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Abstract. In this paper we are concerned with a class of double phase en-
ergy functionals arising in the theory of transonic flows. Their main feature

is that the associated Euler equation is driven by the Baouendi-Grushin op-

erator with variable coefficient. This partial differential equation is of mixed
type and possesses both elliptic and hyperbolic regions. After establishing a

weighted inequality for the Baouendi-Grushin operator and a related compact-

ness property, we establish the existence of stationary waves under arbitrary
perturbations of the reaction. A description of a related transonic flow model

can be found in G.-Q.G. Chen, M. Feldman (2015), Philos. Trans. Roy. Soc.

A 373:20140276 (arXiv:1412.1509 [math.AP]).

1. Unbalanced problems and double phase variational integrals

The present paper was motivated by recent fundamental progress in the mathe-
matical analysis of nonlinear models with unbalanced growth. We point out the
early works of Marcellini [24, 25] who was interested in qualitative properties, such
as lower semicontinuity and regularity of minimizers in the abstract setting of qua-
siconvex integrals. Related problems were inspired by models arising in nonlinear
elasticity and they describe the deformation of an elastic body, see Ball [4, 5].

We recall some basic facts concerning double phase problems. Let Ω ⊂ RN
(N ≥ 2) be a bounded domain with smooth boundary. Let u : Ω→ RN denote the
displacement and assume thatDu is theN×N matrix associated to the deformation
gradient. It follows that the total energy is described by an integral of the following
type

(1.1) I(u) =

∫
Ω

f(x,Du(x))dx.

Here, the potential f = f(x, ξ) : Ω × RN×N → R is assumed to be a quasiconvex
function with respect to the second variable; we refer to Morrey [30] for details.

Ball [4, 5] was interested in potentials given by

f(ξ) = g(ξ) + h(det ξ),

where det ξ denotes the determinant of the N×N matrix ξ. It is also assumed that
g and h are nonnegative convex functions satisfying the growth hypotheses

g(ξ) ≥ c1 |ξ|p and lim
t→+∞

h(t) = +∞,
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2 A. BAHROUNI, V.D. RĂDULESCU, AND D.D. REPOVŠ

where c1 > 0 and 1 < p ≤ N . We point out that the assumption p ≤ N was
necessary in order to study the existence of cavities for equilibrium solutions, that
is, minima of the energy functional (1.1) which are discontinuous at one point where
a cavity appears. In fact, every function u with finite energy belongs to the function
space W 1,p(Ω,RN ), hence it is continuous if p > N . Accordingly, Marcellini [24, 25]
considered functions f = f(x, ξ) with different growth near the origin and at infinity
(unbalanced growth), which satisfy the hypothesis

c1 |ξ|p ≤ |f(x, ξ)| ≤ c2 (1 + |ξ|q) for all (x, ξ) ∈ Ω× R,

where c1, c2 are positive constants and 1 ≤ p ≤ q. Regularity and existence of
solutions of elliptic equations with (p, q)–growth conditions were studied in [25].

The analysis of non-autonomous energy functionals with energy density changing
its ellipticity and growth properties according to the point was developed in several
remarkable papers by Mingione et al. [7]–[14]. These contributions are related to
the works of Zhikov [37], and they describe the nature of certain phenomena arising
in nonlinear elasticity. For instance, Zhikov was interested in providing models for
strongly anisotropic materials in the framework of homogenization. The associated
functionals also demonstrated their importance in the study of duality theory as
well as in the context of the Lavrentiev phenomenon [38]. In relationship with these
research directions, Zhikov introduced three different model functionals, mainly in
the context of the Lavrentiev phenomenon. These models are the following:

(1.2)

M(u) :=

∫
Ω

c(x)|Du|2dx, 0 < 1/c(·) ∈ Lt(Ω), t > 1

V(u) :=

∫
Ω

|Du|p(x)dx, 1 < p(x) <∞

Pp,q(u) :=

∫
Ω

(|Du|p + a(x)|Du|q) dx, 0 ≤ a(x) ≤ L, 1 < p < q.

The functional M is characterized by a loss of ellipticity on the subset of Ω
where the potential c vanishes. This functional has been studied in relationship
with nonlinear equations involving Muckenhoupt weights. The functional V is still
the object of great interest nowadays and several relevant papers have been de-
veloped about it. We refer to Acerbi and Mingione [1] in the context of gradient
estimates and contributions to the qualitative analysis of minimizers of nonstandard
energy functionals with variable coefficients. We also point out the abstract setting,
respectively the variational analysis developed in the monograph by Rădulescu and
Repovš [33] (see also the survey papers [31, 32]). The energy functional defined by
V has been used to build consistent models for strongly anisotropic materials: in
a material made of different components, the exponent p(x) dictates the geometry
of a composite that changes its hardening exponent according to the point. The
functional Pp,q defined in (1.2) appears as un upgraded version of V. Again, in this
case, the modulating potential a(x) controls the geometry of the composite made
by two differential materials, with corresponding hardening exponents p and q.

Following Marcellini’s terminology, the functionals defined in (1.2) belong to
the realm of energy functionals with nonstandard growth conditions of (p, q)–type.
These are functionals of the type defined in relation (1.1), where the energy density
satisfies

|ξ|p ≤ f(x, ξ) ≤ |ξ|q + 1, 1 ≤ p ≤ q.
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An alternative relevant example of a functional having (p, q)–growth is given by

u 7→
∫

Ω

|Du|p log(1 + |Du|) dx, for p ≥ 1,

which can be seen as a logarithmic perturbation of the classical p-Dirichlet energy.
We refer to Mingione et al. [7]–[14] for more details. We also point out the recent
paper by Cencelj et al. [11] in the framework of double phase problems with variable
growth.

The main feature of our paper is the study of a class of unbalanced double phase
problems with variable coefficient. This problem is strictly connected with the
analysis of nonlinear patterns and stationary waves for transonic flow models. We
refer to the pioneering work of Morawetz [27, 28, 29] on the theory of transonic
fluid flow —referring to partial differential equations that possess both elliptic and
hyperbolic regions— and this remains the most fundamental mathematical work
on this subject. The flow is supersonic in the elliptic region, while a shock wave is
created at the boundary between the elliptic and hyperbolic regions. In the 1950s,
Morawetz used functional–analytic methods to study boundary value problems for
such transonic problems.

Throughout this paper we assume that Ω ⊂ RN is a bounded domain with
smooth boundary. Let n, m be nonnegative integers such that N = n + m, hence
RN = Rn × Rm. An element z ∈ Ω is written as z = (x, y), where x ∈ Rn and
y ∈ Rm. The energy studied in this paper is somehow related to the functional
Pp,q(u) defined in (1.2) and is of the type

(1.3)

∫
Ω

|gradxu|
G(x,y)

+ |x|γ
∣∣gradyu

∣∣G(x,y)

G(x, y)
dz.

In such a case, the variable coefficient G(x, y) describes the geometry of a com-
posite realized by using two materials with corresponding behaviour described by
|gradxu|G(x,y) and |gradyu|G(x,y). Then in the region {z ∈ Ω : x 6= 0} the material
described by the second integrand is present. In the opposite case, the material
described by the first integrand is the only one that creates the composite.

We also point out that the integral functional (1.3) is a double phase energy with
variable coefficient due to the presence of the unbalanced terms |gradxu|G(x,y) and
|gradyu|G(x,y) combined with the weight |x|γ .

The differential operator associated to (1.3) is degenerate and of mixed type. This
operator is

(1.4) divx

(
|gradx|G(x,y)−2gradxu

)
+ divy

(
|x|γ

∣∣grady
∣∣G(x,y)−2

gradyu
)
,

where G(x, y) is a variable coefficient.

1.1. Degenerate operators of mixed type. In 1923, Tricomi [35] began the
study of second-order partial differential equations of mixed type by introducing
the operator

T :=
∂2

∂x2
+ x

∂2

∂y2
.

This operator is elliptic on {(x, y) ∈ R2 : x > 0}, hyperbolic on {(x, y) ∈ R2 : x >
0}, and degenerate on {(x, y) ∈ R2 : x = 0}.

An interesting application of this class of elliptic-hyperbolic differential operators
can be found in relationship with the theory of planar transonic flow, see [23].
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The associated waves are steep wavefronts that propagate in compressible fluids in
which convection dominates diffusion. They are fundamental in nature, especially
in high-speed fluid flows. Many such shock reflection/diffraction problems can
be formulated as boundary value problems involving nonlinear partial differential
equations of mixed elliptic-hyperbolic type.

Numerous attempts have been made recently in order to study the Tricomi oper-
ator T as well as some extensions obtained either by substituting the degeneracy x
with a function g(x) or by replacing the second-order derivative ∂2

y with the Laplace
operator.

In a different context and for different purposes, Baouendi [6] and Grushin [19]
considered other classes of degenerate operators, an example is given by

(1.5)
∂2

∂x2
+ x2r ∂

2

∂y2
, r ∈ N.

The Baouendi–Grushin operator can be viewed as the Tricomi operator for tran-
sonic flow restricted to subsonic regions. On the other hand, a second-order differ-
ential operator T in divergence form on the plane, can be written as an operator
whose principal part is a Baouendi-Grushin-type operator, provided that the prin-
cipal part of T is nonnegative and its quadratic form does not vanish at any point,
see [17].

Let us introduce G2r := ∆x + |x|2r∆y, with x ∈ Rn, y ∈ Rm, and n + m = N .
This operator can be seen as the N -dimensional analogue of (1.5). If z = (x, y) ∈
RN , we notice that the operator G2r can be rewritten, with a suitable choice of
function aα, in the following form:

Lu :=
∑
|α|

Dα
z (aα(z, u)).

This class of differential operators was studied by Mitidieri and Pohozaev [26] and
D’Ambrosio [16].

Let Ω ⊂ RN be a bounded domain with smooth boundary. Assume that
N = n + m. We now introduce the Baouendi–Grushin operator with variable
coefficient. Let us consider the continuous function G : Ω→ (1,∞). We introduce
the nonhomogeneous operator ∆G(x,y) defined by

∆G(x,y)u = div (gradG(x,y)u)

= divx(|gradx|
G(x,y)−2

gradxu) + divy(|x|γ
∣∣grady

∣∣G(x,y)−2
gradyu)

=

n∑
i=1

(
|gradx|

G(x,y)−2
uxi

)
xi

+ |x|γ
m∑
i=1

(∣∣grady
∣∣G(x,y)−2

uyi

)
yi
,

where

gradG(x,y)u = A(x)

[
|gradx|

G(x,y)−2
gradxu

|x|γ
∣∣grady

∣∣G(x,y)−2
gradyu

]
and

A(x) =

[
In On,m
Om,n |x|γ Im

]
∈MN×N (R).

Then the operator ∆G(x,y) is degenerate along the m-dimensional subspace M :=

{0} × Rm of RN .
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The present paper complements our previous contributions related to double
phase anisotropic variational integrals, see [34, 36]. This paper also extends our
recent results established in [3] to a mixed elliptic-hyperbolic setting. In this way,
Euclidean results mentioned above continue to be a source of inspiration for the
problem of finding analogues and new inequalities on the sub-Riemannian space
RN = Rm × Rn defined by the sub-elliptic gradient, which is the N -dimensional
vector field given by

gradγ = (gradx, |x|γgrady) = (X1, . . . , Xm, Y1, . . . , Yn)

with the corresponding Baouendi-Grushin vector fields

Xi = |gradx|
G(x,y)−2 ∂

∂xi
, i = 1, . . . ,m

and

Yj = |x|γ
∣∣grady

∣∣G(x,y)−2 ∂

∂yj
, j = 1, . . . , n.

In the isotropic case corresponding to G(x, y) ≡ 2, the above vector fields Xi

and Yj are homogeneous of degree one with respect to the dilation

Xi(δλ) = λδλ(Xi), Yj(δλ) = λδλ(Yj),

where the anisotropic dilation δλ is defined by δλ(x, y) := (λx, λ1+γy). However, ∆2

is not translation invariant in RN but it is invariant with respect to the translations
along M . Assuming that G(x, y) ≡ 2 and γ = 1/2, then the operator ∆G(x,y) is
intimately connected to the sub-Laplacians in groups of the Heisenberg type. A
description of a related transonic flow model can be found in [12] (arXiv:1412.1509).
Finally, we point out that if γ is an even positive integer, then the Baouendi-Grushin
operator is a sum of squares of C∞ vector fields satisfying the Hörmander condition.

2. A weighted inequality for ∆G

One of the many significant contributions by Hardy and Littlewood on the sub-
ject of inequalities, and in particular integral inequalities involving derivatives of
functions, can be found in their joint paper [20]. This paper subsequently formed
the basis of Chapter VII of the book of Hardy, Littlewood and Pólya [21]; that
chapter is essentially concerned with the applications of the calculus of variations
to integral inequalities, but it also involves direct analytical methods required to
avoid difficulties of singular problems and unattained bounds in the calculus of vari-
ations. In [10] Caffarelli, Kohn and Nirenberg proved a rather general interpolation
inequality with weights, which extends the Hardy-Littlewood inequality. We refer
to [2, 15, 22] for related inequalities in the context of Grushin-type operators. In
this section, motivated by the results obtained in our recent paper [3] in the frame-
work of variable exponent, we first establish a Caffarelli-Kohn-Nirenberg inequality
for ∆G. Next, we deduce a compactness property of an anisotropic function space.
This abstract result will play a key role in the mathematical analysis of a boundary
value problem driven by the Baouendi-Grushin operator.

We define

G+ := sup{G(x, y) : (x, y) ∈ Ω} and G− := inf{G(x, y) : (x, y) ∈ Ω}.
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We suppose that the domain Ω intersects the degeneracy set [x = 0], that is,

Ω ∩ {(0, y) : y ∈ Rm} 6= ∅.

Throughout this paper, we denote by | · |p(z) the norm in the Lebesgue space with

variable exponent Lp(z)(Ω). For general properties of function spaces with variable
exponent we refer to [33].

Theorem 2.1. Assume that G is a function of class C1 and that G(x, y) ∈ (2, N)
for all (x, y) ∈ Ω. Then there exists a positive constant β such that for all u ∈ C1

c (Ω)∫
Ω

(1 + |x|γ)|u|G(x,y) dxdy ≤ β
∫

Ω

(|gradxu|G(x,y) + |x|γ |gradyu|G(x,y))dxdy

+β

∫
Ω

|u|G(x,y)−1(1 + u2)(|gradxG(x, y)|+ |x|γ |gradyG(x, y)|) dxdy.

Proof. We define the functions W1,W2 : Rn × Rm → Rn × Rm by

W1(x, y) = (x, 0m) =: (I1(x), 0m) and W2(x, y) = (0n, y) =: (0n, I2(y)).

Then for all (x, y) ∈ Ω
(2.1)

div (W1(x, y) |u|G(x,y)
) = |u|G(x,y)div (W1) +G(x, y)|u|G(x,y)−2ugradu ·W1

+|u|G(x,y) log(|u|)gradG ·W1

= |u|G(x,y)divx (I1(x)) +G(x, y)|u|G(x,y)−2ugradxu · I1(x)

+|u|G(x,y) log(|u|)gradxG(x, y) · I1(x)

and

(2.2)

div (|x|γ |u|G(x,y)W2(x, y)) = |x|γ |u|G(x,y)divy (I2(y))

+|x|γG(x, y)|u|G(x,y)−2ugradyu · I2(y)

+|x|γ |u|G(x,y) log(|u|)gradyG(x, y) · I2(y).

By the flux-divergence theorem we have for all u ∈ C1
c (Ω)

(2.3)

∫
Ω

div (|u|G(x,y)W1(x, y)) dxdy =

∫
Ω

div (|x|γ |u|G(x,y)W2(x, y)) dxdy = 0.

Combining relations (2.1)–(2.3) and [3, Lemma 3.1], we can deduce that∫
Ω

|u|G(x,y)divx (I1(x)) dxdy ≤
∫

Ω

|u|G(x,y)| log(|u|)||gradxG(x, y)||I1(x)| dxdy

+G+

∫
Ω

|u|G(x,y)−1|gradxu||I1(x)| dxdy

≤ µ‖W1‖L∞(Ω)

∫
Ω

|gradxG(x, y)| |u|G(x,y)−1(u2 + 1) dxdy

+ εG+‖W1‖L∞(Ω)

∫
Ω

|u|G(x,y) dxdy +G+ ‖W1‖L∞(Ω)

εG−−1

∫
Ω

|gradxu|G(x,y) dxdy.
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Similarly, we have∫
Ω

|x|γ |u|G(x,y)divy (I2(x)) dxdy ≤ µ‖W2‖L∞(Ω)

∫
Ω

|x|γ |gradyG(x, y)||u|G(x,y)−1(u2 + 1) dxdy

+ εG+‖W2‖L∞(Ω)

∫
Ω

|x|γ |u|G(x,y)dxdy

(2.4)

+G+ ‖W2‖L∞(Ω)

εG−−1

∫
Ω

|x|γ |gradyu|G(x,y)dxdy.

Combining these relations and taking into account that div (W1) = n and
div (W2) = m, we deduce that

[2− εG+(‖W1‖L∞(Ω) + ‖W2‖L∞(Ω))]

∫
Ω

(1 + |x|γ)|u|G(x,y)dxdy ≤

G+ ‖W1‖L∞(Ω) + ‖W2‖L∞(Ω)

εG−−1

∫
Ω

(|gradxu|G(x,y) + |x|γ |gradyu|G(x,y)) dxdy)

+ c

∫
Ω

|u|G(x,y)+1(|gradxG(x, y)|+ |x|γ |gradyG(x, y)|) dxdy

+ µ(‖W1‖L∞(Ω) + ‖W2‖L∞(Ω))

∫
Ω

|u|G(x,y)−1(|gradxG(x, y)|+ |x|γ |gradyG(x, y)|) dxdy,

with c = µ(‖W1‖L∞(Ω) + ‖W2‖L∞(Ω)). So, by choosing

ε <
2

G+(‖W1‖L∞(Ω) + ‖W2‖L∞(Ω))
,

we set

β =
(
‖W1‖L∞(Ω) + ‖W2‖L∞(Ω)

) max(µ, G+

εG−−1
)

2− εG+(‖W1‖L∞(Ω) + ‖W2‖L∞(Ω))
.

This completes the proof of Theorem 2.1. �

We denote by W the closure of C1
c (Ω) with respect to the norm

‖u‖ = |gradxu|G(x,y) +
∣∣∣|x| γ

G(x,y) gradyu
∣∣∣
G(x,y)

+
∣∣∣u(|gradxG(x, y)|+ |x|γ |gradyG(x, y)|)

1
G(x,y)+1

∣∣∣
G(x,y)+1

+
∣∣∣u(|gradxG(x, y)|+ |x|γ |gradyG(x, y)|)

1
G(x,y)−1

∣∣∣
G(x,y)−1

.

We now establish the following compactness property.

Lemma 2.2. Assume that G is a function of class C1 and that G(x, y) ∈ (2, N)

for all (x, y) ∈ Ω. Furthermore, suppose that 0 < γ < N(G−−s)
s and 1 < s < G−.

Then the function space W is compactly embedded in Ls(Ω).

Proof. Let (un) be an arbitrary bounded sequence in W. Since the domain Ω is
assumed to intersect the degeneracy set [x = 0], we deduce that there are y0 ∈ Rm
and R > 0 such that the ball of radius R centered at (0n, y0) is included in Ω. Thus,
there exists 0 < ε0 < min(1, R) such that Dε0 ⊂ BR(0n, y0) ⊂ Ω, with

Dε0 = {(x, y) ∈ BR(0n, y0) : |x| < ε0} .
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We fix arbitrarily ε > 0 with ε < ε0 and set

Dε =
{

(x, y) ∈ Rn+m : |x| < ε and |(x, y)− (0n, y0)| < R
}
.

By Theorem 2.1, the sequence (un) is bounded in LG(x,y)(Ω \Dε). Consequently,
(un) is bounded in the space W 1,G(x,y)(Ω\Dε). Since W 1,G(x,y)(Ω\Dε) is continu-

ously embedded into W 1,G−(Ω \Dε), we deduce that the sequence (un) is bounded

in W 1,G−(Ω \Dε).
By the Rellich-Kondratchov embedding theorem, we know that there is a con-

vergent subsequence of (un) in Ls(Ω \Dε). Thus, for any large enough n and m we
have

(2.5)

∫
Ω\Dε

|un − um|sdx < ε.

By the Hölder inequality for variable exponents (see [33, p. 8]) we have∫
Dε

|um − un|s dxdy =

∫
Dε

1

|x|
sγ

G(x,y)

|x|
sγ

G(x,y) |um − un|s dxdy

≤ 2

∣∣∣∣∣ 1

|x|
sγ

G(x,y)

∣∣∣∣∣
(
G(x,y)
s )′

∣∣∣|x| sγ
G(x,y) |um − un|s

∣∣∣
G(x,y)
s

,

where (G(x,y)
s )′ = G(x,y)

G(x,y)−s .

By Theorem 2.1 and since for all (x, y) ∈ Dε we have |x| < ε ≤ 1, we obtain∣∣∣|x| sγ
G(x,y) |um − un|s

∣∣∣
G(x,y)
s

≤
(∫

Ω

|x|γ |um − un|G(x,y)
dxdy

)s/G−

+

(∫
Ω

|x|γ |um − un|G(x,y)
dxdy

)s/G+

<∞.

If ρ denotes the modular function in the Lebesgue space with the variable expo-
nent G(x, y)/[G(x, y)− s] (see [33, p. 9]), we observe that∣∣∣∣∣ 1

|x|
sγ

G(x,y)

∣∣∣∣∣
(
G(x,y)
s )′

≤

[
ρ

(
1

|x|
sγ

G(x,y)

)]((
G(x,y)
s )′)+

+

[
ρ

(
1

|x|
sγ

G(x,y)

)]((
G(x,y)
s )′)−

.

Define Ω1 = {x ∈ Rn, |x| < ε} and Ω2 = {y ∈ Rm, |y − y0| < R}. It follows
that Dε ⊂ Ω1 × Ω2 = {(x, y) ∈ Rn+m : |x| < ε, |y − y0| < R}. Then∫

Dε

1

|x|
sγ

G(x,y)−s
dxdy ≤

∫
Ω

|x|
−sγ
G−−s dxdy ≤

∫
Ω1×Ω2

|x|
−sγ
G−−s dxdy

= |Ω2|
∫

Ω1

|x|
−sγ
G−−s dx =

∫ ε

0

wnt
N−1− sγ

G−−s dt = cε
N− sγ

G−−s ,

where wN is the area of the unit sphere in RN . Invoking the above estimates, we
infer that ∣∣∣∣∣ 1

|x|
sγ

G(x,y)

∣∣∣∣∣
(
G(x,y)
s )′

≤ c(εα1 + εα1),

where α1, α2 are positive constants. It follows that∫
Ω

|um − un|sdxdy ≤ c(ε+ εα1 + εα1).
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This shows that (un) is a Cauchy sequence in Ls(Ω), hence the proof is concluded.
�

3. A nonlinear problem driven by ∆G

We study the following boundary value problem
(3.1){

−∆G(x,y)u+A(x, y)(|u|G(x,y)−1 + |u|G(x,y)−3)u = λ |u|s−2
u in ∂Ω

u = 0 on ∂Ω ,

where λ > 0 and

A(x, y) = |gradxG(x, y)|+ |x|γ |gradyG(x, y)| for all (x, y) ∈ Ω.

Definition 3.1. We say that u ∈ W is a weak solution of problem (3.1) if for all
v ∈ W \ {0}∫

Ω

[
|gradxu|

G(x,y)−2
gradxugradxv + |x|γ

∣∣gradyu
∣∣G(x,y)−2

gradyugradyv
]
dxdy+∫

Ω

A(x, y) |u|G(x,y)−3
(u2 + 1)uv dxdy = λ

∫
Ω

|u|s−2
uv dxdy.

We will say that the corresponding real number λ for which problem (3.1) has
a nontrivial solution is an eigenvalue and the corresponding u ∈ W \ {0} is an
eigenfunction of the problem. These terms are in accordance with the related
notions introduced by Fučik, Nečas, Souček, and Souček [18, p. 117] in the context
of nonlinear operators. Indeed, if we denote

S(u) :=

∫
Ω

1

G(x, y)

[
|gradxu|

G(x,y)
+ |x|γ

∣∣gradyu
∣∣G(x,y)

]
dxdy

+

∫
Ω

A(x, y)

[
|u|G(x,y)+1

G(x, y) + 1
+
|u|G(x,y)−1

G(x, y)− 1

]
dxdy

and

T (u) :=

∫
Ω

|u|s−2
uv dxdy

then λ is an eigenvalue for the pair (S, T ) of nonlinear operators (in the sense of [18])
if and only if there is a corresponding eigenfunction that is a solution of problem
(3.1) as described in Definition 3.1.

The next result establishes the existence of an infinite interval of eigenvalues.
This property corresponds to arbitrary perturbations of the reaction term, namely
existence of nontrivial solutions with respect to any positive parameter λ.

Theorem 3.2. Assume that G is a function of class C1 and that G(x, y) ∈ (2, N)

for all (x, y) ∈ Ω. We also suppose that 0 < γ < N(G−−s)
s and 1 < s < G− − 1.

Then any λ > 0 is an eigenvalue of problem (3.1).

The energy functional associated to problem (3.1) is E :W → R defined by

E(u) =

∫
Ω

1

G(x, y)

[
|gradxu|

G(x,y)
+ |x|γ

∣∣gradyu
∣∣G(x,y)

]
dxdy

+

∫
Ω

A(x, y)

[
|u|G(x,y)+1

G(x, y) + 1
+
|u|G(x,y)−1

G(x, y)− 1

]
dxdy − λ

s

∫
Ω

|u|s dxdy.
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Then E is of class C1 and for all u, v ∈ W

〈E ′(u), v〉 =

∫
Ω

[
|gradxu|

G(x,y)−2
gradxugradxv + |x|γ

∣∣gradyu
∣∣G(x,y)−2

gradyugradyv
]
dxdy

+

∫
Ω

A(x, y) |u|G(x,y)−3
(u2 + 1)uvdxdy − λ

∫
Ω

|u|s−2
uv dxdy.

We recall that W is the closure of C1
c (Ω) under the norm

‖u‖ = |gradxu|G(x,y) +
∣∣∣|x| γ

G(x,y) gradyu
∣∣∣
G(x,y)

+
∣∣∣uA(x, y)1/(G(x,y)+1)

∣∣∣
G(x,y)+1

+
∣∣∣uA(x, y)1/(G(x,y)−1)

∣∣∣
G(x,y)−1

.

Thus, taking into account the expression of E ′ : W → W∗, we can deduce that
E ′ is well-defined and bounded.

The proof of Theorem 3.2 is based on the following ideas:
(i) energy estimates, namely the existence of a “valley” far from the origin and of
a “mountain” for E near the origin;
(ii) existence of a negative relative minimum for E and a sequence of “almost critical
points” for the energy, for any λ > 0.

The main ingredients of the proof are the compactness property established in
Lemma 2.2 and the Ekeland variational principle, which is the nonlinear version of
the Bishop-Phelps theorem.

Lemma 3.3. (i) There exists φ ≥ 0 in W such that E(tφ) < 0 for all small enough
t > 0.

(ii) For all λ > 0, there exist positive numbers ρ and α such that E(u) ≥ α for
all u ∈ W with ‖u‖ = ρ.

Proof. (i) Fix φ ∈ W \ {0} with φ ≥ 0 and ‖φ‖ < 1. For all t ∈ (0, 1) we have

E(tφ) ≤ tG
−

G−

∫
Ω

|gradxφ|G(x,y)dxdy +
tG
−

G−

∫
Ω

|x|γ |gradyφ|G(x,y)dxdy

+
tG
−+1

G− + 1

∫
Ω

A(x, y)φG(x,y)+1dxdy +
tG
−−1

G− − 1

∫
Ω

A(x, y)φG(x,y)−1dxdy − λ t
s

s

∫
Ω

φsds

= C1t
G− + C2t

G−+1 + C3t
G−−1 − λC4t

s,

where C1, C2, C3 and C4 are positive numbers.
Since s < G− − 1, our assertion follows for small enough t > 0.
(ii) For all u ∈ W we have

(3.2)

E(u) ≥ 1

G+

∫
Ω

[
|gradxu|G(x,y) + |x|γ |gradyu|G(x,y)

]
dxdy

+
1

G+ + 1

∫
Ω

A(x, y)|u|G(x,y)+1dxdy +
1

G+ − 1

∫
Ω

A(x, y)|u|G(x,y)−1dxdy

−λ
s

∫
Ω

|u|sds.

By Lemma 2.2, there exists β > 0 such that

|u|s ≤ β ‖u‖ , for all u ∈ W.
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We fix ρ > 1 and assume that ‖u‖ = ρ. By relation (3.2) we obtain, for a suitable
positive constant C depending only on G+ and G−,

E(u) ≥ C ‖u‖G
−−1 − λ β

s

s
‖u‖s = CρG

−−1 − λ β
s

s
ρs.

Taking higher and higher values of ρ, we deduce our statement for all λ > 0. �

By Lemma 3.3 we can deduce that there exists big enough ρ > 0 such that

inf{E(u) : u ∈ W, ‖u‖ ≤ ρ} =: m < 0

and

sup{E(u) : u ∈ W, ‖u‖ = ρ} > 0.

Let M be the complete metric space defined by M := {u ∈ W : ‖u‖ ≤ ρ}.
Applying Ekeland’s variational principle to E restricted to M we find a sequence
(un) ⊂ W of “almost critical points” of E , that is,

(3.3) E(un)→ m < 0 and E ′(un)→ 0 as n→∞.

Since (un) is bounded it follows that, up to a subsequence, un ⇀ u in W. Next,
by Lemma 2.2, we can assume that un → u in Ls(Ω). Combining this information
with (3.3) and the fact that E ′ is a mapping of type (S+), we deduce that un → u
in W, hence u is a nontrivial solution of problem (3.1). This concludes the proof of
Theorem 3.2.

Concluding remarks, perspectives, and open problems

(i) Patterns and waves are all around us. They occur in many different systems
and on vastly different scales in both time and space, and their dynamic behavior is
similar across these systems. Mathematical techniques can help identify the origins
and common properties of patterns and waves across various applications. Under-
standing the ways in which such structures are created can help experimentalists
identify the mechanisms that generate them in specific systems. Despite many ad-
vances, understanding patterns and waves associated to transonic flows still poses
significant mathematical challenges. To illustrate the difficulties, we have consid-
ered in this paper a case in which one has developed a partial differential equation
that possesses both elliptic and hyperbolic regions. The flow is supersonic in the el-
liptic region, while a shock wave is created at the boundary between the elliptic and
hyperbolic regions. The model studied in this paper is described by a Baouendi–
Grushin operator, which can be seen as the Tricomi operator in the framework of
the transonic flow restricted to subsonic regions. We were interested in assessing
the existence of stationary waves under arbitrary perturbations of the reaction,
which corresponds to the study of a suitable nonlinear eigenvalue problem.

(ii) The mathematical analysis carried out in this paper considers the unbalanced
energy defined in (1.3) with the associated differential operator defined in (1.4).
It appears to be worth to further investigate patterns described by the variational
integral

(3.4)

∫
Ω

(
|gradxu|

G(x,y)
+ |x|γ

∣∣gradyu
∣∣G(x,y)

)
dz



12 A. BAHROUNI, V.D. RĂDULESCU, AND D.D. REPOVŠ

with corresponding anisotropic Baouendi-Grushin operator

divx

(
G(x, y) |gradx|G(x,y)−2gradx

)
+ divy

(
G(x, y) |x|γ

∣∣grady
∣∣G(x,y)−2

grady

)
.

(iii) We remark that since the energy functionals introduced in relations (1.3) and
(3.4) have a degenerate action on the set where the gradient vanishes, it is a natural
question to study what happens if the integrand is modified in such a way that,
if |gradu| is also small, there exists an imbalance between the two terms of every
integrand.

(iv) Lemma 2.2 played a key role in the proof of the existence of an interval of
eigenvalues for problem (3.1). This compactness property is established in a sub-
critical setting, which corresponds to the hypothesis s < G−, where s describes the
growth of the right-hand side of problem (3.1). In fact, Theorem 3.2 remains true
if s is replaced with a variable coefficient s(x), provided that s+ < G−. We do not
have any knowledge about the behaviour in the almost critical case that arises in
the following situation: there exists x0 ∈ Ω such that s(x0) = G− and s(x) < G−

for all x ∈ Ω \ {x0}.
(v) The weighted inequality established in Theorem 2.1 is stated under the hypoth-
esis that the variable coefficient is of class C1. We consider that a valuable research
direction (with relevant applications to nonsmooth mechanics) corresponds to po-
tentials leading to a lack of regularity. For instance, if G is locally Lipschitz, one
can use the notion of Clarke generalized gradient. We do not know of any version
of Theorem 2.1 for potentials G having loss of regularity.

(vi) In a forthcoming paper, we will study new classes of nonlinear boundary value
problems involving the magnetic Baouendi-Grushin operator, see [2, 22]. This op-
erator is

GA := −(gradG + iβA0)2 for − 1

2
≤ β ≤ 1

2
,

where

A0 = (A1,A2,A3,A4) =

(
−∂yd

d
,
∂xd

d
,−2y

∂td

d
, 2x

∂td

d

)
,

gradG = (∂x, ∂y, 2x∂t, 2y∂t),

with z = (x, y), |z| =
√
x2 + y2, and d(z, t) = (|z|4 + t2)1/4 is the Kaplan distance.

(vii) We believe that the approaches and techniques developed for studying problem
(3.1) can be useful for the qualitative analysis of further classes of nonlinear prob-
lems described by mixed type operators, either stationary or evolutionary. These
degenerate or singular problems include the von Neumann problem (which describes
the shock reflection-diffraction by two-dimensional wedges with concave corner), the
Lighthill problem (which describes the shock diffraction by two-dimensional wedges
with convex corner), and the Prandtl-Meyer problem (in the framework of super-
sonic flows impinging onto solid wedges). These models describe very relevant phe-
nomena that arise in fluid mechanics. At the same time, they are also fundamental
mathematical models in the theory of multidimensional conservation laws. These
reflection/diffraction configurations are the core configurations in the structure of
global entropy solutions of the two-dimensional Riemann problem for hyperbolic
conservation laws, whereas the Riemann solutions are the building blocks and lo-
cal structure of general solutions, and determine global attractors and asymptotic
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states of entropy solutions, as time tends to infinity, for multidimensional hyper-
bolic systems of conservation laws. In this sense, we have to understand the reflec-
tion/diffraction phenomena in order to fully comprehend global entropy solutions
to multidimensional hyperbolic systems of conservation laws.
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