ror. To encounter this problem, when we are extracting PCGPs,

the extra extension needs to be included for calculating dis-

tance between two grids. As the example in Fig. 16, when A

and C or B and D have different colors, the overlapping error

should be considered.
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Fig. 15. Grid model can handle minimum width requirement.

Fig. 16. Grid model can handle minimum overlap requirement.

On the other side, benefiting from possible further improve-

ment on optical engineering, the overlap margin may not be

a problem for our grid model in most cases. Remind that we

are performing optimization based on the grids. For any pair

of grids which do not form a PCGP, at least one of x and

y dimensional distance will be two grid size, mincs. As the

research works show [9], minol will be possibly controlled

below 3 nm. With such a small overlap margin, the diagonal

distance between A and B will still be larger than mincs, when

taken as 64 nm.

B. Non-grid-mappable Layout

The grid model not only works on regular designs, it can

also be extended to handle non-grid-mappable layout.

1) Off-Grid Layout: In deep submicro technology, al-

though on-grid patterns are commonly favorable, there still

exist off-track wires on lower layer metals, as illustrated by

Fig. 17(a). Pattern A is not aligned with the grid lines. Under

such case, we are not able to apply our grid-based formulation

directly.

To resolve this issue, if a grid has any layout object, we will

assign a binary grid variable for it. This is denoted as “relaxed

grid mapping”. As the example Fig. 17(b) shows, grids A1 and

A2 will both be considered occupied. Moreover, to exclude

false detection, additional consideration will be required when

we formulate our mathematical programming.

First of all, we need to pay extra effort to check whether

a pair of grids are within mincs or connected, which is the

crucial factor for determining PCGP or PSGP. Instead of using

the grid number-based measurement as in Section III-B, we

have to work on the distance or connection information of the

underlying physical layouts.

TABLE III

Test Cases

ckt Area Grid Array Size #OG #PCGP #PSGP

C1 89 294 × 294 6670 21 215 5926
C2 160 395 × 395 15 710 48 007 14 143
C3 207 450 × 450 20 496 63 403 18 461
C4 292 534 × 534 33 497 10 5641 30 314
C5 422 642 × 642 53 998 172 826 49 167
C6 540 726 × 726 68 820 214 527 62 387
C7 747 854 × 854 10 1431 323 890 92 493
C8 1028 1002 × 1002 142 535 447 441 129 172

Fig. 17. Grid model can handle off-grid layout.

Fig. 17(b) and (c) show the need for checking mincs

condition for PCGP by distance, not the number of grids. In

Fig. 17(b), the distance between grids A2 and B1 is one grid

unit, smaller than two-grid unit threshold. This is consistent

with the fact that the distance between related patterns is

smaller than mincs. They indeed form a PCGP. On the other

side, in Fig. 17(c), although grids A2 and B1 are away from

each other by one grid, the distance of underlying design

objects is no less than mincs. They are not a PCGP. If

determining the distance only by grid-based unit, we will draw

false conclusion. Similarly, it is the correct way to determine

whether two grids are linked by checking the layouts instead

of grid occupancy status. Fig. 17(d) shows an example where

A1 and B1 are actually not connected. Grid-based judgment

will falsely consider they are linked together because A2, B1,

C1, and C2 are all occupied grids.

Moreover, we also need to exclude the unfeasible stitch

locations resulting from “relaxed grid mapping”. For the stitch

candidate between A1 and A2 in Fig. 17(b), since the splitting

will cause minimum width violation, it should be forbidden.

2) Fat Wire: When dealing with fat wires, we can map

them into multiple grids. Although this will increase the

complexity of the ILP formulation because of the dense

clustering of occupied grids, we can apply previously proposed

grid merging technique to reduce the problem size. Practically,

a great portion of grids inside the wide wire can be merged.

VI. Experimental Results

In our benchmarks, eight industrial designs are scaled down

to 32 nm. The metal1 for each test case is used for the exper-

iments, which is one of the most troublesome layers in terms

of double patterning lithography. The detailed information is

shown in Table III. The first column “ckt” denotes the circuit

name, “area” is the chip area in terms of um2, “grid array

size” shows the number of rows by the number of columns

in our layout grid array. “#OG,” “#PCGP,” and “#PSGP” give

the number of OGs, PCGPs and PSGPs, respectively.
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Fig. 18. Performance of our algorithm with different α values.

We implement our algorithm in C++ and test on Intel Core

3.0 GHz Linux machine with 32G RAM. Moreover, we use

glpk [12] as our ILP solver and hMetis [13] for min-cut

partition. The threshold Wt for each partition is 1500. We

study different α settings in the ILP objective function. As

shown in Fig. 18, when we start to increase α with higher

penalty on conflict, the number of CGPs/SGPs drops/climbs

obviously. After certain value, it has little effect, because the

ILP formulation has reached its best point to reduce conflicts.

In our work, we set α as 10 for all the benchmarks.

A. Result Comparison

We implement two different layout decomposition algo-

rithms for comparison. To be fair, the same conflict inter-

pretation defined in Section III-B will be applied in our

experiments. Specially, although two features belong to the

same net, as long as they are locally isolated, they could still

result in a conflict.

We first prepare a greedy two-phase layout decomposition

flow for comparative study, which adopts construct-and-fix

methodology as in the previous works [7], [8]. We first

color all the layout features sequentially. Each feature will be

assigned to a color which can minimize the current number of

conflicts. In the second phase, the violations are detected and

corrected by inserting stitches. This is done by flipping the

coloring of conflict segments, which basically splits certain

features. Finally, the decomposition solution is mapped back

to grids for comparison.

As the second comparative method, we also implement a de-

sign methodology based on the previous ILP-based work [11].

The conflict cycle will be removed iteratively first, followed

by an ILP formulation to minimize the number of stitches. We

are not able to compare with [11] directly because some of

our main objectives are different. In their work, the unresolved

conflict cycle is used for judging the indecomposable patterns,

while we apply much finer metric, conflict pair grid. To resolve

the issue, as the last step, we perform an additional grid-based

greedy coloring run for the detected unresolved conflict cycles.

The decomposition results will be mapped into grids in the

end.

The detailed comparison is shown in Table IV. Under “two-

phase approach”, “1CGP” is the number of CGPs after the

first step coloring and “uCGP” is the number of unresolved

CGPs after inserting stitches. “CGP” under “previous ILP-

based work” and “our algorithm” shows the final unresolved

CGPs. We also list the results of “previous ILP-based work”

when the conflict cycle removal iteration is set as 1 and 5,

which are reported in columns with postfix name “Ite. 1” and

“Ite. 5,” respectively. For all the three approaches, “SGP” is

the final number of stitch grid pairs and “central processing

unit (CPU)” is the runtime by second. “Total” is the total

number of all the test cases, and “ratio” is the average of their

individual ratios.

Although “two-phase approach” is much faster, our algo-

rithm significantly outperforms its results in terms of quality.

“two-phase approach” can indeed eliminate the number of

CGPs by averagely 52% after inserting stitches. However, lack

of the careful planning, their coloring in the first step produces

very poor starting solution, and there are a big amount of

unresolved conflicts left after possible splitting. In contrast,

our simultaneous method can averagely reduce the number of

unresolved conflict grid pairs by about 87.6% with 33% less

stitch grid pairs.

When compared to the previous ILP-based work [11], we

can also achieve averagely 87.2% conflict and 10% stitch

reduction. “previous ILP-based work” only greedily eliminates

the troublesome conflict cycle without global picture in mind.

Although a little better than “two-phase approach,” their

approach generates much degraded results than our algorithm

in terms of conflict. On the other side, because it applies

ILP to optimize the stitch number, their splitting decision

is close to our simultaneous optimization result. However,

because “previous ILP-based work” also considers coloring

and splitting separately, its stitch number is still 10% more

than ours. Also, from the breakdown of the solutions by

different number iterations, we can see that iterative conflict

removal can help improve results but still not enough due to

the lack of global view.

In DPL, zero CGPs is desired in final tape out but the

high complexity of modern designs makes it almost a must to

go though tedious design–decomposition–redesign iterations.

Our simultaneous flow with much higher quality solution can

reduce expensive redesign effort as well as the number of

iterations, which may eventually converge to a clean design

much more quickly. Runtime for layout decomposition is not

an issue as long as it is affordable.

B. Efficiency

The naive implementation of basic ILP formulation has

prohibitive problem size, and it is not able to finish any bench-

mark in one day. Comparatively, our algorithm effectively

reduces the runtime. In Table IV, the column “CPU” under

“our algorithm” shows that we can obtain the solution in a

few seconds. For the biggest benchmark, it takes a little more

than one minute. Fig. 19 also shows the scalability of our

algorithm, and the runtime grows linearly with the number

of occupied grids in the design. Moreover, our acceleration

techniques sacrifice little optimality.

Next, we will show the effectiveness of our grid merging

technique. We achieve the same number of conflict and stitch

number for all the test cases with and without this option while

independent component computing and layout partition are

still applied. Fig. 20 also illustrates the runtime comparison.
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TABLE IV

Result Comparison

Two-Phase Approach Previous ILP-Based Work [11] Our Algorithm

ckt 1CGP uCGP SGP CPU(s) CGP(Ite. 1) SGP(Ite. 1) CGP(Ite. 5) SGP(Ite. 5) CGP SGP CPU CGP SGP CPU(s)

C1 401 272 70 0.2 413 98 412 98 412 98 0.8 110 88 5.6
C2 1765 939 389 0.4 1089 287 1029 283 1015 282 1.7 160 220 6.4
C3 1799 779 416 0.5 774 206 735 199 720 198 1.8 129 175 8.3
C4 4232 2084 620 0.6 2143 469 1998 463 1972 459 2.9 171 452 13.0
C5 8125 4408 1325 1.0 3886 1078 3503 1056 3478 1059 4.9 367 1001 30.9
C6 9052 4625 1621 1.2 5082 1297 4761 1282 4731 1291 5.2 607 1112 37.3
C7 13 607 5551 2753 1.8 6415 1831 5653 1811 5530 1817 7.6 606 1651 46.6
C8 18 975 9223 3038 2.4 9805 2599 9050 2503 8941 2510 11.8 949 2271 57.6

Total 57 956 27 881 10 232 8.1 29 607 7865 27 141 7695 26 799 7714 36.7 3099 6970 205.7
Ratio 16.6 8.1 1.5 0.043 9.55 1.13 8.76 1.10 7.9 1.12 0.18 1 1 1

Fig. 19. Runtime of our algorithm versus number of occupied grids.

Fig. 20. CPU times of our algorithm with and without grid merging tech-
niques.

The number on the bar is the exact CPU time in terms of

second. As it is indicated, we can achieve approximately 19%

speed-up. This mainly comes from the reduction of variables

and constraints in the mathematical formulation.

Table V lists the statistics on the independent components.

“#InComp” is the total number of independent components.

“#w/o partition” and “%w/o partition,” respectively, show the

number and ratio of independent components, which are under

partition threshold value Wt . As we can see, most components

can be directly handled by ILP without performing layout

partition and losing any optimality.

Table VI further shows the statistics on our ILP problem

size. “#maxv” and “#maxc,” respectively, give the maximum

number of variables and constraints of the basic formulation

with three proposed reduction techniques applied. Moreover,

“#maxcl
v ” and “#maxcl

c ” list the maximum number of variables

and constraints, respectively, of ILP formulation, which is

applied in the coloring flip optimization.

TABLE V

Statistics on the Independent Components

ckt #InComp #w/o Partition %w/o Partition
C1 181 178 98.3%
C2 362 357 98.6%
C3 688 681 99.0%
C4 838 824 98.3%
C5 1088 1070 98.3%
C6 1442 1420 98.5%
C7 1977 1951 98.7%
C8 3179 3147 99.0%

TABLE VI

ILP Formulation Statistics

Reduced Problem Size Coloring Flipping

ckt #maxv #maxc #maxcl
v #maxcl

c

C1 804 1333 2 4
C2 867 1445 2 4
C3 873 1435 2 4
C4 904 1469 3 12
C5 911 1499 2 4
C6 902 1478 3 8
C7 921 1511 3 12
C8 923 1522 4 20

TABLE VII

Results on Coloring Flip Optimization

Without Coloring Flip With Coloring Flip

ckt CGPlp SGPlp CGPe
lp

SGPe
lp

CGPlp SGPlp CGPe
lp

SGPe
lp

C1 28 21 1 5 27 20 0 4
C2 18 22 9 4 12 20 3 2
C3 16 22 2 5 14 19 0 2
C4 37 70 10 11 31 66 4 7
C5 121 172 105 22 36 171 20 21
C6 65 98 13 20 55 90 3 12
C7 79 105 33 23 55 92 17 10
C8 108 142 79 28 88 127 59 13

Total 472 652 252 118 318 605 106 71
Ratio 1 1 1 1 0.75 0.92 0.30 0.60

As we can see from Table VI, the maximum ILP size is

well controlled by the layout partition through the tuning

threshold parameter Wt . Wt explicitly sets the upper bound

for total number of grids, SGPs and CGPs within each sub

problem. Therefore, the number of variables and constraints

can be implicitly ensured in a reasonable range. Moreover,

Table VI indicates the coloring flip optimization has relatively

very small problem size, and hence can be handled with little

effort.
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C. Coloring Flip Optimization

Table VII shows the improvement when coloring flip is

applied to merge solutions. This optimization will only be

applied to relatively bigger independent components, which

require proposed layout partition technique to further reduce

problem size. Therefore, in Table VII, we only list the statistics

for these bigger components in the respective benchmarks. The

conflict and stitch number from smaller components without

layout partitioning applied are not included.

In Table VII, “CGPlp” and “SGPlp” denote the total number

of CGPs and SGPs for the independent components which

adopt layout partition. The percentage of this type of com-

ponents is very small, as shown in Table V. However, their

conflict and stitch number have relatively much bigger portion

when compared to the respective data under column “our

algorithm” in Table IV.

“CGPe
lp” and “SGPe

lp” are the number of corresponding

external conflict and stitch grid pairs. The results show that

there are outstanding “CGPe
lp” and “SGPe

lp” for further opti-

mization. “with coloring flip” can reduce CGPe
lp and SGPe

lp by

70% and 40%, about 25% and 8% for total CGPs and SGPs.

This experiment demonstrates the necessity of coloring flip

optimization and the effectiveness of our ILP-based approach.

The CPU time difference between “without coloring flip” and

“with coloring flip” is very tiny and not listed.

VII. Conclusion

In this paper, we have developed a double patterning aware

layout decomposition flow for simultaneous conflict and stitch

minimization. Experimental results are very promising. In

future, we would like to study earlier stage placement/routing,

and standard cell designs to produce DPL-friendly layout.
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