

National Aeronautics and Space Administration

Double-pulsed 2-µm lidar validation for atmospheric CO₂ measurements

Upendra N. Singh, Tamer F. Refaat, Jirong Yu, **Mulugeta Petros, and Ruben Remus**

NASA Langley Research Center, Hampton, VA 23681

SPIE Remote Sensing New Developments in Lidar Technology I

> 9645-1 Monday, September 21, 2015 Toulouse, France

www.nasa.gov http://engineering.larc.nasa.gov/

> Objectives

Demonstrate ground-based and airborne CO_2 measurement capability using 2-µm double-pulse IPDA lidar.

CO₂ 2-μm Double-Pulse IPDA Lidar

- Methodology
- Spectroscopy
- Instrument and Integration
- IPDA Ground Testing
- IPDA Airborne Testing
- Summary and Conclusion

Development of a Double-Pulsed 2-micron Direct Detection IPDA Lidar for CO₂ Column Measurement from Airborne Platform

PI: Upendra N. Singh, NASA LaRC

<u>Objective</u>

- Develop, integrate and demonstrate a 2-micron pulsed Integrated Path Differential Absorption Lidar (IPDA) instrument CO_2 Column Measurement from Airborne platform
- \bullet Conduct ground validation test to demonstrate $CO_{\rm 2}$ retrieval
- Conduct engineering test flights to demonstrate ${\rm CO_2}$ retrieval from UC-12 aircraft
- Conduct post flight data analysis for the purpose of evaluation of ${\cal CO}_2$ measurement capability

Mobile and Airborne $2\mu m$ IPDA LIDAR system

Approach:

- Repurpose existing hardware including previously developed transmitter, receiver and data acquisition system
- Complete fabrication of transmitter, wavelength control and receiver units assembly
- Integrate existing and to be developed subsystems into a complete breadboard lidar system
- Fabricate a mechanical structure and integrate completed subsystem

Co-Is/Partners: Jirong Yu, Mulugeta Petros, Syed Ismail, NASA LaRC

Key Milestones

Design of laser transmitter assembly	10/12
• Design, manufacture and assembly of receiver	04/13
• Integrate subsystems into breadboard lidar system	06/13
• Conduct ground test of the integrated lidar assembl	y 07/13
Integrate lidar system on UC-12 aircraft	11/13
Conduct post flight data analysis	09/14

• IPDA lidar relies on the Hard Target Lidar Equation

$$E_T = \eta_r \cdot \varphi_r \cdot \frac{A_t}{\Delta R^2} \cdot E_M \cdot \frac{\rho}{\pi} \cdot exp[-OD(\lambda, R_G)]$$

• Double-pulse tuning defines CO₂ differential optical depth, the main IPDA product

$$dOD_{cd} = \int_{0}^{R} 2 \cdot \Delta\sigma_{cd} \cdot N_{cd} \cdot dr \approx ln \left(\frac{E_{T,off} \cdot E_{M,on}}{E_{M,off} \cdot E_{T,on}} \right)$$

Other IPDA products include ranging and surface reflectivity

Spectroscopy

- Standard models are used for estimating optical depth, return pulse strength, SNR and errors for any operating condition.
- Modeling and meteoro-• logical data are used for XCO2 derivation.

0.61145

2

0.94553

0.9

0.8

0.7

0.6 Optical Depth 0.5 0.4

0.3

0.2

0.1

0

Double-Path Differential Optical Depth

0.37403 3

3

0.23527

4

On-Line Shift [GHz]

O. 0.15508

6

Instrument and Integration

A SA

IPDA Ground Testing

Date	Purpose	Duration	Location
March 20	Instrument Check Flight	2.1 hr	VA
March 21	Engineering	2.7 hr	VA
March 24	Engineering	3.0 hr	VA
March 27	Early morning	3.0 hr	VA
March 27	Mid-afternoon	2.5 hr	VA
March 31	Inland-Sea	2.5 hr	VA, NC
April 02	Power Station	2.4 hr	NC
April 05	With NOAA	3.7 hr	NJ
April 06	Power Station	3.0 hr	NC
April 10	Late afternoon	2.3 hr	VA

- Aircraft had temperature, pressure, humidity sensors, LiCor and GPS
- Some of the flights were supported by balloon launches

CO₂ Plume Detection

- Aerial picture of Roxboro steam plant, Semora, North Carolina
- 2 GW capacity (one of the largest power plants in the USA)
- Plant rely on coal-firing resulting in significant CO₂ plumes
- CO_2 optical depth measurement from the 2-µm double-pulse IPDA lidar
- Instrument flying, against wind, above plant incinerator
- Ninth flight; 1 km altitude and 4 GHz on-line operation

- Model derived from onboard LiCor in-situ sensor
- Data collected at different altitudes
- Tenth flight; IPDA operating at 3 GHz on-line offset

- NOAA air sampling and IPDA lidar optical depth comparison
- Return signal samples from different altitudes up to 6km
- IPDA range measurements compared to on-board GPS
- Eighth flight; IPDA operating at 3 and 4 GHz on-line offsets

Comparison of the airborne air-sampling measurements, x_{cd} , and weighted average column dry-air volume-mixing ratio of CO₂, X_{cd} , for 4 GHz on-line wavelength setting at different altitude. X_{cd} are obtained from modeling through NOAA data, $X_{cd,c}$, and the IPDA lidar differential optical depth measurements, $X_{cd,m}$. IPDA X_{cd} measurement standard deviation, $\delta X_{cd,m}$, offset, ΔX_{cd} ($\Delta X_{cd} = X_{cd,m} - X_{cd,c}$), and measurement error, $\varepsilon_{cd,m}$ ($\varepsilon_{cd,m} = \delta X_{cd,m}/X_{cd,m}$), are also listed. As well as the measurement bias ($\beta_{cd,m} = \Delta X_{cd}/X_{cd,m}$)

Cloud Slicing

- Schematic of cloud slicing concept for CO₂ measurement within the atmospheric boundary layer.
- Difference in CO₂ measured differential optical depth from clear and thick cumulus clouds conditions, representing total column range and free troposphere, respectively, estimates the boundary layer CO₂ content.
- IPDA ranging capability aids in distinguishing and selecting the data for clear and thick cloud conditions.

Specifications

Triple-Pulse

NASA

	Current	Projected	Current Space
	Technology	Technology	Requirement ^a
Transmitter	Single-Laser	Single-Laser	Two Lasers
Technique	Double-Pulse	Triple-Pulse	Single-Pulse
Cooling	Liquid	Conductive	
Wavelength (µm)	2.051	2.051	2.051
Pulse Energy (mJ)	100 / 50	50 / 15 / 5	40 & 5
Repetition Rate (Hz)	10	50	50
Power (W)	1.3	3.5	2.25
Pulse Width (ns)	200/350	30/100/150	50
Optical-Optical Efficiency (%)	4.0	5.0	5.0
Wall-Plug Efficiency (%)	1.4	2.1	> 2.0
Multi-Pulse Delay (µs)	200	200	250 ± 25
Transverse Mode	TEM ₀₀	TEM ₀₀	TEM ₀₀
Longitudinal Modes	Single Mode	Single Mode	Single Mode
Pulse Spectral Width (MHz)	2.2	4-14	> 60
Beam Quality (M ²)	2	2	< 2
Freq. Control Accuracy (MHz)	0.3	0.3	0.2
Seeding Success Rate	99	99	99
Spectral Purity (%)	99.9	99.9	99.9

^aESA Report of Assessment, SP-1313/1 (2008).

Future Work

Path To Space

Comparing 2-µm Double-Pulse IPDA and Triple-Pulse IPDA to ESA Requirements for CO₂ Space Mission

- $CO_2 2-\mu m$ double-pulse IPDA lidar development and validation at NASA LaRC
- Double-pulse IPDA ground testing demonstrated successful CO₂ measurement as compared to in-situ sensors
- Double-pulse IPDA CO₂ airborne measurements agrees with different validation models through different sources;

 CO_2 plume detection Onboard CO_2 sensor NOAA air sampling

- Cloud slicing technique separates boundary layer and free troposphere CO₂ measurements, for better source and sink and transport studies.
- IPDA lidar extended capabilities through triple-pulse operation, for simultaneous and independent CO₂ and H₂O measurement.
- 2-μm IPDA lidar meets or exceeds current space requirement set by ESA, projected in A-SCOPE

Questions?

