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We model the double phase-conjugate mirror (DPCM) as a function of time, the average direction of propagation
of the two beams forming the DPCM, and one transverse coordinate. Calculations show that the conjugation
fidelity and reflectivity have different dependencies on the photorefractive coupling coefficient times length;
the fidelity turns on abruptly with a threshold, whereas the reflectivity increases smoothly. The DPCM
behaves as an oscillator at and above threshold: the time required for the reflectivity to reach the steady state
dramatically slows down near threshold (like critical slowing down in lasers); above threshold the DPCM is
self-sustaining even if the random noise terms used to start the process are set to zero. A decrease in the noise
level improves the fidelity but increases the response time. The use of unbalanced input beam ratios results
in asymmetric conjugation such that the fidelity obtained on the side of the weaker input beam is significantly
reduced. The slowing down diminishes with increasing noise level or unbalanced input intensities.

1. INTRODUCTION

The photorefractive (PR) double phase-conjugate mirror'
(DPCM) is a unique device in which two mutually in-
coherent beams become phase conjugates of each other.
Because the two beams cannot write stationary gratings,
their interaction originally puzzled many researchers.
Weiss et al.' first realized that both beams fan and that,
because they share the same holographic medium, an
effective interaction between them is produced through
the scattering off each other's gratings.' The double
phase-conjugation process was theoretically addressed
initially by qualitative one-dimensional models'- and
later through a series of two-dimensional analyses ap-
proximating the DPCM as a single-grating interaction.4

This study raises some interesting questions about the
oscillatory behavior of the DPCM, but two recent inde-
pendent studies5 ' 6 show that the approximation is inap-
plicable for the DPCM or other stimulated PR processes.
Another theoretical analysis describing the self-pumped
phase conjugation of a speckled beam in a PR medium
was presented by Lyubomudrov and Shkunov7 and was
experimentally verified by Mamaev and Shkunov.8

Recently we developed a model to calculate the tem-
poral and the spatial behavior of fanning9 and of the
DPCM6 and predicted a gain threshold for the conju-
gation fidelity. The gain threshold was also observed
experimentally.' 0 Our purpose in this paper is to pro-
vide a comprehensive description of the underlying the-
ory, to present additional calculations that characterize
the DPCM as an oscillator, and to investigate its behavior
under varying parameters (seed level, input beam inten-
sity ratios). In Section 2 the theory is described; two
paraxial wave equations for the beams and a first-order
differential equation (in time) for the perturbation in the
index of refraction are reduced to a system of first-order
coupled differential equations for the amplitudes of the

plane waves constituting the optical beam. Section 3
contains a brief description of the numerical calculations
and the definitions of the figures of merit (conjugation re-
flectivity, conjugation fidelity, intensity transmission, and
respective response times) that we use to characterize the
DPCM. In Section 4 we establish the fact that the con-
jugation fidelity and the conjugation reflectivity show
significantly different behavior near threshold. The
conjugation fidelity has a relatively sharp jump near
threshold, whereas the conjugation reflectivity increases
smoothly as a function of gain. The temporal evolution
quantities of the two differ as well; the response time of
the conjugation reflectivity becomes significantly longer
than the response time of the conjugation fidelity near
threshold. In Section 5 we present results that point
out the oscillatory behavior of the DPCM. Here we find
that the response time of the device becomes significantly
longer near threshold, indicating the existence of criti-
cal slowing down," a behavior that is observed in many
nonlinear systems near a critical point (e.g., for laser
oscillation near threshold and for second-order phase
transitions near the transition point). The behavior of
the DPCM is therefore similar to that of other criti-
cal phenomena. We also find that if the gain is above
threshold the steady-state reflectivity is independent of
the initial seed level and remains unchanged even af-
ter the seed level is set to zero. In Section 6 the seed
level and the intensity ratio dependencies of the gain
threshold are investigated. Here we find that for a low
seed level the steady-state fidelity and reflectivity do not
vary significantly with seed levels. However, for high
seed levels fanning becomes more pronounced, and the
calculations show a significant degradation of the phase
conjugation. We also find that with an increasing seed
level the critical slowing down becomes less pronounced.
In this section we also present numerical results that
illustrate the effect of unbalanced input beam intensities
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on the DPCM. We show that, although the conjugation
reflectivity on the side of the weaker input beam becomes
considerably larger with higher intensity ratios, the con-
jugation fidelity significantly degrades. We also observe
that the fidelity response time of the beam emerging on
the side of the stronger input beam is significantly faster
than the fidelity response time on the opposite side, al-
though the average intensity in the medium is fixed.
For larger intensity ratios the fanning of the strong beam
becomes more apparent, and the critical slowing down is
less pronounced.

2. THEORETICAL MODEL

Our theoretical formulation starts with the nonlinear
wave equation

V2 E - /so(nb + n)2 = ° (1)

where E is the electric field at the optical wavelength A in
vacuum and where g and o are the magnetic permeabil-
ity of the crystal and the electric permeability of vacuum,
respectively. The index of refraction is taken as the sum
of nb (constant-background refractive index in the crys-
tal) and Sn(r, t), where the latter is assumed to be much
smaller than the former. In our model we analyze only
isotropic scattering; thus the index of refraction is taken
to be a scalar. Also, for simplicity, we consider only two
spatial dimensions (x, z). Note that the nonlinearity in
Eq. (1) arises from the implicit dependence of 8n(r, t) on
the optical field. Also note that Eq. (1) already includes
the usual approximations for slow spatial and temporal
variations of the refractive index (for derivation of this
equation see, e.g., Ref. 12). In this paper boldface letters
correspond to vector quantities.

The electric field consists of two counterpropagating
monochromatic beams (with the z axis being the nominal
direction of propagation) whose slowly varying amplitudes
are A and B:

E(x, z, t) = 1/2[A(x, z, t)exp(ikz-iot)

+ B(x, z, t)exp(ikz + icot) + c.c.]i, (2)

where co is the frequency and k = nb co/c is the wave num-
ber in the crystal and .x is the unit vector in the transverse
direction. The small deviation of the propagation angle
from 180° is accounted for in the slowly varying ampli-
tudes of the beams.

We substitute Eq. (2) into wave equation (1) and sepa-
rately equate terms with the same exponential factors.
We neglect terms proportional to n2 (assuming that
2nbl8nl >> 1n1 2) and terms with the time derivatives of
the amplitudes (we assume that A and B instantaneously
follow the evolution of the PR gratings, which is rela-
tively slow'3 ), and use the paraxial approximation to ob-
tain two coupled-wave equations for the slowly varying
amplitudes:

aA i a2A ikaA _ zd = -8nA, (3)
Oz 2k Ox2 nb(3

aB i 2B ik
dB + z 8 = ik 3nB . (4)

z 2k Ox2ib

Here absorption is neglected; however, we can easily in-

clude it in the model by adding - aA and caB to Eqs. (3)
and (4), respectively.

The slowly varying amplitudes are expanded in plane
waves about the nominal direction of propagation z:

A(x, z, t) = Xam(z, t)exp(-iksmx - iks 2 m2 z/2), (5)
m

B(x, z, t) = Y bm(z, t)exp(iksmx + ike 2 m2 z/2),
m

(6)

where s is the small angular difference between the two
adjacent plane waves and am and bm are the expansion
coefficients.

The refractive-index perturbation that yields the
DPCM is due to the PR effect. The interference between
the plane waves from each beam and its scattered waves
form gratings in the crystal that lead to the formation of a
space-charge (electric) field by means of charge transport.
The space-charge field in turn leads to a perturbation in
the index of refraction through the electro-optic effect.
Because the PR effect has a relatively slow response
time, the crystal can respond to only a time average of
the intensity profile.13 In our case we assume that the
gratings formed by the plane waves of two counterpropa-
gating (mutually incoherent) beams vary faster than the
response time of the material and hence do not contribute
to the refractive-index perturbation. Therefore n may
be expanded as

8n(x, z, t) = 6 8nmn(z, t)exp[-ik(m - n)xs
m,n

- iks2(m2 - n)z/2], (7)

where nmn are the expansion coefficients. Note that the
double sum has the same transverse (x) dependence (apart
from a possible phase shift) as the interference pattern
between the spatial components of each beam (considered
separately), given by Eqs. (5) and (6).

The evolution of these coefficients is governed by the
following set of nonlinear differential equations:

Tmn aOfmn + (1 + IO/Idark)6fnmn(Z, t)

= iymn/Idark[am(z, t)an* (Z, t) + bn(Z, t)bm* (Z, t)],

(8)

where Io = m amam* + bmbm* and Tmn = Tdark(l + TRe/

TDmn)/(l + kmn 
2

/kd
2
). Here kd and kn are the Debye

wave number and the wave number of the particular
grating (6nmn), respectively. The time constants rp. and
T

Dmn are the electron-recombination time and the diffu-
sion time, and Idark is the dark irradiance. The spatial
average of (1A12 + IB12) in the transverse direction (x) is
equal to Io, which is a constant in the absence of ab-
sorption. The coupling constants between the individual
plane waves are Ymn, which depend on the particular crys-
tal parameters, the angles of propagation, and the polar-
ization of the beams. (See Appendix A for references and
a discussion of the derivation of these equations.) In the
absence of absorption gratings 8n is real, and the coupling
constants satisfy the relation Ynm = -Ymn* (which comes
from energy conservation). Note that Ymn values form
an anti-Hermitian matrix. In our case we assume that
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externally applied fields and photovoltaic effects are ab-
sent; therefore ynm are real, and ymm = 0. From Eq. (8),
together with the initial values anmn = 0, one can show
that the relations 3nmn = e5nnm* and nmm = 0 hold at
all times and for all m and n. These relations result in
energy-exchange interactions between the spatial compo-
nents, with no nonlinear phase coupling.

Note that Eq. (8) is valid when the following inequality
is satisfied:

>Lamam* + bmbm* >> Z {aman* exp[-ik(m - n)xe
m m,n

- ika2 (m2
- n2 )z/2] + bmbn*

x exp[ik(m - n)xs

+ ike2 (m2
- n2)z/2]}. (9)

Inequality (9) implies that the total local intensity [at a
given point (x, z)] does not significantly differ from its spa-
tial average (or, equivalently, that this is the limit of low
modulation depth for each grating in the collection of grat-
ings). If the beams have Gaussian spatial profiles, the
validity of Eq. (8) becomes questionable at the margins
of each beam but holds elsewhere. Hence, for a strongly
focused beam [when the beam diameter is of the order of
2v/ke(m - n)x], the above inequality is not satisfied.

We transform the nonlinear paraxial wave equations
(3) and (4) into the following equations for the coefficients
am b and nmn:

=a _ i anmnap+n-m exp(-ike2Aiz/2), (10)
Oz nb m,n

Oba _ -ik nb 36mnbp-n+m exp(ikS2 A2 z/2), (11)
Oz nb m,n

where A, = 2(m - n)(m - p), A2 = 2(n - p)(n - m).
To derive Eqs. (10) and (11), we substitute the expan-

sions (5)-(7) into the wave equations (3) and (4). This
substitution gives two complicated, but similar, equations.
Equation (3) becomes

2ik j am exp[-ik(Em)2z/2]exp(-ikmex)

= -2k2 /nbi am nnl exp[-ike 2 (m2 + n2
- 12)z/2]

m,n,l

x exp[-ike(m + n - I)x]. (12)

We obtain the other equation (for b) by conjugating
Eq. (12) and replacing am* with b. We then multi-
ply Eq. (12) by exp(ikspx) and the equation for bm by
exp(-ikspx) and integrate over x (from -- to c). This
calculation results in delta functions that transform the
two equations into Eqs. (10) and (11). The limits of the
above integration identify the limits of transverse space
(in practice, we assume that the spatial extent of the
beams is much smaller than the crystal's width).

The condition Aj = 0 (j = 1, 2) identifies the phase-
matched terms in the double sums of Eqs. (10) and (11).
The non-phase-matched terms vary rapidly with z (of the
order of the optical wavelength), contributing very little
to the integration over z. In Ref. 9 we performed nu-
merical calculations investigating the influence of these

terms on fanning. The results showed that the non-
phase-matched terms are small and can be neglected
for propagation paths greater than a few hundred mi-
crometers. Therefore we neglect the non-phase-matched
terms in the calculations below. Each of the phase-
matching conditions has two solutions. The terms that
correspond to (m = n) are identically zero at all times [be-
cause 6nmm(z, t) = 0]; thus the only contributing (phase-
matched) terms are those with m = p and n = p in
Eqs. (10) and (11), respectively. This results in

aa,(z, t) = ik Y npn(Z, t)an(Z ) 

abp(z, = ik Y 6nnp(z, t)bn(z, t)-fl 7b 

(13)

(14)

Equations (8), (13), and (14) are the final equations
of our formulation. This system of differential equa-
tions, together with the appropriate boundary conditions
and initial values, makes up our mathematical model for
DPCM. The boundary conditions and the initial values
for a. and b. are arbitrary and correspond to the spatial
profiles of the beams. However, they satisfy the relations
am(z, 0) = am(0, t) and bm(z, 0) = bm(L, t), where z = 0 is
the input plane of beam A and z = L is the input plane of
beam B (input beam profiles are stationary at all times,
unless explicitly specified otherwise). The initial values
for the coefficients of the perturbation index are 8 npn = 0.

Using Eqs. (8), (12), and (13) and the relations nmn =

fnnm*, fnmm = 0, one can easily show that >_,, am 12 and

-m Ibm2, and -m ambm do not depend on z. Physically,
-m a.nt2 and Zm Ibm12 correspond to the total intensities

of the mutually incoherent beams (which are constants
in the absence of absorption), and >Lm ambm is the spa-
tial correlation (in the transverse dimension) of the two
beams. Note that in Section 3 we use the conjugation
fidelity [Eq. (18)], which is proportional to Ym ambm, as a
measure of the fidelity of the conjugation. Similar inte-
gration constants were found in the one-dimensional the-
ory for the transmission-grating geometry of four-wave
mixing.' 4

The DPCM starts from noise that is generated by scat-
tering of the pump beams from inhomogeneities, defects,
inclusions, etc. Because the sources of the initial scat-
tering are thought to be stationary, the seeding noise is
taken to be independent of time. In Ref. 9 it is shown
theoretically that only the scattering at, or near, the in-
put surface is relevant for seeding the fanning. Because
the DPCM is initiated by fanning, we assume that the vol-
ume scattering may be neglected. The surface scattering
is included in the model through the boundary conditions
on the two beams, whereby each beam has an angular
width of approximately 20 that is added to a uniform noise
level (seed level), which is spread over the entire angular
spectrum (10° in our calculations).

3. BASIC PROPERTIES OF THE DPCM

In this section we present some basic characteristics of

our numerical results and define the figures of merit that
are used to evaluate the level of phase conjugation.

Equations (8), (13), and (14), along with the boundary
conditions and the initial values, are solved numerically
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Fig. 1. Sketch of the DPCM.

by the split-step method. Note that in solving these
equations we assume that Io is much larger than Idark;
hence 1 + IO/Idark IO/Idark in Eq. (8). We use 21 plane
waves separated by 0.50 covering a total angular spectrum
of 100. We verify the validity of our results by doubling
the number of integration steps in time and space and by
doubling the number of plane waves (for the same angular
spectrum; see Appendix B for a discussion of the numeri-
cal tests of the calculations). Our calculations involve no
Fourier transforms, so the question of aliasing does not
arise. In general, scattering from small-scale refractive-
index inhomogeneities results in plane-wave amplitudes
outside the finite angular spectrum of our calculations,
but for high conjugation quality these amplitudes remain
small. In cases with low conjugation fidelity, we discard
results in which the plane-wave amplitudes at the edges
of the angular spectrum become comparable with those of
the beams.

Figure 1 shows the configuration of the DPCM device
and the orientations of the beams and the crystal. Note
that, in agreement with the usual experimental condi-
tions, the z axis is not parallel to the c axis (we used
an angular separation of 120 between the two axes) to
produce a higher gain.'-' Figure 2 illustrates the steady-
state far-field amplitudes of the two beams as functions of
the propagation direction z. In Fig. 2 (and in Fig. 3 be-
low), all the angles are measured from the forward c axis.
At the input plane (z = 0 for beam A and z = L for beam
B), each beam consists of five plane waves (spanning an
angular width of 20) with an average amplitude of approx-
imately 1. The remaining plane waves are taken to be
white noise with constant amplitude (104) and pseudo-
random phase (between r and - 7r). We refer to the five
plane waves that initially make up the image borne on
each beam as f1A and flB (for beams A and B, respec-
tively). In Fig. 2, the input beams are shown on the top
right (B) and on the bottom left (MA), and the arrows
indicate the directions of propagation for the two beams.
As each beam propagates through the crystal, it diffracts
and evolves into the phase conjugate of the other beam
(top left and bottom right). We refer to the plane waves
that make up the phase-conjugate beams as AA and AB

(phase conjugates of beam A and B, respectively). Fig-
ure 3 shows the phase profiles of the steady-state input
and output beams at z = 0 and z = L (only plane waves
that belong to the image portions of the beams, i.e., flA,

flB, AA, AB, are shown). Note that the phase-reversed
image acquires an additional bias phase (in Fig. 3 this
phase is approximately 10°), which was also observed
experimentally.16

To evaluate the level of phase conjugation in the DPCM,
we use the following figures of merit:

CFB(t) =

E' ai (L, t)bi (L)
E(iMB UAB)

E . la2(L, t)12 12

_ EbB jE

where TB, CRb, and CFb are the intensity transmission,
the conjugate reflectivity, and the conjugate fidelity of
beam B, respectively. The sums are taken over the sets
of plane waves flA, flB, AA, AB, which are defined in
the previous paragraph and are illustrated in Figs. 2 and
3. Note that ai and b correspond to counterpropagat-
ing plane-wave components. The conjugation reflectivity
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Fig. 2. Steady-state far-field patterns of the two beams as a
function of angle. The angles are measured from the forward
c axis.
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Fig. 3. Phase profiles of the two beams as a function of angle
(only plane waves that belong to the image portions of the
beams, i.e., flA, QB, AA, AB, are shown). The left-hand and the
right-hand figures illustrate the input and the output beams at
z = 0.5 cm and z = 0 cm, respectively. The angles are measured
from the forward c axis.
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and the intensity transmission are defined as in Ref. 1.
We can obtain similar functions for beam A by interchang-
ing (ai and bi), (MA and RB), (AA and AB), and (z = L and
z = 0) in Eqs. (15)-(17). Note that the reflectivity of one
of the beams becomes equivalent to the transmission of
the other when the two beams have equal intensities.

The fidelity of a phase conjugator is best measured by
the conjugation fidelity, which is defined by

CF =
f d 2rAB

(f d2rIA2 f d2rIBI2

where integrations are taken over the transverse di-
mension r. Equation (17) gives the conjugation fidelity
in terms of a series of discrete plane-wave amplitudes.
Note that, in general, the fidelity is a complex number
and that the perfect conjugation is realized when the con-
jugation fidelity is equal to 1. We consider the conjuga-
tion to be complete when the amplitude of the fidelity is
1. Given that the conjugation is complete, the phase of
the fidelity (fidelity phase) is equal to the bias phase ac-
quired by the conjugated beam. We find that, for good
conjugation (high fidelity values), the fidelity phases of
the two beams are equal. Here we do not present a de-
tailed study of the fidelity phase but only report its ex-
istence in the results of our calculations. In this paper
the fidelity corresponds to the amplitude of CF defined in
Eq. (17) unless otherwise specified.

Figure 4 illustrates the temporal evolution of the fi-
delity and the reflectivity for one of the beams. Notice
that each function increases monotonically to its steady-
state value. We define the response times of the reflec-
tivity and the fidelity as the time for the corresponding
function to reach a value that is equal to (qf - q)(1 -

1/e) - qi where qf and qi are the final and the initial val-
ues of the function, respectively. In Fig. 4 the response
times for the two functions are shown by vertical lines.
Note that the. response time of the intensity transmission
for beam A is equal to the response time of the reflectiv-
ity for beam B.

Using the above figures of merit (conjugation fidelity,
conjugation reflectivity, intensity transmission, and the
corresponding response times), we investigate the depen-
dencies of the DPCM on different parameters. We find
that the DPCM strongly depends on yoL (coupling coeffi-
cient times length product, or gain), where yo is the cou-
pling coefficient between the central spatial components
of the two beams. In particular, we find a gain threshold
(transition point) above which the DPCM behaves like an
oscillator.

4. CONJUGATION REFLECTIVITY
VERSUS CONJUGATION FIDELITY

In this section we establish the fact that the conjugation
fidelity and the conjugation reflectivity have significantly
different dependencies on gain. Here we find a transi-
tion interval (gain threshold) in which the characteristics
of the solutions change dramatically. We find that the
differences between the conjugation fidelity and the con-
jugation reflectivity are large near this transition point.

Figure 5 shows the steady-state conjugation fidelities
(for both beams) and the conjugation reflectivity as func-
tions of gain. Here the two beams possess different
phase and amplitude information (see Figs. 2 and 3) but
have equal total intensities. The ratio of seed intensity
to beam intensity is 106. In this case the reflectivity
and its time response are symmetric for the two beams,
but the conjugation fidelity is symmetric only when the
fidelity is near 1, indicating a different time evolution for
the conjugated beam fidelities. Notice that the conjuga-
tion fidelity as a function of gain exhibits a sharp jump,
which we define as the DPCM gain threshold, whereas the
conjugate reflectivity increases smoothly as the gain is in-
creased past that point. Also notice that near threshold
the reflectivity continues to be small (although a sudden
increase in reflectivity is also apparent near the transition
point), whereas the fidelity is near unity, as illustrated in
the experimental results in Ref. 10.

The difference between the two functions is also appar-
ent in the temporal evolution of the functions. Figure 4
shows the temporal evolution of the fidelity (lighter curve)
and the reflectivity (heavier curve) for one of the beams
(for the gain value of 1.6; threshold value is approximately
1.25). Note that the fidelity reaches a steady state sig-
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nificantly faster than does the reflectivity. This result
means that in practice the phase-conjugate beam reaches
high fidelity while its intensity continues to grow in time.

festation of a competition mechanism between self-
scattering (fanning) and mutual scattering (the DPCM).
Near threshold (where the reflectivities are small) fan-
ning becomes more dominant, resulting in degradation of
the conjugation fidelity. When we set the seed levels to
zero (as we did previously), the fanning disappears, and
we observe a dramatic increase in the conjugation fidelity.

6. INPUT INTENSITY RATIO
AND SEED LEVEL

In this section we first examine the DPCM dependence on
the seed level, as suggested by A. Zozulya (University of
Colorado, Boulder, Boulder, Colorado 80309). Obtaining
the results given below, we keep the information content
(phase, amplitude) of the beams and the phase profile of
the seed constant and vary only the amplitude of the seed.
The information content of the beams is the same as in
Figs. 2 and 3.

When the amplitude of the seed levels is increased,
the threshold characteristic curves of the DPCM flatten.
Figure 8 illustrates the fidelity as a function of gain for
three different seed levels (with seed/beam intensity ra-
tios of 102, 101, and 101). Notice that for larger seed

5. OSCILLATORY CHARACTERISTICS

In this section we examine two major features that char-
acterize the DPCM as an oscillator. The first is the slow-
ing down of the DPCM response time for operation near
threshold. Figure 6 illustrates the response times of the
conjugation reflectivity and the conjugation fidelity as
functions of gain. Here the beam and the seed charac-
teristics are identical to those in the preceding sections.
Note that the slowing-down effect is less pronounced for
the conjugation fidelity. The difference between the two
response times decreases when gain is increased. The
property of decreasing response time with increasing gain
is a characteristic of oscillators such as a single-mode
laser." For an amplifier, the time response does not di-
verge at any specific gain value. Note that critical slow-
ing down for PR four-wave mixing with cross-polarized
pump beams was theoretically predicted' 7 (although not
observed) for an externally pumped phase-conjugation ge-
ometry with very small signal inputs.

The second major feature that we observed is that the
conjugation reflectivity is sustained after the seed levels
are set to zero (for gain values above threshold). The
behavior of the DPCM for different gain values is illus-
trated in Fig. 7, in which the temporal evolution of the
conjugation reflectivities for three different gain values is
shown [well above, well below, and near threshold (1.63,
0.98, and 1.28, respectively)]. In each case, after the
system reaches the steady state the seed levels are set
to zero. Above threshold the conjugate reflectivities are
not affected (upper curve), whereas well below threshold
the conjugate reflectivities go to zero. Near threshold
the reflectivity decreases but remains finite. In these
calculations we find that the conjugation fidelities im-
prove significantly (go to unity) for all the gain values
after the seed level is set to zero. For gain values below
threshold this effect may be considered an artifact or a
transient phenomenon because the reflectivities vanish
(become small). We interpret this result as a mani-
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of gain for three

hence shortens the response time at low gains. These
dissipation effects on the fidelity response time become
apparent only at large seed levels.

Variation of the intensity ratio of the two beams
strongly affects the fidelity gain curves for the two beams.
Figures 11 and 12 show the two fidelity curves for inten-
sity ratios of 1, 3, 6, and 9. The conjugation is signifi-
cantly asymmetric; the weaker beam is conjugated more
poorly at a given gain value (i.e., the conjugation fidelity
on the side of the weak input beam is greatly reduced,
although the intensity of the diffracted strong beam in
the direction of the weak beam is large). Notice that the
conjugation fidelity on the side of the strong input beam
is slightly flattened for large intensity ratios, although
the threshold seems unaffected. In contrast, the fidelity
on the side of the weak input beam not only is flattened
but also is shifted toward higher gain values. This ef-
fect for intensity ratios other than unity was observed
experimentally.'0 The stronger beam bleaches the fan-
ning gratings of the weak beam and permits relatively
high conjugation quality on its input side. The opposite
process, however, is inefficient. The weak beam is not
able to eliminate the appearance of fanning gratings that

1.0

0.9 

2 2.5

Fig. 10. Conjugation reflectivity response time as a function of
gain for three different seed levels.

levels the sharp jump of the fidelity gain curve becomes
less pronounced. Also notice that the degradation of
the conjugation becomes significant for large seed levels.
Figure 9 illustrates the reflectivity as a function of gain for
the above-mentioned seed levels. The reflectivity curve
becomes more discontinuous near threshold as the seed
level is decreased. We again interpret these results as
manifestations of the competition between the fanning
and the DPCM. At low seed levels the fidelity and the re-
flectivity are more discontinuous near threshold, and the
sharp threshold is more apparent. At high seed levels
the DPCM and the fanning coexist near threshold, and as
a result we observe degradation of the conjugation fidelity
and smoothing of the reflectivity curve (at threshold).

Figure 10 shows the response time of the reflectivity as
a function of gain for seed levels (10-2, 104, 106). Near
threshold the response time of reflectivity is significantly
longer for smaller seed levels. Notice that larger seed
levels do not change the location of the response-time gain
curve maximum, but the peak is significantly flattened.
Thus critical slowing down become less pronounced as
the seed level is increased. In contrast, the seed level
does not affect the fidelity response time. Only at very
large seed levels (with a seed/beam ratio of 102) do we
observe a flattening effect similar to that discussed above.
Our interpretation of this result is that the fanning acts
as a dissipation process that damps the oscillation and
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are generated by the interaction of the strong beam with
the seed noise.

Figure 13 shows the transmission as a function of gain
for intensity ratios of 1, 3, 6, and 9. Note that the trans-
mission of the two beams remains symmetric.' The re-
flectivity curves for the two beams can easily be obtained
by multiplication of the transmission intensities with the
appropriate constants (see Section 3). The result is as
expected; the reflectivity on the side of the strong input
beam is reduced, whereas the reflectivity on the side for
the weak input beam is enhanced significantly with larger
intensity ratios.

The response times of the reflectivities for the two
beams remain symmetric. Figure 14 shows the response
time of the reflectivity for the four intensity ratios. Note
that the maximum of the curves nearly follows the thresh-
old of the weak input beam again and that the curves are
flattened for larger intensity ratios. For large intensity
ratios the critical slowing down becomes less pronounced,
and the fanning of the strong beam becomes more appar-
ent. Here, once again, fanning results in the flattening
of the reflectivity-response-time curve (as in the case of
large seed levels). In our calculations we find that the
strong input beam is conjugated significantly faster than
the weak input beam (by approximately a factor of 7 near
threshold), although the absolute intensity at each point
in the medium is fixed. The maximum of the curve (weak
input beam) nearly follows the threshold of the weak

beam. We also find that the difference between two re-
sponse times is larger near threshold and that the critical
slowing down is much less pronounced for the stronger
input beam.

7. CONCLUSIONS

In conclusion, we present theoretical results that analyze
the double phase-conjugation process. We establish the
existence of gain threshold and point out the differences
between conjugation fidelity and conjugation reflectivity.
We study the oscillatory nature of the DPCM and pre-
dict the existence of critical slowing down near the gain
threshold. Our results permit a deeper insight into the
stimulated wave mixing process and are useful for un-
derstanding the limitations of device applications, such
as image processors, interconnection devices, interferom-
eters, and coupled laser devices. Furthermore, our theo-
retical formulation is general and may be applied to all
stimulated photorefractive processes and all self-pumped
phase conjugators.

APPENDIX A: DERIVATION AND
REFERENCES FOR EQUATION (8)

Here we derive the PR space-charge field as a function of
the light-intensity distribution. In this respect, this cal-
culation is the basic building block for the theory of beam
propagation in PR media. Our derivation is a compre-
hensive expansion of the appendix given in Ref. 18.

We start from the basic equations for the PR process
with no holes and no photovoltaic field'9:

= (sI + /)(N - N+) - ynN+,
at

j = e/nE + /ukBTVn,
V- j an aN+ 

e at at

V -E = -(-(n+NA - ).
ego

(Al)

(A2)

(A3)

(A4)

Equations (A1)-(A4) are the rate equation for the den-
sity of ionized donors, the current equation, the continuity
equation, and Poisson's equation, respectively. The un-
knowns I, N', n, j, and E are the intensity profile, the ion-
ized donor number density, the electron number density,
the current density, and the electric (space-charge) field,
respectively. The parameters /3, s, y, and A are the dark
generation rate, the cross section of photoionization, the
recombination coefficient, and the mobility, respectively,
and ND and NA are the total donor number density and
the acceptor number density, respectively. To be consis-
tent with the rest of the paper we use only two spatial
components (x, z).

We can eliminate j by substituting Eq. (A2) into
Eq. (A3), which gives us three equations for the three
unknowns N', n, and E. The total intensity I of the two
counterpropagating, mutually incoherent beams can be
written with the expansions [Eqs. (5) and (6)] in the form

I(x, Z, t) = Io + 'Imn(z, t)exp[-ik(m - n)xe
mn

- iks2 (m2 - n2)z/2], (A5)
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where Imn(z, t) = am(z, t)an*(z, t) + bn(z, t)bm*(z, t) and
Io is the spatial average of the intensity profile. Here Z'
means that the double sum is taken only over terms for
which m # n. Note that the double sum has the form
of the interference pattern between the spatial compo-
nents of each beam. Because the two counterpropagat-
ing beams are mutually incoherent, we omit the gratings
formed by their interference.

We assume similar functional forms for N', n, and E:

n(x, z, t) = no(z, t) + Z'fnmn(Z, t)exp[-ik(m - n)xs
m,n

- iks2(m2 - n2)z/2], (A6)

N+(x, z, t) = No+(z, t) + Y'Nmn+(Z, t)exp[-ih(m - n)xe
m,n

- ikS2 (m2 - n2 )z/2], (A7)

E(x, z, t) = Y'Emn(z, t)exp[-ik(m - n)xs
m,n

- ike 2 (m2 - n2)z/2], (A8)

where No+ and n are the spatial averages of the ion-
ized donors number density and the electron number den-
sity, respectively, and Nmn+, nmn, and Emn are the Fourier
coefficients of the expansions. Note that Emn, the space-
charge field component, points in the direction of the grat-
ing wave vector, kmn = (m - n)s: + (m2

- n2 )s2 /22. In
the absence of an external electric field and photovoltaic
fields the spatial average of the space-charge field is zero;
hence Eo = 0.

We substitute Eqs. (A6)-(A8) into the transport equa-
tions and separately equate terms with the same exponen-
tial factors. We assume that the electron number density
is much less than the acceptor number density (NA >>

n). For typical cw operating conditions (less than
1 W/cm2 ) this assumption is well satisfied (NA 
1016 cm-3, no - 1010 cm3). The resulting zeroth-order
solutions are n = s(Io + Idark)(ND - No+)/(yNo') and
No' = NA, where Idark =,B/s.

In general, we obtain a complicated set of differential
equations for the Fourier coefficients. When we omit the
terms of second order in the Fourier coefficients, the set
of equations becomes linear (with the above zeroth-order
solutions):

atl = S(ND - NA)IdarkImn - SIdark(l + IO)Nmn

- y(noNm.n + No 'nmn),

a2Emn (1 1 1+ 1 aEnn

at2 \ TRe 
T

Dmn TIe Tdie at

+ )(TI 1 ++ m]Emn
TDmn 'rIe Tdie TIe'rDmn

-ies(ND - NA)Imn, (A12)

TDmnkmns

where 1/Tdie = eno/(sos), TRe = yNo+, 1/TDmn =
kmnn2kbTl-/e, and 1/TIe = s(Io + Idark) + yno. Here the
time constants Tdie, TRe, TDmn, and TIe are the dielectric
relaxation time, the electron-recombination time, the
diffusion time, and the sum of production and ion-
recombination time, respectively. For typical pho-
torefractive crystals, die and Te are of the order of
milliseconds, whereas TRe and TDe are of the order of
nanoseconds. We also expect Emn to be a slowly vary-
ing function of time (of the order of seconds). Based
on these physical considerations, we neglect the second
derivative term relative to lReaEmn/at, and /Tdie and
1/TIe relative to /TDmn and liTRe. After some algebra
the differential equation takes the form

Irmn at + (1 + IO/Idark)Emn

- - i'mn/Idark EDn
1 + (EDmn/Eqnmn)

(A13)

where EDn = knkB Tie and Eqmn = eNA(ND - NA)!

(SkmnND) are the diffusion field and the limiting
space-charge field, respectively. The time constant
Tn is the PR (grating) decay time at the equivalent
dark irradiance and is given by mn = Tdark(l + TReI

TDmn)/(l + kmn2 /kd2), where kd = [e2 NAJ(skbT)]1"2 is the
Debye wave number, /mdark = elLndark/S, and ndark is the
dark carrier number density. Recalling the electro-optic
effect,2 0 we obtain

oSmn -1/2 nb rmnEmn, (A14)

where rmn is an effective linear combination of the electro-
optic tensor elements, which depend on the crystal orien-
tation, the polarization of the beam, and the direction of
E.r. With Eq. (A14) it is a simple substitution to trans-
form Eq. (A13) into the desired differential equation for
Snmn, Eq. (8). In Eq. (8) the coupling constants between
the plane-wave components are given by

(A9)
(A15)Ymn = (r/A)nb

3
rn1 + ED nn

1+(EDinn/Eqinn)

adtn = - A( enoEmn + ikmnkBTnmn) + aNrna 

(A10)

(kmnEmn ) (nmn -Ninn), (All)

where we neglect terms with aE,,,/az and anmnn/az and
whore E,,,,L and h,,,,, are the amplitudes of the correspond-
ing vectors. Equation (9) gives a necessary condition for
the validity of Eqs. (A9)-(All). Manipulating Eqs. (A9)
and (A10), we eliminate Nmn+ and nmn. The result is a
second-order differential equation for Emn:

The functional form of rmn and the relevant values used
in this paper (for BaTiO3) may be found in Ref. 21. Note
that rmn has a relatively weak dependence on the angles
of propagation, whereas EDmn/[l + (EDmn/Eqmn)1 through
kinn has a strong dependence 3 on the difference between
the angles of propagation.

APPENDIX B

In this appendix we present important numerical aspects
of our calculations. We check the validity of the our
calculations by doubling the integration steps in time and
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Fig. 15. Conjugation fidelity as a function of gain (for beam A)
for three different pseudorandom seed phase profiles.

in z. In our calculations we also find that the conjugation
fidelity as a function of gain below threshold strongly
depends on the pseudorandom phase profile of the seed.
We analyze this numerical artifact and show how we
overcome it. Finally, we examine the results obtained by
doubling the number of plane waves for the same angular
window (see Figs. 2 and 3) and point out sampling issues.

We find that the step size of 0.05 (normalized time)
in time and the step size of 10-3 cm in z (the propagation
direction) give results that do not change with an increas-
ing number of steps (plane-wave amplitude is changed by
less than 0.1%). However, the above values are not nec-
essarily optimal; optimal values vary with a number of
parameters (e.g., Io, the input intensity ratio of the two
beams, etc.).

Figure 15 shows the conjugation fidelity for three differ-
ent pseudorandom seed phase profiles. Notice that the
differences among the three curves are large for smaller
gain values (gain values below threshold). In our calcu-
lations we find that the conjugation fidelity as a function
of gain strongly depends on its initial value, which can
have high values for five plane waves. This dependence
obscures the validity of the results, particularly for low fi-
delity values and for the cases in which the effects sought
are small. We can overcome this limitation by using the
same seed phase profile for each set of calculations or by
averaging over a set of calculations with different seed
phase profiles. We used the former method in our cal-
culations. Because in practice the initial spatial corre-
lation between the beam and the noise is expected to be
small (independently of the beam characteristics), we as-
sume that, by fixing the seed phase profile for all the cal-
culations of a given type, we obtain the correct physical
behavior.

Doubling the number of plane waves, we use interpo-
lated values obtained from the phase and from the ampli-
tude information of the original beam [see Figs. 2 and 3]
for the additional set of plane waves. Hence the angu-
lar difference between the adjacent plane waves becomes
0.25°. We keep IO/Idark fixed, and the seed/beam inten-
sity ratio is equal to 10'. We point out that, although
all the basic characteristics that we observe (i.e., the fi-
delity and the reflectivity thresholds and the critical slow-
ing down that coincide at a specific gain threshold value)
persist, a shift of up to 8% of the threshold value (toward

higher values) occurs for the doubled-sampling resolution
case. In light of these factors, we cannot compare, within
the framework of this paper, images of different fine-scale
resolution borne on the input beams; we can only discuss
the nature of these effects and predict their existence.
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