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Double, Rydberg and charge transfer (CT) excitations have been great challenges

for time-dependent density functional theory (TDDFT). Starting from an (N ± 2)-

electron single-determinant reference, we investigate excitations for the N -electron

system through the pairing matrix fluctuation, which contains information on two-

electron addition/removal processes. We adopt the particle-particle random phase

approximation (pp-RPA) and the particle-particle Tamm-Dancoff approximation (pp-

TDA) to approximate the pairing matrix fluctuation and then determine excitation

energies by the differences of two-electron addition/removal energies. This approach

captures all types of interesting excitations: single and double excitations are de-

scribed accurately, Rydberg excitations are in good agreement with experimental

data and CT excitations display correct 1/R dependence. Furthermore, the pp-RPA

and the pp-TDA have a computational cost similar to TDDFT and consequently are

promising for practical calculations.

a)Electronic mail: weitao.yang@duke.edu
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I. INTRODUCTION

The accurate description of excited states is an important and challenging topic. In-

formation on excitation energies and oscillator strengths is necessary for explaining and

predicting excitation spectra. Theoretical studies are also particularly helpful in deter-

mining the dynamics of electronically excited states. Many theoretical approaches have

been developed for studying excited states. Full and multi-reference configuration interac-

tion, methods with perturbative corrections to configuration interactions singles (including

CIS-MP21 and CIS(D)2), complete active space (CAS) methods3, equation-of-motion and

linear-response coupled cluster theories (EOM-CC and LR-CC)4,5 are generally accurate

but computationally expensive. For large molecules, only a few single-determinant reference

approaches are more applicable. These approaches include configuration interaction sin-

gles (CIS)6, time-dependent Hartree-Fock (TDHF)7 and time-dependent density functional

theory (TDDFT)8–11. CIS and TDHF are also known as the Tamm-Dancoff approxima-

tion (TDA) and the random phase approximation (RPA), respectively. They have the same

single-determinant reference — the Hartree-Fock ground state, which is a poor first-order ap-

proximation with no correlation and overestimated HOMO-LUMO gaps. At the same time,

excitation operators of these two methods are limited to particle-hole excitations. Therefore,

CIS and TDHF tend to overestimate excitation energies and are only capable of capturing

single excitations. Furthermore, TDHF often suffers from instabilities for triplet states12,13,

which makes it much less used. TDDFT is based on Kohn-Sham reference states and is

more accurate in predicting excitation energies than CIS and TDHF. However, within the

adiabatic approximation, in which the exchange-correlation kernel is frequency-independent,

TDDFT also can only capture single excitations14,15. Because of their incorrect long-range

behavior12, approximate exchange-correlation kernels also have difficulties describing Ryd-

berg excitations. Moreover, because of their delocalization/self-interaction error, TDDFT

greatly underestimates charge transfer (CT) excitations and has no 1/R Coulomb interaction

character, with R the separation distance11,12,16,17. Therefore, an efficient method that can

accurately deal with single, double, Rydberg and CT excitations all together is particularly

valuable and highly desirable.

Besides above traditional methods that use N -electron ground states as starting points,

many non-N -electron-ground-state reference methods have also been developed to inves-
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tigate excitation problems. These methods are mostly in the framework of EOM-CC18.

For example, the spin-flip (SF-) EOM-CC19,20 method uses an N -electron high-spin triplet

reference, the ionization-potential/electron-attachment (IP/EA-) EOM-CC21,22 use (N±1)-

electron ground states, the double ionization-potential/electron-attachment (DIP/DEA-)

EOM-CC23,24 use (N±2)-electron ground states and the triple ionization-potential/electron-

attachment (TIP/TEA-) EOM-CC25 can use (N ± 3)-electron ground states. Such EOM-

CC methods involving electron number changes have roots in Fock-Space coupled cluster

(FSCC) theory26–33 and similarity transformed EOM-CC34,35. A similarity among these

non-N -electron-ground-state reference methods is that the N -electron ground state and ex-

cited states are constructed with the same procedure, therefore, these methods are believed

have balanced treatment between the ground state and excited states. Furthermore, the

change of references provides much more choices in solving excitation problems. However,

these well-developed variants EOM-CC are also computationally expensive. Fortunately,

SF-TDDFT36, which only uses a single-determinant high-spin triplet reference provides a

computationally more efficient alternative to SF-EOM-CC and has found its practical use in

the prediction of double excitations37. However, there are currently no single-determinant

alternatives to EOM-CC methods based on ground states with different electron number.

In this paper, we present such a single-determinant alternative to (DIP/DEA-) EOM-CC.

This approach we propose in this paper adopts (N ± 2)-electron single-determinant ref-

erences to investigate excitation problems. This approach is based on the pairing matrix

fluctuation, which contains information on two-electron addition and removal processes as

well as the ground state correlation energy38,39. The pairing matrix fluctuation has been

applied to the investigation of Auger Spectroscopy40,41. However, it has never been used to

investigate neutral excitations. We start from single-determinant (N±2)-electron references

and from the pairing matrix fluctuation for these references, we obtain information on transi-

tions both to the ground state and to the excited states of the N -electron system. With this

information excitation energies and oscillator strengths can be determined. Although the ex-

act pairing matrix fluctuation, which should give exact excitation energies, is unknown, the

particle-particle random phase approximation (pp-RPA) and the particle-particle Tamm-

Dancoff approximation (pp-TDA) provide useful first-order approximations. Unlike CIS,

TDHF and TDDFT approaches, which essentially adopt the particle-hole channel of inter-

actions to solve excitation problems, this new approach adopts the particle-particle channel.
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In the following sections, we will show its good performance in describing double, Rydberg,

CT and single excitations.

II. THEORY

The pairing matrix is defined as κij(t) = 〈ΨN
0 |aHi

(t)aHj
(t)|ΨN

0 〉
42, in which ΨN

0 is the

N -electron ground state and aHj
(t) is the annihilation operator in Heisenberg picture on

orbital i at time t. In the absence of any pairing field, normal atomic and molecular systems

stay in eigenstates of the particle number operator and the pairing matrix is always zero.

However, when a perturbing pairing field F̂ (t′) =
∑

kl fkl(t
′)a†Hl

(t′)a†Hk
(t′)θ(t′) is tuned on

after time 0, the pairing matrix will respond to this field and give non-zero results. K̄(t− t′)

describes this kind of response, and it is also equal to the pairing matrix fluctuation.38 The

matrix elements of K̄(t− t′) are

K̄ijkl(t− t′) = −
i

~
θ(t− t′)〈ΨN

0 |[aHi
(t)aHj

(t), a†Hl
(t′)a†Hk

(t′)]|ΨN
0 〉 (1)

We can Fourier transform K̄(t − t′) to the energy domain and the elements of the corre-

sponding K̄(E) takes the following form.

K̄(E)ijkl =
∑

n

〈ΨN
0 |aiaj|Ψ

N+2
n 〉〈ΨN+2

n |a+l a
+
k |Ψ

N
0 〉

E − ωN+2
n + iη

−
∑

n

〈ΨN
0 |a

+
l a

+
k |Ψ

N−2
n 〉〈ΨN−2

n |aiaj|Ψ
N
0 〉

E − ωN−2
n + iη

(2)

K̄(E)ijkl has poles at the two-electron addition and removal energies ωN+2
n and ωN−2

n . If we

compute for an (N − 2)-electron system instead of an N -electron system, the two-electron

addition energies ωN
n describe the transitions from the (N −2)-electron ground state |ΨN−2

0 〉

to the N -electron states |ΨN
n 〉. The differences between the transition energies that involve

the ground and the n-th excited N -electron state can then be characterized as N -electron

excitation energies:

EN
n − EN

0 = (EN
n − EN−2

0 ) − (EN
0 − EN−2

0 ) = ωN
n − ωN

0 . (3)

Therefore, exact N -electron excitation energies can be obtained from the exact pairing

matrix fluctuation K̄(E) of the (N − 2)-electron system.
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Although the exact pairing matrix fluctuation in general is difficult to compute, the

pp-RPA38,42 provides a way of approximating this fluctuation

K̄ = K̄0 + K̄0VK̄, (4)

where K̄0 is the pairing matrix fluctuation for a non-interacting reference and V is the

Coulomb interaction. This approximation can be applied to both HF references and DFT

references and can be further formulated into an eigenvalue problem38





A B

B† C









Xn

Yn



 = ωn





I 0

0 −I









Xn

Yn



 (5)

with

Aab,cd =δacδbd(ǫa + ǫb) + 〈ab||cd〉

Bab,kl =〈ab||kl〉

Cij,kl = − δikδjl(ǫi + ǫj) + 〈ij||kl〉

(6)

where a, b, c, d are particle indices and i, j, k, l are hole indices with restrictions that a >

b, c > d, i > j and k > l. Eigenvectors dominated by X components describe the

transition amplitudes of two-electron addition processes with Xn
ab = 〈ΨN

0 |aaab|Ψ
N+2
n 〉 and

Y n
ij = 〈ΨN

0 |aiaj|Ψ
N+2
n 〉. Eigenvalues for these eigenvectors are two-electron addition ener-

gies ωN+2
n = EN+2

n − EN
0 . Similarly, eigenvectors dominated by Y components describe the

transition amplitudes of two-electron removal processes with Xn
ab = 〈ΨN

0 |a
+
b a

+
a |Ψ

N−2
n 〉 and

Y n
ij = 〈ΨN

0 |a
+
j a

+
i |Ψ

N−2
n 〉. The corresponding eigenvalues are two-electron removal energies

ωN−2
n = EN

0 − EN−2
n .

A Tamm-Dancoff approximation can be applied to the pp-RPA. Setting B to be 0, the

eigenvalue problem breaks into two separate blocks. The pp-TDA part

AXn =ωnX
n (7)

has only X components and describes the two-electron addition process, while the hh-TDA

part

CYn = − ωnY
n (8)

has only Y components and describes the two-electron removal process.

The pp-RPA, pp-TDA and hh-TDA can also be derived from the equation of motion

(EOM)43,44. In general, given an N -electron ground state |ΨN
0 〉, all other M -electron states
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|ΨM
n 〉 can be regarded as excited states. The exact excitation operators can be expressed as

O† = |ΨM
n 〉〈ΨN

0 |. (9)

The equation of motion is

[Ĥ, O†] = (EM
n − EN

0 )O†, (10)

and applying a probing de-excitation δO gives

[δO, [Ĥ, O†]] = (EM
n − EN

0 )[δO,O†]. (11)

Note that here we derived the key equation (Eq.11) as an exact operator equation without

dependence on references. However, we still need to project the operator equation on a

reference to carry out matrix element evaluations. In practice, the projection is often onto

a HF reference, which is an approximation to the exact ground state |ΨN
0 〉. We also need

to expand and then truncate the excitation operator. The expansion space usually can

be spanned by all the possible combinations of creation and annihilation operators defined

with the HF reference orbitals. If we simply restrict O† to 2p-addition excitations and δO

to 2p-removal de-excitations, the EOM will give the pp-TDA equation. Similarly, if O† only

includes 2h-removal excitations and δO only includes 2h-addition de-excitations, the EOM

will recover the hh-TDA equation. The pp-RPA can also be recovered by allowing O† to

include both 2p-addition and 2h-addition excitations and δO to include both 2p-removal

and 2h-removal de-excitations.

However, as an approximated ground state, the references need not be restricted to an

(N − 2)-electron HF determinant. DFT references, multi-determinant references, or even

non-optimized artificial references can be adopted. In this work, in addition to optimized

single-determinant (N − 2)-electron references, we consider an N -electron system in which

the two highest occupied orbitals are treated as virtual orbitals, denoted as the HF* reference

(Detailed equations for HF* can be found in Section IB of Ref.45). Essentially, this HF*

reference is a non-optimized single-determinant (N − 2)-electron reference and it is similar

in spirit to spin-flip methods, which use high-spin triplet N -electron references. As to DFT

references, if we argue in the framework of EOM, we should use HF-like orbital energies

based on DFT orbitals. However, in the rest of the paper, when we use DFT references,

we simply use the (generalized) Kohn-Sham orbitals and eigenvalues in Eq.6, and we will

justify this approximation in a future paper.
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III. COMPUTATIONAL DETAILS

Our implementations and calculations were all based on the QM4D package46. For BH

and CH+, geometries were taken from Ref.47. The remaining geometries were taken from

the G2/97 set, which were optimized using MP2(full)/6-31G*48. Rydberg excitations were

investigated with atomic species as well as the N2 and CO molecule. Calculations on atoms

used extensive even-tempered basis sets49,50, with exponents satisfying αi = α1β
i−1. Each

basis contains 20s, 17p and 15d functions, with the smallest exponent α1 = 0.00097656 and

the rest growing by a factor of β = 2. Calculations on N2 and CO used a triply augmented

cc-pVTZ51. CT excitations were investigated with He2 and C2H4 · C2F4 model systems.

Since only the qualitative 1/R behavior was of present interest, we used the simple cc-pVDZ

and 6-31G*, respectively. For He2, a point charge was positioned far from the molecule to

break the symmetry. For BH and CH+, cc-pVQZ basis sets were used. For polyenes, we

used an augmented cc-pVDZ basis for C and a cc-pVDZ basis for H.

IV. RESULTS

A. Double excitations

The main strength of the pp-RPA is that it captures double excitations accurately (Table

I). For Beryllium, with HF and HF* references, the errors for double excitations are within

0.1 eV. With the B3LYP reference, the errors are slightly larger, but also within 1 eV. In

this few-electron atomic system, the pp-RPA and the pp-TDA hardly show any differences

(<0.01 eV). For BH, the pp-RPA also captures double excitations. Compared to EOM-

CCSD(T) results, HF and HF* references show errors of about 0.2 eV and B3LYP references

show errors of about 0.1 eV. The excitations with double excitation character in all-trans-

1,3-butadiene and 1,3,5-hexatriene are also captured. Compared to experimental data or

accurate ab initio methods, HF and B3LYP references give relatively accurate results, while

the HF* reference overestimates the excitation energies by about 1.5-2 eV. The pp-RPA and

the pp-TDA show some differences (≈0.1 eV) in these larger systems, but the differences

are still too small to conclude which approximation is better.
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TABLE I. Lowest double excitations or excitations with double excitation character (in eV)

Term Standard RPA-HF TDA-HF RPA-B3LYP RPA-HF*

Be

1D 7.05 7.06 7.06 7.97 7.06

3P 7.40 7.45 7.45 7.84 7.45

BH

3Σ 5.04 5.51 5.48 5.12 5.53

1∆ 6.06 6.15 6.12 5.98 6.18

1Σ 7.20 7.10 7.11 7.05 7.22

butadiene

1Ag 6.55 5.93 5.83 6.47 7.93

hexatriene

1Ag 5.21 5.43 5.34 5.01 7.46

a In all the tables, RPA is short for pp-RPA and TDA is short for pp-TDA. Standard values are

experimental data for Be52 and hexatriene53, EOM-CCSD(T)/cc-pVQZ results for BH47, MR-CISD(Q)

results for butadiene54.

B. Rydberg excitations

The pp-RPA describes Rydberg excitations well (Table II). With HF or HF* references,

the pp-RPA describes Rydberg excitation energies within 0.03 eV for Beryllium. For open-

shell Lithium, in spite of some spin contamination, results are also in good agreement with

experimental data, with errors smaller than 0.1 eV. For molecules such as N2, errors are

about 1.2 eV, which is better than TDLDA results (≈ 2 eV)50. Calculations with the

B3LYP reference overestimate Rydberg excitations and do not perform as well as with the

HF reference (Table II, IV, V, VIII and IX in Ref.45).

C. CT excitations

The pp-RPA is capable of describing CT excitations (Figure 1 for C2H4 ·C2F4 and Figure

2 for He2). The computed CT excitations show exact 1/R dependence, with R the separation

8



TABLE II. Rydberg excitations (in eV)

Transition Term Standard RPA-HF TDA-HF RPA-HF*

Be

2 s → 6 s 3S 8.82 8.79 8.79 8.79

2 s → 6 s 1S 8.84 8.81 8.81 8.81

2 s → 6 p 3P 8.89 8.87 8.87 8.87

2 s → 6 p 1P 8.90 8.87 8.87 8.87

2 s → 6 d 3D 8.93 8.91 8.91 8.91

2 s → 6 d 1D 8.96 8.95 8.95 8.95

Li

2 s → 6 s 2S 4.96 4.97 4.97 -

2 s → 6 p 2P 5.01 5.05 5.05 -

2 s → 6 d 2D 5.01 5.03 5.03 -

N2

σg → 3 sσg
3Σ+

g 12.0 10.97 10.39 -

σg → 3 sσg
1Σ+

g 12.2 11.07 10.69 -

σg → 3 pπu
1Πu 12.90 11.62 11.26 -

σg → 3 pσu
1Σ+

u 12.98 11.63 11.29 -

a Standard values are all experimental data52,55. Li has no hole-hole pairs and consequently RPA and

TDA calculations are the same. Since our current implementation on the pp-RPA-HF* is only for

closed-shell systems with non-degenerate HOMO orbitals, so no data are available for Li nor for N2

because its HF HOMO orbitals are degenerate π, which is incorrect.

distance. Other non-CT excitations remain constant with respect to R. In these two systems,

because HF and DFT calculations on the (N − 2)-electron references give nearly degenerate

and delocalized HOMO and LUMO orbitals and are hard to converge, we cannot perform

further pp-RPA calculations. Fortunately, with the HF* reference, the HOMO orbital for

the N-electron system is non-degenerate and localized and can be treated as unoccupied.

Through pairing matrix fluctuation, two electrons can be added either both to the same

molecule, thus describing non-CT excitations, or to a different molecule each, thus describing
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FIG. 1. CT and non-CT excitations calculated with pp-RPA-HF* for C2H4 · C2F4 (The lowest

non-CT excitation is not shown). Non-CT excitations are denoted with black solid lines and they

show a constant behavior. CT excitations are denoted with red dashed lines and they increase

when distance increases. This increasing behavior is “parallel” to the dotted blue line, which is a

shifted 1/R reference.
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FIG. 2. CT excitations calculated with pp-RPA-HF* for He2. Excitation energies for the three CT

states at 9 Åare all set to zero. The 1/R reference is also shifted to zero at 9 Å. All these three

CT excitations show an exact 1/R behavior.

CT excitations.

D. Single excitations

The pp-RPA describes single excitations well. A small selection of single excitations is

shown in Table III. For the two-electron system He, the pp-RPA reduces to the pp-TDA

and they have a complete expansion of excitation operators. Consequently, they are exact

for two-electron systems. For other cases, such as C, N2 and CO (Table IV, VIII and IX in
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TABLE III. Single excitations (in eV)

Term Standard RPA-HF RPA-B3LYP RPA-HF* TDDFT

Mg

3P 2.71 2.57 3.43 2.58 2.61

1P 4.53 4.27 5.68 4.28 4.25

3S 5.11 4.99 6.96 5.00 5.06

1S 5.39 5.27 7.21 5.28 5.45

CH+

3Π 1.15 1.72 1.16 1.31 -1.24

1Π 3.07 3.60 3.18 3.50 2.83

CO

3Π 6.32 5.59 5.84 6.44 5.96

1Π 8.51 7.77 7.99 9.32 8.42

a Standard values are experimental data for Be52 and CO55, EOM-CCSD(T)/cc-pVQZ results for CH+47.

TDDFT results come from TD-B3LYP calculations for Mg and CH+47 and TD-LDA calculations for

CO50

Ref.45), we notice some missing excitations from orbitals below HOMO and these missing

excitations will be discussed in section IV E. For all other single excitations that we captured,

the pp-RPA and the pp-TDA give good results comparable with TDDFT (with B3LYP or

LDA).

The good quality of pp-RPA and pp-TDA excitation energies benefits from the same level

of correlated descriptions for both the ground and the excited states, based on a common

(N − 2)-electron reference. This is an advantage of all the non-ground-state-reference ap-

proaches. Therefore, not only the pp-RPA can capture some excitations that are missing

or particularly challenging for TDDFT, but also it describes single excitations as well as

TDDFT.
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TABLE IV. Oscillator strengths (in A.U.) for H2 calculated with the pp-TDA-HF* and TDHF

Transition pp-TDA-HF* TDHF

HOMO→ HOMO+1 0.28 0.29

HOMO→ HOMO+2 0 0

HOMO→ HOMO+3 0.35 0.35

HOMO→ HOMO+4 0 0

HOMO→ HOMO+5 0.03 0.04

HOMO→ HOMO+6 0.82 0.83

HOMO→ HOMO+7 0.83 0.83

HOMO→ HOMO+8 0 0

a Both calculations are performed using the 6-31++G** basis set. The pp-TDA shows good agreement

with TDHF.

E. Missing excitations

Some excitations from orbitals below HOMO (Table IV, VIII and IX in Ref.45) are miss-

ing. This is a limitation of our current implementation, in which the orbitals below the

HOMO are all occupied in all the references. Therefore only excitations from the HOMO

orbital are present in the excitation spectrum. However, because of the flexibility of choos-

ing reference configurations, a HF* reference with lower-energy orbitals unoccupied or a

spin-flip (N − 2)-electron reference or a multi-determinant reference should retrieve these

excitations.

F. Oscillator strengths

Oscillator strengths can be calculated with the pp-TDA. As the eigenvectors X describe

transition amplitudes between the (N − 2)-electron ground state and all the N -electron

states, we can calculate all the N -electron wavefunctions and transition dipoles between any

two N -electron states (Detailed derivation can be found in Sec. ID in Ref.45). A test on H2

agrees well with TDHF results (Table IV).
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TABLE V. Excitations for S atom (in eV)

Configuration Term Expt RPA-HF TDA-HF RPA-B3LYP TDA-B3LYP

S

3s23p4 1D 1.15 1.07 1.13 1.04 1.11

3s23p4 1S 2.75 1.93 2.26 1.71 2.08

3s3p5 3P° 8.93 13.15 13.08 10.17 10.08

O

2s22p4 1D 1.97 1.49 1.59 1.43 1.56

2s22p4 1S 4.19 2.70 3.11 2.39 2.83

2s2p5 3P° 15.66 19.28 19.16 14.87 14.71

a Experimental values are from Ref.52. All calculations start with (N + 2)-electron references and use the

cc-pVQZ basis set.

G. Excitations from (N + 2)-electron reference systems

We also performed preliminary tests on the two electron-removal part with (N + 2)-

electron references (Tabel V). On the whole, the results has relatively large errors. However,

from these two limited cases, it seems that the HF reference is better for HOMO excitations,

while the B3LYP reference is better for lower-orbital excitations.

H. Cost evaluation

Our current implementation is based on direct matrix diagonalization on Eq.5, which gives

all the eigenvalues and eigenvectors. The cost of computing all O(N2) eigenvalues is roughly

O(N6). However, this is not the most efficient way, since only a small fraction of excitation

spectrum is usually of interest, the states of interest can be computed with the Davidson

algorithm56 in the pp-TDA to achieve the O(N4) scaling. A similar implementation should

also be possible for the pp-RPA. Therefore, these approaches should have a computational

cost similar to TDDFT. They are probably the first known approaches that describe single,

double, Rydberg and CT excitations well with only O(N4) cost, and may have a promising

future in practical calculations.
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V. CONCLUSIONS

In this paper, we proposed an approach that uses pairing matrix fluctuations to solve exci-

tation problems. It can be viewed as a single-reference counterpart of the DIP/DEA-EOM-

CC method which uses coupled-cluster references. It is also the particle-particle channel

counterpart of CIS, TDHF and TDDFT, which essentially adopt the particle-hole channel.

Furthermore, it also has similar philosophy to SF-TDDFT, which is a non-ground-state

single-determinant starting point. The pp-RPA, pp-TDA and hh-TDA provide reason-

able approximations to the pairing matrix fluctuation and give rise to good descriptions

of double, Rydberg, CT and single excitations. Although the current implementation has

restrictions only to the HOMO excitations, the problem can be tackled by adopting more

flexible references. These methods should have computational cost similar to TDDFT after

implementation of Davidson algorithm and thus may be promising for practical calculations.

ACKNOWLEDGMENTS

Support from FWO-Flanders (Scientific Research Fund Flanders) (H.v.A), the Office of

Naval Research (N00014-09- 0576) and the National Science Foundation (CHE-09-11119)

(W.Y.) is appreciated. We also greatly thank Degao Peng and Dr. Stephan N. Steinmann

for helpful discussions.

REFERENCES

1J. B. Foresman, M. Head-Gordon, J. A. Pople, and M. J. Frisch, The Journal of Physical

Chemistry 96, 135 (1992).

2M. Head-Gordon, R. J. Rico, M. Oumi, and T. J. Lee, Chemical Physics Letters 219, 21

(1994).

3B. O. Roos, The Complete Active Space Self-Consistent Field Method and its Applications

in Electronic Structure Calculations, pages 399–445, John Wiley & Sons, Inc., 2007.

4K. Emrich, Nuclear Physics A 351, 379 (1981).

5H. J. Monkhorst, International Journal of Quantum Chemistry 12, 421 (1977).

6J. E. D. Bene, R. Ditchfield, and J. A. Pople, The Journal of Chemical Physics 55, 2236

(1971).

14



7A. D. Mclachlan and M. A. Ball, Rev. Mod. Phys. 36, 844 (1964).

8E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).

9M. E. Casida, Time-dependent density functional response theory of molecular systems:

Theory, computational methods, and functionals, in Recent Developments and Applications

of Modern Density Functional Theory, edited by J. Seminario, volume 4 of Theoretical and

Computational Chemistry, pages 391 – 439, Elsevier, 1996.

10M. Petersilka, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).

11C. Ullrich, Time-Dependent Density-Functional Theory: Concepts and Applications, Ox-

ford Graduate Texts, OUP Oxford, 2012.

12A. Dreuw and M. Head-Gordon, Chemical Reviews 105, 4009 (2005).
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