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Summary. Data from Japanese local seismograph networks suggest that the 
stresses in double seismic zones are in-plate compression for the upper zone 
and in-plate tension for the lower zone; the stresses do not necessarily appear 
to be down-dip. It may therefore be possible to identify other double seismic 
zones on the basis of data which indicate that events with differing 
orientations of in-plate stresses occur in a given segment of slab. 

A global survey of published focal mechanisms for intermediate depth 
earthquakes suggests that the stress in the slab is controlled, at least in part, 
by the age of the slab and the rate of convergence. Old and slow slabs are 
under in-plate tensile stresses and the amount of in-plate compression in the 
slab increases with increasing convergence rate or decreasing slab age. Young 
and fast slabs are an exception to this trend; all such slabs are down-dip 
tensile. Since these slabs all subduct under continents, they may be bent by 
continental loading. Double seismic zones are not a feature common to all 
subduction zones and are only observed in slabs which are not dominated by 
tensile or compressive stresses. 

Unbending of the lithosphere 2nd upper mantle phase changes are unlikely 
to be the causes of the major features of double zones, although they may 
contribute to producing some of their characteristics. Sagging or thermal 
effects, possibly aided by asthenospheric relative motion, may produce the 
local deviatoric stresses that cause double zones. 

'Introduction 

The zone of seismic activity dipping under a convergent plate margin, commonly referred 
to as the Benioff zone, is believed to be located within the subducting oceanic plate and to 
be representative of the gross structure of the slab. The thickness of these seismic zones, for 
those convergent margins where good hypocentral determination is possible, ranges between 
10 and 30 km (Isacks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Barazangi 1977; Engdahl 1977) and, until recently, the hypocentres 
were thought to form a single zone in the coldest part of the slab (e.g. Sleep 1973). 

Present address: Department of Geology, Michigan State University, East Lansing, Michigan 48824, 
USA. 
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This view has been challenged in the last few years with the discovery of the two-layered 
seismic zone at intermediate depths in the Japanese arc (Tsumura 1973; Umino zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hasegawa 
1975) of which the upper layer appears to coincide with the conversion plane for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAScSp 

(Okada 1977; Hasegawa, Umino & Takagi 1978b), i.e. the upper boundary of the slab. 
Examination of teleseismically determined earthquake hypocentres in the Kurile Islands 
also suggests the presence of a two-layered seismic zone (Sykes 1966; Veith 1974, 1977) 
and had led to speculation that the double zones are a general feature of Benioff zones 
worldwide. However, in the Aleutians, where a local seismograph network (hereafter, local 
network) is in operation, and in the New Hebrides, where teleseismic and local network 
studies have been conducted, no clear evidence for a true double zone has been found 
(Topper 1978; Pascal et al. 1978). Thus, double seismic zones appear to be restricted only 
to certain convergent margins and are not a global phenomenon. 

The origin of the double zone has been discussed by many authors who have suggested 
such causes as unbending of the subducted lithosphere (Isacks & Barazangi 1977; Engdahl & 
Scholz 1977; Yoshii 1977, 1979), sagging of the slab in a less viscous asthenosphere (Yoshii 
1977, 1979; Sleep 1979), upper mantle phase changes (Veith 1974, 1977), and thermally 
induced stresses (Yang, Toksoz & Smith 1977; Hamaguchi, Goto & Wada 1977). 

The distribution of double zones should provide some insights and possible constraints 
on the causes of their development. The purpose of this paper, therefore, is to discuss the 
characteristics of double zones, provide a survey of intermediate depth earthquake 
mechanisms from arc-trench regions, relate the distribution of double zones to parameters 
of convergent plate margins, and discuss possible causes for the formation of double zones. 
In the next two sections, we outline the characteristics of the best studied double seismic 
zones. First we consider the characteristics of their seismicity followed by their earthquake 
mechanisms. 

K. Fujita and H. Kanamori 

Distribution and seismicity characteristics of double zones 

The two most prominent characteristics of double zones are the depth range at which they 
are observed and the separation between the two seismic layers. On the basis of these 
criteria, we consider as reliable identifications those double zones observed in Tohoku, 
Japan (Umino & Hasegawa 1975; Yoshii 1979), Kanto, Japan (Tsumura 1973), and the 
southern Kuriles (Sykes 1966; Veith 1974, 1977). The double planed structure has been 
observed in these arcs through the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuse of local networks, whose location capability is to 
within 10 km both in epicentre and focal depth (Fedotov et al. 1971; Tsumura 1973; 
Hasegawa, Umino & Takagi 1978a). Double zones have also been reported in central 
Hokkaido (Suzuki & Motoya 1978), the northern and central Kuriles (Veith 1974, 1977), 
and an indication of a double zone in Kamchatka can be seen in the crosssections of 
Fedotov (1968). These identifications are slightly less reliable since the location accuracy of 
the Hokkaido and Kamchatka local networks are less than that of those noted earlier, 
perhaps 10-20 km (Fedotov 1968; Suzuki & Motoya 1978), while the hypocentral distribu- 
tion in the central Kuriles is constrained only by source-region station-time corrected tele- 
seismic locations of Veith (1974). However, we consider all of these to be true double 
seismic zones (Table 1). 

Topper (1978) has shown that the double zone postulated for the central Aleutians 
(Engdahl & Scholz 1977) is probably an artifact of the projection used. He concludes that 
there is a tear and bend in the subducting slab which offsets one segment’s earthquakes with 
respect to the other when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa vertical cross-section is produced. For reasons discussed further 
below, this zone is termed a ‘stress-segmented seismic zone’. 
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Double seismic zones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA133 

In all the zones that we consider true double zones, the two-layered structure of the 
seismic zone is observed between about 65 and 185 km in depth and the two layers are 
separated by 30-40 km (Table 1); this separation is two to three times the location 
accuracy of the local networks. 

The local network studies in the Tohoku district have been supplemented by examining 
large earthquakes. Workers at Tohoku University relocated events of magnitude greater than 
3, which had been detected by the network of the Japan Meteorological Agency (JMA), using 
the same travel time tables as had been used for local network determinations and observed 
a clear two-layered structure between 75 and 100 km depth (Umino zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hasegawa 1975). 
Yoshii (1977, 1979) independently used pP-P times reported by the International 
Seismological Centre (ISC), considered the phases identified as pP to be the water reflection, 
pwP, and noted that a separation into two layers existed between 80 and 120 km. Examina- 
tion of JMA located hypocentres in the period 1947-56 by Hasegawa & Iizuka (1969) 
also suggests, although with less confidence, the possible existence of a double zone in the 
Kanto district. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Table 1. Characteristics of double seismic zones. 

Depth 
range (km) 

Double seismic zones 

Tohoku, Japan 64-181 
75-100 
77-120 

Kanto. Japan 85-155 

K u r i l e s  (E toro fu)  110-170 
60-169 

K u r i l e s  ( e n t i r e )  73-186 

Kamchatka 88-180 
98-154 

Hokka ido  66-160 

Stress-segmented seismic zones 

A l e u t i a n s  (Adak) 110-190 

Separat ion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A L  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

25-30 
30 
35 

30 

40 
40 

26-32 

40 
29 

30 

25 

Mechanism 
s o l u t i o n s  Locat ion  method zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAReference 

Composite 
Composite 
I n d i v i d u a l  

None 

None 
None 

I n d i v i d u a l  

None 
I n d i v i d u a l  

None 

Tohoku microearthquake 
JMA r e l o c a t e d  
pwP cons t ra ined ISC 

E R I  microearthquake 

Teleseismic WWSSN 
South K u r i l e  network 

SRST cor rec ted  WWSSN 

Kamchatka network 
SRST cor rec ted  WWSSN 

Hokkaido microearthquake 

Umino .5 Hasegawa, 1975 
Umino B Hasegawa, 1975 
Yosh i i .  I979 

Tsumura, 1973 

Sykes. 1966 
Fedotov e t  a l . .  1971 

Ve i th ,  1974, 1977 

Fedotov, 1968 
Ve i th ,  1974, 1977 

Suzuki .5 Motoya, 1978 

Composite Adak microearthquake Engdahl B Scholz 

Although we have listed the double seismic zone noted by Susuki & Motoya (1978) 
under the Hidaka Mountains of central Hokkaido as being a double zone, the scatter in their 
data is particularly large. In addition, Moriya (1978), who studied the seismicity slightly 
further east, observes no double zone. Since Hokkaido is located near the junction of the 
Kurile and Honshu arcs, the possibility of a contorted or segmented slab exists. Therefore, 
although there are data to support the existence of a double zone, considerable ambiguity 
remains. 

In the observed double zones, the level of seismic activity in the two layers varies greatly. 
In the Tohoku district, the lower zone is considerably less active (E. R. Engdahl 1980, 
private communication) and has fewer teleseismically detected events (Umino & Hasegawa 
1975; Yoshii 1979). On the other hand, the data of Veith (1974) suggests that although 
the upper zone of the Kuriles has more events, the lower zone events are, on the average, 
about 1/2 magnitude greater in size. The vertical section of Fedotov er al. (1971) across 
Etorofu suggests a similar magnitude distribution; however, the lower zone appears to be 
more active and have larger events at depths less than 100 km, while the upper zone 
dominates below that depth. Thus, the frequency distribution by magnitude in a given layer 
of the seismic zone varies from arc to arc. 
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Stresses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof double zone earthquakes 

Prior studies using composite focal mechanisms from P-wave first motions for all events in 
the Tohoku district had concluded that the events between 60 and 100 km depth were 
caused by down-dip tension while the events at depths greater than 110 km were caused by 
down-dip compression (Koyama, Horiuchi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hirasawa 1973). A similar study by Horiuchi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. (1975) on the Kurile-Kamchatka earthquakes concluded that the northern end of the 
arc was in down-dip compression at intermediate depths while the southern end was in 
down-dip tension. 

Umino & Hasegawa (1975) and Hasegawa et al. (1978a), however, produced composite 
mechanisms using local network first motions for each of their two seismic layers separately. 
Their results for the region where their data were most reliable, between 39" N and 40" N, 
suggested that the upper zone was in down-dip compression and the lower zone was in 
down-dip tension (Fig. 1). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn identical result was obtained from composite and individual 
mechanisms of teleseismically detected events (Umino & Hasegawa 1975; Yoshii 1979). The 
results were also consistent with that of Veith (1974) who had determined focal mechanisms 
for individual teleseismically located events in the Kuriles. It has, therefore, become 
generally accepted that the upper zone is characterized by down-dip compression and the 
lower zone by down-dip tension (e.g. Isacks & Barazangi 1977; Sleep 1979). 

Examination of the error estimates of Umino & Hasegawa (1975), however, suggest that 
the above characteristics may be inaccurate. The error estimates, defined as the range of 
alternate solutions for the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and Taxes if an additional 10 per cent of the fnst motions are 
allowed to be inconsistent, show that the variation in possible solutions can be as much as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f 50' from the down-dip direction; they are, however, constrained to within about k 20" 
of the plane of the slab (Figs 1 and 2) .  In addition, since the composite mechanisms are 
determined from local stations, there is poor control in the centre of the focal sphere. 
Mechanisms determined by Yoshii (1979) for teleseismically detected events are roughly 
down-dip, however, only about half of the other solutions determined in the area are such 
(Appendix A). 

Hasegawa & Umino (1978) divided each of the two layers into 10 km (horizontal 
distance) increments down the slab and computed composite mechanisms for each segment. 
A portion of their results are presented in Fig. 2. The numbers denote the percentage of first 
motions for a particular mechanism that are inconsistent for each depth interval. As an 

K.  Fujita and H. Kanamori zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

N N 

U P ~ E R  LOWER 

Figure 1. Composite lower hemisphere focal mechanisms from the Tohoku Microearthquake Network for 
the two planes of the double-zone. Nodal planes and P- and T-axes shown are for the solution with the 
minimal number of inconsistent stations, The solid line surrounding the P-axis and the dotted line 
surrounding the T-axis are the range of solutions possible if an additional 10 per cent of the stations are 
allowed to be inconsistent. Tne dashed curve denotes the dip of the subducting slab (after Umino & 
Hasegawa 1975). 
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Double seismic zones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA135 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I l l l l l l l l l l l l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

50 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 - 50 
DISTANCE (KM)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 2. Composite lower hemisphere focal mechanisms from the Tohoku Microearthquake Network at 
10 km intervals for the upper and lower planes of the double zone. Numbers denote the percentage of 
inconsistent first motions for the best solution. The dashed curve shows the dip of the subducting slab. 
The black areas denote the range of solutions possible for the P-axis if five more stations are allowed to be 
inconsistent; white regions represent the same for the T-axis. The zero point for the distance scale is at the 
aseismic front (after Hasegawa & Umino 1978). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
average, nearly 33 per cent of the upper layer first motions and 22 per cent of the lower 
layer first motions are inconsistent. The maximum percentage of inconsistent first motions 
for any segment is 41 per cent for the upper layer and 25 per cent for the lower layer; the 
percentage increases, for the upper layer, as one proceeds to greater depths. 

The error bounds shown in Fig. 2 are the ranges in which the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP and Taxes could vary if 
five additional first motions (1-3 per cent) are allowed to be inconsistent. The error bounds 
are also located approximately in the plane of the slab (especially for the upper layer). These 
observations lead to the conclusion that the principal axes of stress are not necessarily down- 
dip but can vary considerably within the plane of the subducting slab. Therefore, rather than 
characterizing stresses in double zones as being down-dip compression or tension, we suggest 
that, given the presently available data, it is more appropriate to refer to the upper zone as 
being in-plate compressive and the lower zone as in-plate tensile. 

Engdahl & Scholz (1977) used, as supporting evidence for a central Aleutian double zone, 
the fact that the first motions at local stations were consistent with a compressive upper 
zone and a tensile lower zone. Composite and individual event focal mechanisms of these 
events, however, showed that the mechanisms are largely strike-slip and indicate that the 
slab itself is neither strongly in tension or compression along the dip direction (Topper 
1978). Composite mechanisms from small clusters of earthquakes suggest that, contrary to 
true double zones, the presumed ‘lower zone’ of Engdahl & Scholz (1977) is characterized 
by in-plate compressive stresses and their presumed ’upper zone’ more by in-plate tensile 
stresses. Mechanisms for teleseismically located events in the Aleutians show a mixture of 
compressive and tensile events (L. House 1978, private communication; Engdahl, Sleep & 
Lin 1977); however, the hypocentres nowhere appear to form a true double zone with two 
layers of seismicity in the same segment of the arc. Since the stress orientation is different 
in two adjacent sections of the slab and forms only a single plane in each segment, we 
consider the Aleutians to be a ‘stress-segmented seismic zone’ - one in which in-plate 
compressive and tensile events are found in close proximity, but in different segments of the 
arc each with only one seismic layer. 

Mechanisms of intermediate depth earthquakes 

Standard teleseismic hypocentre determinations are too inaccurate to be used in locating 
double seismic zones through hypocentre distributions unless the data are of particularly 
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high quality (Barazangi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Isacks 1979b). Such high quality data, however, are scarce and of 
insufficient number to produce cross-sections in most cases. Poorer quality data are biased 
by the effect of the slab on P-wave travel times. These effects are not uniform to all stations; 
thus, not zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall events will be mislocated in the same manner, but rather as a function of station 
distribution and position of the event within the slab. 

Present accurate relocation procedures either require large amounts of computation time, 
e.g. seismic ray tracing (Julian & Gubbins 1977), or require the calibration of the specific 
arc being studied (Veith 1974; Fujita 1979). Joint hypocentre determination (JHD) and 
master event techniques, however, are thought to give good relative locations (Dewey 1972) 
capable of resolving a double zone. In the two arcs where JHD has been extensively used for 
intermediate depth earthquakes, Tonga and the New Hebrides, no clear evidence of a double 
zone has been observed from hypocentre distributions (Pascal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1978; Billington 1980). 

In this paper, we do not include the double seismic zones suggested by Isacks & Barazangi 
(1977) in Peru and by Samowitz & Forsyth (1979) in the Marianas. The Peruvian events are 
all located at depths of less than 70 km, which is less than the thickness of the continental 
crust. The double zone in the Marianas is defined by a localized cluster of only three events 
which are located by teleseismic data. At present it is not clear whether these ‘double zones’ 
represent a part of the continuous double zones, down to depths of 150 km, discussed in 
this paper. These events, however, have focal mechanisms similar to double zone events; we 
discuss them further in the section on the origin of double zones. 

Until such a time when local networks are established in each of the subduction zones 
around the world, or some simple way of calibrating the relocating subduction zone earth- 
quakes with certainty can be developed, the identification of double zones is dependent on 
identifying in-plate compressive and tensile events in close proximity to each other. Even 
then, we must also be able to separate true double zones from stress-segmented zones. 

It has generally been believed that intermediate depth mechanisms are tensile in most 
island arcs (Isacks & Molnar 1971) since the slab at these depths is sinking under its own 
weight (Isacks & Molnar 1969). For the purposes of this study, published focal mechanisms 
of intermediate depth earthquakes are tabulated and considered by island arc or, for arcs 
with plentiful data or complex structures, arc segment. 

The upper depth limit was chosen at 70 km to avoid inclusion of mislocated thrust zone 
events and the lower depth limit was chosen at 230 km. These limits were not definitive and 
some shallower events have been included while some within the bounds have been omitted 
depending on error bounds and whether or not depth phases were used in determining the 
focal depth. The lower limit was chosen 40 km below the deepest double zone yet identified 
since the higher velocity of the slab results in deeper focal depths; a depth error of 40 km is 
observed for thrust zone earthquakes for a 300km long slab, thus an error of the same 
magnitude is expected for earthquakes at 200 km depth for a 500 km deep slab. For older 
solutions, where depths were given as fractions of the Earth’s radius, events between zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.005R 
and 0.030R (65-223 km) were considered. The teleseismic depth determinations for inter- 
mediate depth earthquakes are probably not accurate to more than 30 km at best and 
epicentres may be in error by nearly 100 km, especially for the older events. However, 
since intermediate depth take-off angles are relatively insensitive to variations in hypocentres 
by these amounts, less than 1’ at teleseismic distances, these errors will affect mechanism 
solutions only marginally. 

Focal mechanism solutions based on data reread by various researchers from long-period 
WWSSN stations were used in as many cases as possible. These were supplemented by 
solutions determined using bulletin reported first motions. The method used for de- 
termining the mechanisms tabulated are given in the column headed QU in Appendix A. 

K.  Fujita and H. Kanamori 
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Double seismic zones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA137 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Solutions determined using computer minimum inconsistency programs, i.e. those of 
Wickens zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hodgson (1967) and Ichikawa (1971), were usually omitted since their accuracy 
has been questioned since the solutions differ greatly from visual solutions by other authors 
(Stevens & Hodgson 1968). Also generally omitted were mechanisms for Kurile events 
determined by Aver'yanova (1973) and Veith (1974) since the solutions were not published 
and the quality of the solutions were uncertain. The few events from these sources that 
were used were consistent with other sources which presented the data. In general, we 
restricted our data set to mechanisms for which the actual solution has been published. The 
solutions by Veith (1974) were also used as an independent comparison to the data 
tabulated here; we assume that the general character of the solution, whether tensional or 
compressive, is correct even though the exact trend and plunge of the axes may not be. 

Twenty pre-WWSSN focal mechanisms for which individual station data were available, 
either in the International Seismological Summary (ISS) or in the publications of the 
Dominion Observatory (e.g. Hodgson & Stevens 1958), were redetermined using P-wave first 
motions and S-wave polarization angles (Stauder 1962; Udias & Stauder 1964). These 
bulletin reported first motions should be more consistent than their zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWWSSN short-period 
counterparts since the response curves of many pre-WWSSN instruments were more broad- 
band. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

As noted previously, mechanisms are relatively insensitive to hypocentral locations, thus 
no attempt was made to relocate events and USGS or ISC determinations are used in the 
tables. Magnitudes were preferentially taken from Gutenberg & Richter (1954), Rothe 
(1969) and Ichikawa (1971), or, when otherwise unavailable, from the ISC bulletin. 

Events occurring near known major bends in the slab, e.g. the Hokkaido corner or the 
Kanto district, were omitted since the local stresses due to the bend affect the focal 
mechanisms (Sasatani 1976; Cardwell & Isacks 1978). Solutions from the Himalayan arc, 
Burma, Hindu Kush and the Carpathians were also omitted since these regions are presently 
continent- continent convergence zones and the nature of subduction may be significantly 
different from that occurring at continent- ocean convergence zones. 

Two hundred and forty-three focal mechanisms, or about 2.5 times the amount available 
to Isacks & Molnar (1971), were found or determined and are listed in Appendix A. Again, 
we note that there is considerable variation in the confidence to be attached to individual 
mechanisms. However, the general character of the solutions is probably reliable. These 
events were grouped into 24 arcs or arc segments which are listed in Table 2. The segments 
were chosen on the basis of variations in the strike of the arc, convergence rate, age of sub- 
ducting crust, and dip of subducting slab. Thus, for example, the South American arc was 
divided into five segments showing variations in strike and dip of the slab. The number of 
events per segment varies from 1 (Caribbean) to 27 (Central America) and the events span a 
wide range of magnitudes, from 4.4 to 8.0, averaging around 6. 

For each segment, the P- and T-axes were plotted on an equal-area lower hemisphere 
projection in a manner similar to that used by Isacks & Molnar (1971). Representative lower 
hemisphere equal-area projections showing P- and T-axes and the orientation of the sub- 
ducting slab are shown in Fig. 3; plots for other arcs, for which five or more mechanism 
solutions are included, have been relegated to Appendix B. The earthquakes were then 
divided into six classes based on the orientation of the P- and T-axes with respect to the 
plane of the slab : down-dip compressive, down-dip tensile, in-plate compressive, in-plate 
tensile, both axes in-plate, and neither axis in-plate. Down-dip is defined as having the 
determined azimuth of a principal axis within 20" of the azimuth of the maximum dip of 
the slab and being in-plate. In-plate is here defined as having a principal axis of stress 
determined to be within zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA25' of the dip angle of the slab at maximum dip or an equivalent 
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138 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK.  Fujita and H. Kanamori zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tonga - F I to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA28.5" S )  Centrol Kuriles (Urup to Roykoke) 

Altiplano zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
N 

Ryukyu (Centrol) 
N zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 3. Representative equal area lower-hemisphere projections showing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP- and T-axes for (a) a com- 
pressive arc (Tonga), (b) a mixed arc (central Kuriles), (c) a tensile arc (Altiplano) and (d) a possible 
double or stress-segmented seismic zone (Ryukyu). 0 = Faxes, + = T-axes. 

Table 2. Stresses of intermediate depth earthquakes. 
I n - p l a t e  I n - p l a t e  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

R v g .  Down- compressive' t e n s i o n a l *  Age V e l o c i t y  
Name- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof arc N - m a - 9 .  d i p  m in (Myr )  ( c m l y r )  

O K n a n  tjy_&mp-res-si.ie 

South S c o t i a  ( 8  o f  58 .25 )  2 6 
Tonqa (N o f  28.55) 21 6 

27 5 
5 6  

Kamchatka 

Ogasawara (Bonin)  5 6  

yi xed 

Tohoku, Japan 12 5 112 
Nor the rn  K u r i l e s  24 5 
(Shiashkotan-Shumshu) I 1  6 114 
A l e u t i a n s  13 5 314 
Cen t ra l  K u r i l e s ,  29 5 
(Urup-Raykokei  12 6 114 
Alaska 2 5 314 
Ryukyu ( c e n t r a l )  7 6 114 
Southern K u r i l e s  41 5 
(Hokka ido -E to ro fu ) '  7 6 112 

Dominant ly Tens iona l  

Java (106-124E) 6 6  
N o r t h  Peru ( N  of 78) 7 6 114 
New Hebrides 15 6 
Cen t ra l  America 27 5 314 
N o r t h  S c o t i a  I N  o f  58.25) 12 6 
N o r t h  C h i l e  (20.1-27.08) '  12 6 114 

Keimadec zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( 8  o f  28.55) 6 6 112 
A l t i p l a n o  (14.0-20.18) 11 6 114 

C e n t r a l  C h i l e  (27.0-33.68) 6 6 114 
Marianas 5 6 114 
Peru (7.0-14.05) 5 6 114 
Sumatra ( w  o f  106E) 4 6 114 
Caribbean 1 5 112 

100 
52 

100 
100 
20 

55 
100 
91 
62 

100 
75 

100 
71 

100 
57 

83 
57 
60 
96 
29 
42 
91 

17 
40 
80 
83 
0 

83 

100 
95 
95 
80 
80 

73 
68 
36 
62 
52 
42 
50 
43 
4 1  
14 

17 
14 
13 
4 
0 
0 
0 
0 
0 
0 
0 
0 
0 

n 77 
6.0 5 5 . 5  120 
5.0 5 6 .4  8o 

20 
20 150 

5.7 27 5.4 130 
4 .8  32 5.4 
6 .3  64 6 . 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA85 
5.8 38 6 . 0  60 
4 .9  48 5 .1  
6.3 58 6.2 95 

50 40 
6.4 57 6.2 60 
4.7 59 
6 .3  86 2:; l oo  

6.0 83 6.0 135 
6 .8  86 6.3 30 
5.6 87 6 . 1  60 
5.5 96 5 .6  45 
- -  100 6 . 0  55 
- -  100 6.3 45 

100 6.1 45 
- -  100 6.5 120 
- -  100 6.2 32 
- -  100 6 .2  150 
- -  100 6.3 40 
- -  100 6 . 0  80 
- -  100 100 

.. 

2 . 0  
9.7 

8.8 

6.7 

8 .4  

8 . 8  

4 .9  

8.5 

3.2 
4 .8  

8 .5  

6.4 
9 .8  

8 .7  
2.0 

10.4 
9 .7  
6.0 

10.2 
3.7 
9.5 
5.8 
2 .0  

-. 

Notes: * - includes down-dip and in-plate events. N - number of events. rn - average magnitude of 
events used. 
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Double seismic zones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA139 

distance from the great circle describing the slab on an equal-area lower hemisphere pro- 
jection (?0.28R, where R is the radius of the projection). This broad definition is used to 
account for errors in take-off azimuth and angle due to slab structure (Engdahl et al. 1977; 
Sleep 1973; Fujita 1979), uncertainties in the dip of the slab (Hasegawa et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1978b), and 
ambiguities in determining nodal planes, usually thought to be around 15' (hacks, Sykes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& 
Oliver 1969; Minster et al. 1974). If both axes were in-plate, but one was down-dip, the 
event was considered to have down-dip stresses. 

Of the tabulated mechanisms, six were found to have both axes in-plate with neither in 
the down-dip direction, and six others were found to have neither axis in-plate. The 
remaining 231 mechanisms are used in the discussion that follows and are assumed to be 
representative of the types and relative abundances of mechanisms of intermediate depth 
earthquakes in non-contorted oceanic plates. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Discussion 

Table 2 and Fig. 4 summarize the distribution of stresses in each arc for the events listed in 
Appendix A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs can clearly be seen, the percentage of in-plate compressive events ranges 
from zero in the South American arcs to nearly 100 in the Tonga and southern Scotia arcs. 

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 5  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 0  7 5  100 

SO. SCOTIA 
T O N G A  

KAMCHATKA 

OGASAWARA 
T O H O K U  

NO K U R I L E S  

A L E U T I A N S  

CENT. KURILES 

A L A S K A  
R Y U K Y U  

SO K U R I L E S  

JAVA 
NO. P E R U  
NEW HEBRIDES 

CENT AMERICA 

NO. SCOTIA  
NO. C H I L E  
A L T  I P L A N 0  
CENT C H I L E  
KERMADEC 
P E R U  
MARIANAS 
SUMATRA 
CARIBBEAN 

I J - 
I 1 
I 1 

0 2 5  5'0 75 I00 
% COMPRESSIVE 

Figure 4. Distribution of in-plate stresses (including down-dip) in the various arcs. For the Kurile and 
Kamchatka arcs, the upper bar is for the data of Veith zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1974), while the lower bar is from our tabulation. 
The relative number of events for which focal mechanisms have been determined is represented schemati- 
cally by the width of the bars. 
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140 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Two sets of data are provided for the Kurile and Kamchatka arc segments to show the 
effects of using data sets with different average magnitudes. The fust set is obtained from 
the results of Veith (1974) excluding the events described as being ‘transverse’, while the 
second set is derived from our tabulation. In all of these cases, Veith’s (1974) data show a 
greater number of compressive events; this is expected since events of the lower zone are of 
greater magnitude and Veith’s (1974) data set uses events with an average magnitude 1.25- 
1.5 units less than our study, thus our study includes fewer upper zone (compressive) events. 
The difference in the worst case is about 30 per cent, which can be taken as a rough 
indicator of the maximum error on the percentages used herein if data from events averaging 
one magnitude unit smaller had been uniformly available; since the magnitude/frequency- 
type of mechanism relationship varies from arc to arc, the sign of the difference is unknown. 

We define arcs with less than 20 per cent compressional events as being ‘dominantly 
tensile’ and arcs with greater than 80 per cent compressional events as being ‘dominantly 
compressive’; the rest are considered ‘mixed’. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABy this definition, the Kurile arc segments are 
all mixed, regardless of the data set used, with the exception of the southern Kuriles 
segment. We utilize Veith‘s (1974) data and consider the southern Kuriles arc segment 
mixed. However, since our data for this segment have the highest average magnitude (6.5) of 
any of our regions, a decrease in that average would presumably add more compressive 
events. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAll other arcs which have only one compressive event are considered to be tensional 
since the average magnitude of the events in those segments are lower. The new Hebrides 
arc is also considered tensional since there are a sufficient number of events that the addition 
of a small number of solutions, even if compressive, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwill not affect the overall percentage 
significantly. 

hacks & Molnar (1969) suggested that the stress type for intermediate and deep focus 
earthquakes is related to the maximum depth of penetration of continuous lithosphere. 
Their results suggest that, in general, the deeper the penetration, the greater the compression 
within the slab as the bottom enters material of increasing viscosity. They point out, 
however, that their data indicate compression in the Aleutian and Ryukyu arcs, where 
tension is predicted, and that their hypothesis fails to explain why both compressional and 
tensional events exist in the Kuriles and north-eastern Japan; they ascribe the anomalies 
in the Ryukyu and Aleutian arcs to horizontal compression due to acute slab curvature. 

Fig. 5 sh0ws.a plot of slab penetration depth against the percentage of events which are 
compressive. Although there is some indication of a positive correlation, especially if one 
ignores the Alaska and southern Scotia arcs for which the data are poor, there are major zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

K. Fujita and H. Kanamori zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

800 I 

TO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

C K @  NK@ @ J P  

0 SK OOG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 600 

400 KA 0 

80 I 20 40 60 
% Compression 

Figure 5. Relationship of maximum depth of slab penetration and percentage of compressive events. 
Double circles are known double zones, X’s are known stress-segmented zones. Abbreviations are as in 
the event identifications of Appendix A. 
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Double seismic zones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA141 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C I  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA\ 

w zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
V zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz w 

6: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 . -  w 
> z 

U 4 ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 
n 4 2 -  

V n Q 

01 
I60 140 120 100 80 60 40  20 

A G E  OF S L A B  ( M Y 1  

Figure 6. Correlation between the arc-normal convergence rate, the age of the subducting lithosphere, and 
the percentage of in-plate compressive events. Dashed lines separate tensile arcs (open circles) from mixed 
to compressive arcs (solid circles). The numbers indicate the percentage of compressive events; for the 
Kurile-Kamchatka arcs, the number in parenthesis is for the data set of Veith (1974). 

inconsistencies. The Mariana and Kermadec arcs are entirely tensile, although the slab 
penetration exceeds 500 km. On the other hand Kamchatka and the Aleutians have mostly 
compressional events, although their slabs do not penetrate to especially great depths. In 
addition, there are double zones in many, but not all, of the long slabs. 

These deviations suggest that other parameters besides slab penetration depth affect the 
state of stress at intermediate depths. Ruff & Kanamori (1980) have noted a correlation 
between the amount of inferred coupling between the subducting and overriding plates, as 
evidenced by the maximum size of earthquakes and marginal sea formation, and the rate of 
convergence of the slab and the age of the subducting lithosphere. Although this coupling 
itself may not contribute to the stress field at all depths and in all arcs, strong coupling 
may result from properties of the slab that also cause the stress in the slab at intermediate 
depths to be different from weakly coupled slabs. 

In Fig. 6, we present a correlation between the arc-normal convergence rate, the age of 
subducting lithosphere, and the percentage of in-plate compressive events. The arc-normal 
convergence rates are computed from the AM1 model of Minster et al. (1 974) except for the 
Philippine plate for which the results of Fitch (1972) are used. The Kurile-Japan ages are 
extrapolated from Hilde, Isezaki & Wageman (1976), while the Scotia ages are taken from 
Brett (1977), and the Ryukyu age from Louden (1976). The other ages were determined 
from Pitman, Larson & Herron (1974). The arc-normal convergence rate, as opposed to the 
rate of convergence between the plates, was used since we are considering stresses that 
operate in the general direction of maximum dip; in the event, there is little difference in 
the broad features of the relations and the differences only affect the relative distribution 
of the most closely spaced points. 

Even if the maximum possible errors in slab ages and convergence rates are taken into 
account, it can be seen that old and fast slabs and young and slow slabs are mixed or domi- 
nantly compressive, This can be seen in Fig. 6 as a region of maximum compression, 
bounded by the dashed lines, that includes the points for Tonga, Kamchatka, the Aleutians 
and southern Scotia. 

The convergence rates for the Scotia arc segments are not clear due to the complicated 
distribution of plates in the area (Forsyth 1975). The Scotia ridge is currently spreading at a 
full rate estimated between 7 and 9 cm yr-' (Barker 1972). Since the Scotia plate appears to 
represent a zone of deformation between the south American and Antarctic plates 
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1 I I I 

$,,a% zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAoNP 
su zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i 1;; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA60 80 103 

0" 1 
20 'la 

% Compression zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Figure 7. Distribution of double zones (double circles) and stress-segmented seismic zones (X's) with 
respect to slab dip angle and percentage of compression. Abbreviations are as in the event identifications 
of Appendix A. 

(Forsyth 1975), the relative velocities and poles of rotation between the three plates are 
difficult to constrain. We use here the Antarctic-South America convergence rate from 
Minster zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1974) for the Scotia convergence rate and recognize its uncertainty. An 
increase in the arc-normal convergence rate to about 4.5 cm yr-' would not affect our con- 
clusions and should the crust in the northern section be 10Myr older, an increase up to 
nearly 7 cm yr-' would still be consistent with the dashed lines drawn in Fig. 6. At present, 
too little is known about the tectonics of the region to refine the data further. The New 
Hebrides arc has been omitted from the figure and is discussed in the next section. 

It is also noted that the confirmed double zones (Tohoku, Kuriles) occur in old and fast 
slabs. In contrast, the one known stress-segmented seismic zone, the Aleutians, occurs in a 
young and slow slab. This suggests that the other young and slow slabs, with mixed 
mechanisms, may also be stress-segmented. 

Finally, Fig. 7 shows the distribution of the amount of compression in an arc with respect 
to the dip angle of the Benioff zone, at depths between 100 and 150 km, perpendicular to 
the strike of the arc. In addition to other factors discussed herein, all known double zones 
occur in slabs with a dip angle between 30 and 45"; this may be an important datum in 
determining the causes of double zones. If this is a general rule, the kind of seismic zone 
present in the Ryukyus becomes ambiguous; the dip angle suggests a double zone but the 
age-rate relation suggests a stress-segmented zone. 

Tectonics of intermediate depth earthquakes 

The distribution of compressive and tensional arc segments in relation to the age of the sub- 
ducting lithosphere and the arc-normal convergence rate suggests that these parameters do 
indeed affect the tectonic processes at intermediate depths as well as at the surface. We 
suggest that the stresses in the downgoing slab are controlled by the rate at which the plate 
moves at the surface and the rate at which the subducted slab would tend to sink into the 
mantle were it not attached to the surface portion of the plate. In old and slow slabs, the 
slab tends to sink at a faster rate than the rate at which the slab moves at the surface; thus 
the surface plate is being pulled and the slab is dominantly in tension. With decreasing slab 
age, which reduces the negative bouyancy, or as the surface convergence rate increases, the 
amount of tension decreases, resulting in mixed stress slabs. Finally, young and fast slabs 
should be dominantly compressive since the surface plate is moving faster than the slab 
tends to sink. These factors should result in tension at the lower left corner of Fig. 6 and 
compression in the upper right corner with mixed stresses in between. This trend is observed 
except that the young and fast slabs (upper right) are dominantly tensile instead of 
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Double seismic zones 143 

compressive as anticipated. We now discuss each group of slabs, examining the consequences 
of the stress regime, and also seek to explain why young and fast slabs are an exception to 
the predicted trend. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
O L D  A N D  SLOW S L A B S  

The state of stress in old and slow slabs is controlled by the sinking of the slab into the 
mantle in a manner analogous to that proposed by Isacks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Molnar (1969, 1971). These 
slabs would tend to sink at a rate faster than the rate of surface convergence. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis creates 
tensional stresses in the upper segment of the slab. These tensile stresses dominate in the 
slab, therefore double zones are not observed (Fig. 8, top). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Old - slow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1 

earthquakes 
Slab sinks 

freely 

Old-fast, Young-slow 

0 

compression Decreasing 
negative buoyancy 

Figure 8. Schematic diagram showing the state of stress in (top) old and slow slabs, and (bottom) old and 
fast and young and slow slabs. 

O L D  A N D  F A S T ,  A N D  Y O U N G  A N D  SLOW S L A B S  

Old and fast slabs and young and slow slabs show mixed to dominantly compressive states of 
stress. In general, the dominantly compressive slabs appear to be at greater convergence rates 
than mixed slabs. Since there are slabs of various lengths with mixed to compressive 
mechanisms, the compression is not due to the depth of slab penetration. It is suggested that 
driving forces other than that due to slab pull, e.g. ridge push, mantle drag, etc. (Forsyth & 
Uyeda 1975), result in a surface convergence rate equal to, or greater than, the rate at which 
the slab would tend to sink. This results in a slab that is neither strongly in tension or com- 
pression. Younger slabs, which are warmer and have less of a density contrast with the 
ambient mantle, would exhibit compression with a slower rate of convergence than for old 
slabs. 

When the slab is, on the average, neither dominantly in tension or compression, local 
stresses, e.g. slab flexure, thermal stresses, etc., which are obscured by compression or 
tension in other arcs, represent the major component of the deviatoric stress causing earth- 
quakes. In these cases, double and stress-segmented seismic zones may be observed (Fig. 8, 
bottom). 

In older slabs, the lithosphere is still sufficiently thick even at intermediate depths that 
differing states of local stress can exist within one segment of arc. These slabs can then 
exhibit double zones. On the other hand, younger slabs are thinner and less rigid. Thus, it 
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becomes easier for tensile or compressive stresses to dominate short segments of the slab 
with no one segment exhibiting both. This results in short segments with differing stresses in 
close proximity, i.e. stress-segmented seismic zones. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. Fujita and H. Kanamori zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y O U N G  A N D  F A S T  S L A B S  

Young and fast slabs represent a different mechanism. Since they are fairly short, the Isacks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
& Molnar (1969, 1971) mechanism can be applied to explain the dominance of tensional 
stresses. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOn the other hand, their tendency to sink is expected to be small, since the slabs 
are young and have a small negative bouyancy, while the convergence rate is large; these 
factors taken together should cause compression. In addition, it is noted that although the 
nodal planes of the mechanism solutions vary greatly in other arcs from event to event, all 
of the young and fast arcs have nodal planes parallel to the strike of the trench and at 
roughly 45" angles to the dip of the slab (eg. Fig. 3c). 

Portions of the South American subduction zones are characterized by an extremely 
low subduction angle (Barazangi & Isacks 1979a), although this interpretation has been 
questioned by James (1978). From the near horizontal geometry of the Benioff zone in 
Peru, Barazangi & Isacks (1979a) suggest that the slab is in approximate contact with the 
base of the overriding lithosphere. The fact that the slab does not descend to depths of 
greater than 200 km for a horizontal distance of 600 km from the trench suggests that if the 
continent were not present, the slab would not sink very much, if at all. The presence of the 
continent, however, forces the slab down to a depth of 100 km in only 200 km, horizontal 
distance, from the trench axis. Since the slab is very strongly coupled to the continent 
(Uyeda & Kanamori 1979; Ruff & Kanamori 1980), it is possible that the slab would bend 
or wrap around the lower boundary of the continental lithosphere, with the neutral plane 
at the slab-continent interface, resulting in dominantly tensile stresses in the slab. Other 
South and Central American slabs have a much greater dip angle (30"-60" ), presumably due 
to greater negative bouyancy and/or slightly slower convergence rates. These slabs, however, 
could still be forced to greater depths closer to the trench axis due to the thick continental 
crust overriding them and to which they are strongly coupled. A suggestion of this effect is 
visible in the Benioff zone geometry in southern Peru by Barazangi & Isacks (1979a). The 
asthenospheric eastward drift, postulated by Uyeda & Kanamori (1979), may also contribute 
to this effect (Fig. 9). 

From the above discussion, it is suggested that double zones would only be observed in 
the small number of island arc regions where the slab is not strongly in overall tension or 
compression. Therefore, the causes of the double zone's characteristic stresses need not be so 
large as to be greater than the gravitational stress due to negative bouyancy or to those 
caused by loading. 

At present, too few mechanisms have been determined in Alaska to determine why two 
types of focal mechanisms occur there. In the Ryukyus, however, seven mechanisms have 
been determined and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall the compressive events are located towards the Taiwan end of the 

Figure 9. Schematic diagram of stresses zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAin South American (young and fast) arcs. 
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arc while the tensile mechanisms are located towards Kyushu. Shiono, Mikumo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Ishikawa 
(1979) suggest that the boundary between the stress regimes lies in the Tokara channel. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThis 
suggests that the Ryukyus represent, like the Aleutians, a stress-segmented seismic zone. 
Alternatively, two different ages of crust and/or convergence rates may exist. Further study 
of Ryukyu and Alaskan mechanisms is required. Furthermore, the data sets for the 
Indonesian, Marianas and Caribbean arcs need to be expanded to confirm their tensional 
character. 

The situation in the New Hebrides is unclear. Although the slab is about 60Myr old, 
there is great uncertainty in the convergence rate. If the Fiji plateau is assumed to be part of 
the Pacific plate, the AM1 model of Minster et al. (1974) predicts a convergence rate of 
about 10 cm yr-'. However, if the Fiji plateau is considered to be a separate microplate, 
Ruff & Kanamori (1980) estimate a rate of about 2 cm yr-', assuming that the Fiji plateau 
is stationary in the absolute frame. The slab is 87 per cent tensile, however, and has a very 
steep dip. Therefore, a slower convergence rate, given our models, is suggested. Although 
teleseismic relocations using JHD suggest a double zone between 135 and 160 km with a 
spacing of 10 km, the number of events is small and the separation considerably less than in 
other arcs. Since local network hypocentral determinations, which should be more accurate, 
show no such double zone (Pascal et al. 1978), it seems doubtful that a double zone exists. 

The number of mechanisms that are down-dip do not appear to correlate with any of the 
parameters considered here. Thus, the factor determining the exact orientation of the stress 
axes within the plate is probably local. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a global average, 65 per cent of the intermediate 
depth events are down-dip. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Origin of double seismic zones 

Numerous authors (e.g. Engdahl & Scholz 1977; hacks & Barazangi 1977; Samowitz & 
Forsyth 1979) have suggested that the double seismic zone is caused by the unbending of 
the lithosphere after passing the position of maximum curvature. They theorize that as the 
plate subducts, it behaves with an elastic-plastic rheology causing permanent deformation 
and tensile earthquakes at the top of the plate and compressive earthquakes in the lower part 
(Chapple & Forsyth 1979; McAdoo, Caldwell& Turcotte 1978). Subsequent to subduction, 
the plate unbends elastically at first. As the stress level about the neutral plane increases, 
faulting will occur with an opposite sense of stresses than before subduction, i.e. com- 
pression at the top of the plate and tension below, creating the double zone. 

Sleep (1979), however, has noted that if the aseismic region between the two seismic 
zones represents an elastic core, a stress on the order of 30 kbar would exist at its edges, 
assuming the material to be perfectly elastic. Such a stress is an order of magnitude greater 
than that implied by surface topography and is close to, or may even exceed, the fracture 
strength of the entire slab. For more realistic stresses, the elastic core can not exceed a few 
kilometres in thickness, thus the two seismic zones would be closer together and probably 
inseparable through seismicity studies. Samowitz & Forsyth (1 979) suggest that the earth- 
quakes do not occur on the edges of an elastic zone but on the outer edges of a semi-brittle 
zone about the neutral plane, thus the zones could be further apart. 

Since large earthquakes of the lower zone are particularly clustered at about 100 km 
depth in the Tohoku double zone, it is possible that some of the seismicity at about 100 km, 
where the slab straightens out, occurs as a result of unbending. Samowitz & Forsyth (1979) 
have noted tensile events at about that depth in the Marianas, below the main thrust plane, 
and compressive events at a somewhat shallower depth are observed in Peru (Isacks & 
Barazangi 1977). We note, however, that if double zones are due to unbending, they should 
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be observed in all subduction zones; this is not the case. In addition, teleseismically de- 
tectable earthquakes occur at depths greater than 100 km in the Kuriles and the double zone 
continues essentially linearly in Tohoku to depths of about 180 km (Hasegawa et al. 1978a). 
These observations suggest that a continuous stress acts on the slab long after it has passed 
the time point of unbending. Unless the unbending stress is released over an extremely 
long time span, about 1.3 Myr for Tohoku and the Kuriles, some other continuous force 
must be present to cause the double zone earthquakes. 

Veith (1974, 1977) suggests that the olivine-spinel phase transition, which is normally 
presumed to occur at 397 km depth, is elevated by nearly 275 km and causes the colder 
inner part of the slab, which has undergone the transition, to be in tension, and the outer 
and upper portion, which has not gone though the transition, to be in compression. Since 
the temperature difference between the ambient mantle and the interior of the slab is about 
1000°C at 400 km (Toksoz, Sleep zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Smith 1973), a dP/dT for the transition of 60 to 75 
bar "C-' is required to raise the transition depth up to 150 km. Recent experimental work 
by Akimoto et al. (1976) suggests that a dP/dT for this transition, for presumed mantle 
compositions, is about 33 bar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA"C-'. Independently, Solomon & U (1975) used observed 
travel time residuals from Tongan earthquakes to suggest an elevation of the olivine-spinel 
transition by 100 k 15 km and, therefore, an implied dP/dTof 32 bar zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOC- ' ,  which is in good 
agreement with the experimental results. Therefore, we consider this phase transition to be 
an unlikely cause of the double zone. 

Sleep (1979) has proposed that a continuous stress could be applied due to the sagging 
of the slab into the asthenosphere while being supported above by the oceanic and arc 
lithosphere and below by a more viscous mesosphere. The slab itself need not physically sag 
any noticeable amount and the double zone is caused solely by the presence of a moment 
due to its being supported above and below. His numerical models suggest that the 
occurrence of stresses which could cause the double zone are solely dependent on the 
viscosity of the mesosphere. These stresses would not be extremely large since they are 
only observed in slabs which are neither strongly in compression or tension. At present, this 
model, and the thermal stresses suggested by Yang zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. (1977) and Hamaguchi et al. (1977) 
are tenable explanations for the double zone, although other possibilities cannot yet be 

K. Fujita and H. Kanamori 

No active back-arc 
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Figure 10. Schematic diagram showing (top) the possible effect of eastward asthenospheric relative flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
in forming double seismic zones, and (bottom) the possible perturbation effects of back-arc spreading to 
cancel out the drift. 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/g
ji/a

rtic
le

/6
6
/1

/1
3
1
/5

9
8
7
0
3
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



Double seismic zones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI47 

excluded. We suggest one additional factor which may, very speculatively, contribute to the 
stress regime at intermediate depths. 

Uyeda zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kanamori (1979) noted that the AM1 model of Minster er al. (1974) yielded a 
general westward drift of the plates with respect to the asthenosphere. If this is the case, 
then a horizontal eastward stress could be applied to a west-dipping slab by this relative 
motion. If the mesosphere is approximately stationary relative to the lithosphere, then the 
eastward flow would cause a bending of the slab in a manner analogous to that postulated by 
Sleep (1979) except due to horizontal, rather than vertical, stresses (Fig. 10, top). 

Evidence for relative westward motion of the lithosphere with respect to the astheno- 
sphere, which is different from return flow, exists in the asymmetry of the angles of sub- 
ducting slabs on the west and east edges of the Pacific (Nelson & Temple 1972) and in the 
revised AM2 model of Minster &Jordan (1978). The causes and magnitudes of such astheno- 
spheric relative motion are not known and will remain a matter for future investigation. 

Not all island arcs of the western Pacific, however, show double zones. For example, the 
Mariana and Tonga arcs do not. These arcs are the sites of presently active back-arc spreading 
(Karig 1971). It is possible that the eastward flow is perturbed by the backarc convection 
(Fig. 10, bottom) so that no direct flow falls on the slab. 

Conclusions 

Double seismic zones can be characterized as having two layers of seismicity between about 
60 and 190 km in depth and separated by about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA35 km. The upper layer is dominated by 
in-plate compressive events while the lower layer is dominated by in-plate tensile events. 
Although a bias could be introduced due to magnitude differences in the events used in the 
data sets for different arcs, intermediate depth stress regimes in slabs can be divided into 
four general categories as a function of slab age and convergence velocity. Old and slow 
slabs are tensile because the slab tends to sink at a rate faster than the plate convergence 
rate. Old and fast slabs are, in general, mixed stress slabs and exhibit double seismic zones. 
Young and slow slabs are also mixed stress slabs but because of their warmer temperature 
exhibit stress-segmented zones. Finally, young and fast slabs, specifically those subducting 
under the South American continent, are tensile due to being bent by continental loading. 
Double seismic zones are not a feature common to all subduction zones and appear to exist 
only in old and fast slabs. The Ryukyu and Alaskan arcs are suggested as being possible 
double or stress-segmented seismic zones. The stress characteristics may be useable in con- 
straining estimates of convergence rate and slab age where estimates from other sources are 
lacking. 

Unbending of the lithosphere and phase changes within the slab are not likely to be the 
cause of the primary features of double zones. Unbending stresses, however, may cause 
increased seismicity at about 100 km depth. Thermal stresses or sagging, due to horizontal 
and/or vertical stresses, remain possible explanations for the formation of double seismic 
zones. 
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Appendix A 

This appendix lists zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAall known focal mechanisms for intermediate depth events. Only one 
entry per event is given although numerous authors may have determined solutions. 
Preference has been given to solutions determined using reread long-period first motions and 
solutions using surface waves. The events are grouped by arc-segment; the down-dip 
direction (in degrees east of north) and dip angle (in degrees downwards from the horizon- 
tal) are given for the subducting slabs immediately in front of the arc-segment name. 

The origin time is given in GMT, north latitude and east longitude are positive, and depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(2) is in km. The P, T and B axes are given as trend/plunge with trend in degrees east of 
north. TY gives the mechanism type, T being in-plate tensile and P being in-plate com- 
pressive; the prefm D indicates the event is also down-dip. QU indicates the source of data 
for the solution; First column, W reread data, B bulletin, C computer solution; second 
column, L long period, S short period, A mixed; third column, P P-wave first motions, 
S S-wave polarizations, A P- and S-wave data, and L surface waves. 
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NKOJDP 53 03 17 13 04 42 5.R 50.0 156.4 060 306145 126145 036100 B P 44 
NYOZPP 53 n i  17 17 30 0 3  6 . 3  50.5 155.2 128 307145 127145 037100 n P 44 

NK04DT 53 10 I 1  13 08 33 6.8 50.0 155.5 060 128127 308163 038100 R I A  44 
tIK05DT 61 01 19 17 22 17 5.7 49.3 15h.4 050 099126 339144 209134 BSP 44 
NK06DT 61 03 I 1  01 31 34 6.2 48.7 155.2 050 132126 294163 039106 BSP 44 
NK07llT 6 3  01 29 09 2 1  14  6.2 49.7 155.0 143 108132 317155 207114 !&A 34 
NK0RnT 64 Oh 2 1  01 33 I 1  5.7 50.7 157.5 051 045101 315154 013154 B A 4 3  
NK09DT 66 02 05 16 16 04 5.9 50.0 155.4 121 141128 210154 040121 W A 20 
NKlDOT 67 12 01 13 5 1  02 5.9 49.5 154.4 136 127141 326147 226109 1n.A 34 
NKIlnP 72 03 2 2  10 27 42 6 .3  49.1 153.6 134 311159 114130 208108 WLA 34 

320 45 CEWTRAI. KURILFS (URIIP 

Kll02nT 51 08 24 14 2 1  35 4.3 
YU03DT 54 07 06 08 04 37 6.7 
KUOLOT 56 LO 11 02 24 33 7.h 
Kll05 P 60 03 I0 14 32 39 6.0 
KU06 T 60 05 OR 14 29 -- 5.5 
KU07 P 61 OR 17 2 1  16 30 6.7 
K1108DP 64 OR 04 17 24 29 5.9 

Ruo inP  49 05 03 05 56 42 7.0 

YIIOYDT 6 5  04 05 1 3  52 1 3  5.7 
KUIOOT 69 OR 20 07 50 06 5.8 
K U I I O P  71 03 03 2 1  54 1 3  5 . 8  
KUIZDT 72 03 2 5  00 56 05 5.8 

TO RAYKOKE) 
48.6 153.5 125 324151 144139 054100 n P 44 
46.6 150.7 190 146134 326156 056100 n P 44 

45.9 150.7 LOO 143145 332145 238104 n A 44 
46.6 152.5 100 2~0117 154163 ni9121 nsP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA04 

46.4 149.3 160 275150 130135 0 2 7 1 ~ 8  n A 44 

47.9 153.6 101 147139 344149 244108 ILA 34 

46.5 153.4 100 165125 330160 070105 LISA 05 

45.0 151.0 090 146109 243139 044150 C P 18 

46.6 151.3 086 312139 112149 214110 WLA 34 
44.6 151.1  081 111126 339154 213123 WLA 34 

48.3 153.0 132 334159 132129 227110 WLA 34 
48.0 153.2 134 122139 319149 219108 WZA 34 

326 45 SOUTHERN KURILES (POKKAIDO M ETOROFU) 
ETOlOT 34 06 13 01 5 1  01 7.0 44.2 147.4 096 147159 327131 057100 USA 29 
FTOZ T 51 02 10 OR 3R 14 5 . 5  43.9 146.2 I00 099151 2115139 193103 C 39 

ET04 P 61 10 24 07 2 5  28 6.3 45.0 146.7 144 273144 I38136 029124 RSP 44 
FT05DT 64 06 23 01 26 37 7.6 43.3 146.1 077 152136 351152 249109 W A  34 
ET06DT 6 5  10 25 2 2  34 24 6.2 44.2 145.3 I81 139136 346150 237114 W A 20 
ET07nT 65 I 1  29 09 00 14 5.4 45.0 146.7 I86 145145 325145 055100 BSP 38 

E T O ~  T 61 02 12 2 1  53 44 6.9 43.2 147.9 045 095143 266147 on0105 n P 17 

279 35 TI)HORU. .IAPAP 

JPOZDP 57 10 31 02 37 00 5.9 
JPOI P 55 i n  I I  23 0 3  -- 5.1 

J P O ~  T 59 0 1  24 05 08 38 6.4 
~ ~ 0 4  n 59 03 04 23 on 52 5 . 0 ~  
J P 0 5  T 60 04 02 13 46 -- 5 . 0 E  
JPO6DP 60 04 15 I 1  39 01 6.0 
JPO7DP 60 10 09 09 00 42 6.2 
JPOR P 65 07  27 2 1  16 03 4.8 
JP09DP 70 03 23 00 20 5 5  5 . 8  
J p i n n p  70 04 01 14 2 3  25 5.8 
J P I I  P 72 03 19 1 5  57 50 6 . 0  
. I P I ~ O T  73 02 14 2 1  45 43  4.9 

39.0 
37.6 
37.4 
37.6 
37.2 
40.9 
40.1) 
40.2 
40.2 
39.8 
40.8 
39.1 

141.3 osn 242143 126124 016137 c P I R  
140.8 080 275114 028157 174129 n 0 17 

140.6 09n 117144 n15112 0 9 1 1 4 3  n P 17 

139.4 195 306130 125160 035100 n s p  25 

141.2 OR6 151165 371125 061100 C P I R  
138.7 219 340123 246107 141167 8 P 17 

141.6 I30 286119 181136 03Rl4R C P LR 
141.4 125 279129 I89100 099161 R P 17 

140.3 145 283125 118164 016106 W P 42 
141.9 067 290123 110167 200100 1.1 P 4 2  
141.9 076 315124 046102 140166 WLA 34 
141.5 110 096161 276129 186100 W P 42 

260 55 WASAWARA (RONIN) 
o w l  T 53 11 25 17 48 54 8.0 34.1 141.9 060 051164 210124 304108 n P 44 
o ~ n 2  N 58 09 08 14 53 -- 5 . 0 ~  33.7 139.1 080 355154 265100 175136 n P 17 
0 ~ 0 3  P 64 01 1 5  2 1  36 05 6.7 29.2 141.1 075 154112 034166 249120 WAA 22 

OGOS r 65 07 07 2 1  3~ 52 5.2 32.9 179.0 226 1691zz 077104 337168 nsp 03 
OG04DP 65 05 01 02 16 12 4.5 33.5 139.0 230 302162 072127 172120 BSP 2 5  

OGOh P 70 12 07 21 35 2 2  6.0 29.7 140.0 17'4 320157 125134 220107 B 40 

MARIANAS (SLAB DIRECTION VARIES) 

MA02 T 65 01 02 13 44 19 6.5 19.1 145.8 136 043160 177122 276120 MM 22  
UA030T 69 06 17 19 26 32 5 . 8  19.0 145.2 206 095101 191174 004116 W 40 
UA04 T 74 01 25 20 28 14 5.9 18.9 145.5 141 335149 155141 065100 W 40 

nmi T 57 05 2 1  01 12 04 7.0 21.5 144.0 1 1 3  030170 125100 220120 USA 05 

UAOSDT 74 03 24 04 21 05 5.9 12.6 144.3 079 1 6 1 1 6 ~  340128 0711oo w 40 

070 6 5  NEW HEBRIDES (s. OF -12.5) 
N H O l  T 6 3  03 30 01 53 29 6 .3  -19.1 169.0 156 2 3 5 1 2 0  130136 348148 W A 20 
NH02 T 6 3  05 01 10 03 20 7.0 -19.0 168.9 142 250120 138146 355138 W A 20 
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154 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK.  Fujita and H. Kanamori zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ill TY ORIGIN TIME HAT, LIT LONG 2 P T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB 00 REF 

NH03DT 
NHOLDP 
NH05DT 
NH06 P 
NHO7OT 
NH08DT 
NH09 T 
NHI0 T 
RHllDT 
NH I2nT 
YH13 R 
NHI4 9 
N H  150; 
NU16 T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
RI1 I70T 

63 I 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA04 01 I 4  3 1  6 .4  -15.1 
64 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 20 I7 08 37 6.5 -20.7 
64 07 09 16 39 49 7.2 -15.5 
64 09 02 21 32 40 4.7 -18.6 
65 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA08 04 08 47 09 6.0 - 1 3 . 2  
65 09 12 06 58 35 5.1 -11.3 

66 12 n i  04 56 59 6.0 -14.0 
67 0 3  31 20 05 19 5 . 4  -15.4 

66 02 04 LO 39 12 6.3 -15.9 
66 I0  07 15 55 I 1  6.0 -21.h 

69 01 I9  I8 50 52 6.4 -14.9 
69 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA07 29 06 29 29 5 .3  -14.R 
70 01 30 08 2R 23  5.7 -14.6 
7 1  08 1 4  on 15 I R  5.5 -14.8 
73 I I  30 OR 09 56 6.2 -15.2 

167.4 
169.9 
167.6 
169.3 
167.0 
166.4 
167.9 
170.6 
167.1 
167.5 
167.2 
167.3 
167.5 
167.2 
167.4 

123 275105 095185 005100 W P 20 

1 2 1  263109 0 8 3 l S l  174100 W A 20 

209 130101 038162 220128 W A 20 

I83 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA244124 136130 006150 IJ A 20 

132 249103 IZZIRh 339104 W 4 20 
132 ?53/05 073185 163100 W A 20 

139 093163 340112 244124 w A 20 

223 120124 217107 323164 nsp 25 

130 150113 330177 0601oo nsp 25 

160 239100 328130 1 4 ~ 1 6 0  w A zn 

107 030/311 144135 271140 WLP 0 9  
134 104124 012104 271165 1n.P 09 

124 050129  150130 286146 W.P 09 
124 2841oh 0 ~ 6 1 ~ 3  194102 mr 09 

177 2 1 R I 0 3  140167 329123 WLA 26 

290 55 TONCA-FIJI (TO 28.57) 

TO02 P 63 07 04 I0 5R I6 6.8 -26.3 -177.R 190 33Sl39 071101 164151 WLA 19 
T003DP 64 07 21 03 48 57 6.4 -26.0 -177.9 200 3 0 R l 4 2  107147 ZORIOR W A  19 
T004DP 65 0 3  1R 06 22 10 5.5 -19.9 -175.9 219 266131 133143 0 IR l25  I lLA i q  

TO06DP 66 OR 10 05 01 I I  5.6 -20.2 -175.3 095 2C2154 062129 163120 WLA 19 

TOOR P 67 OR 12 09 39 46 5.R -24.7 -177.5 I14 350127 193161 OR5110 L l  A 20 
TO09 P 68 03 I 1  O8 26 30 6.0 -16.2 -173.9 112 339140 234112 137139 W A 20 
TO10 M 6R 08 01 00 14 16 5.6 -26.6 -177.5 123 305103 210144 039146 WLP 27 
TOIIDT 68 OR 15  06 50 39 5.5 -13.9 -177.2 186 072132 268156 166108 I I  P 07 

TO13 R 69 10 26 06 37 56 5.R -16.2 -173.9 127 334102 219/72 065118 I 1  P 07 

TO15 P 70 01 20 07 19 51 6.5 -25.R -177.3 0110 330139 150151 060100 V P 07 
TOlhnP 71 0 3  23 02 1 5  24 6.1 -22.9 -176.1 077 26Rl44 10Rl44 008110 W F 07 
TO17 P 71 12 12 08 06 53 5.3 -2h.7 -177.1 101 349110 102165 255123 W.P 27 

TPOI P 54 nu I R  04 42 2~ 6.9  -21.5 -175.0 160 250145 11513n 010125 USA 05 

T O ~ ~ D P  65 nu 20 21 2 1  50 6 . 2  -22.9 -176.1 079 263140 093150 357106 WLA 19 

~ n n 7  P 67 03 04 06 16 2 2  5.5 - 1 u . 4  -175.4 228 2 5 ~ 1 3 2  144112 021141  1.1 P 07 

Tn12np 69 05 01 19 05 25  6 . 0  -16 .7  -174.6 205 326169 186117 091113 v A 4 1  

~ n 1 4  P 69 I I  1 4  07 37 4 4  5.5 -19.7 -175.8 20’1 251154 091114 m 1 n 9  IJ P 07 

m 1 8 n p  7 1  12 27 I I  00 57 5.6 -19.9 - 1 7 5 . ~  2 2 4  267132 162122 044150 t i  P 07 
~ 0 1 9  P 72 n i  15 03 39 22 5.7 -18.3 -174.6 155 257137 1 2 3 1 4 3  007124 w P 07 
TO20 P 12 03 07 07 45 2 1  6.2 -28.2 -17R.3 192 352139 250114 14414C 14 P 07 
TOZlnP 72 05 22 20 45 55 6.2 -17.7 -175.2 227 279163 l 6 4 1 1 0  068124 I’ P 07 
TOZ2DP 72 04 22 I I  45 55 6.? -16 .5  -174.5 1R6 284153 096137 199104 W P 07 
T023DP 15  01 17 09 30 37 5.R -17.9 -174.6 153 241167 124111 030120 WLP 27 

290 55 KERHADTC-NEW ZFALANU (FROW 2P.SS) 

KF02 B 57 06 I 1  14 49 47 7.0 -30.0 -178.0 I00 190103 303183 099106 C 39 
w n i n T  49 I I  22 on 51 52 7 .3  -29.3 -178.2 191 071160 294122 197118 n P ZR 

KE030T 60 03 27 23 28 27 6.6 -39.1 174.9 22R 089125 243162 354111 W P 02 
KE04DT 6 3  07 29 20 1 4  07 6.6 -30.3 -177.6 OR5 114132 273156 018110 WLA 19 

KE061)T 70 01 08 17 12 4 1  6.1 -34.7 -17R.6 179 l 0 l l l 6  252159 007114 W P 07 

KEDR T 76 01 24 21 48 23 6.0 -28.6 -177.6 078 061108 327148 158142 KLP 27 

K E O S ~ T  65 12 08 IR 05 25 6.2 -37.1 177.5 156 042115 2 8 ~ 1 5 7  140130 w A 20 

~ ~ n 7  n 70 OR 28 i n  06 04 5.7 -33.8 - 1 7 9 . ~  090 248108 339108 114178 w P 27 

310 40 RYUKYU (CFNTRAL) 
R w i  P 51 0 3  05 20 11 48 6.9 2 8 . 2  128.7 170 348139 0 ~ 4 1 0 8  183150 n P 28 
~ ~ 0 2  T 51 1 2  01 05 08 50 6.8 29.1 1 2 8 . 4  2 2 4  izn140 355136 240131 n P 4 4  
RY03DT 60 07 08 1 2  51 27 6.1 30.5 1 3 0 . 6  075 i22133 298157 0311n2 A S P  311 
RY04DP 64 01 06 05 54 43  5.R 27.2 127.4 103 3 2 1 1 4 3  I00135 206120 CZA 22 
RY05DP 65 09 21 01 38 30 6.5 29.0 128.2 197 329152 090122 193130 I n P  22 
PYO6DT 6R 05 14 14 05 06 5.9 29.9 129.4 168 092129 306156 190118 WLP 23 
RY07DT 70 03 23 12 14 54 5.8 29.8 129.3 148 220101 312147 128147 N.P 23 

345 70 TIMOP 
TIOlDT 63 02 14 07 04 4 1  6.5  - 7 . 4  128.2 197 268111 020162 174125 Vt.A 12 
T I02  T 65 I 1  20 15 05 39 6.2 -7.3 129.2 112 110122 241159 010122 W.A 12 
T I 0 3  T 67 10 12 I8  31 39 6.2 -7.1 129.8 OR6 029102 296149 122141 14 A I 1  
TI04DT 69 09 29 I6 20 02 5.7 -7.3 128.8 139 240104 346174 148115 WLA 08 
TI05DT 71 07 OR 19 07 07 6.3 -7.0 129.7 I01 087122 308163 182116 hZA OR 
Tl06OT 72 09 05 05  23 0 3  5.R -7.0 129.7 10R 068112 304169 162118 WLA 08 

000 48 JAVA (106 m 1 2 4 ~ )  

.JAOInT 59 06 28 19 43  30 6.4 -9.0 123.0 75 201176 021114 111/00 R P 44 
JA02nT 61 05 07 04 32 15 5.R -7.5 110.0 113 208131 028159 118/00 R P 4 4  
JA03nP 63 05 2 2  21 53 04 6.0 -8.2 1 1 5 . R  047 006139 IR6f51 09h/OO U A 11 
.IAO4TIT 64 02 ?9 23 49 41 5.8 -8.5 112.7 120 183165 003125 093100 1q.A 12 
JA05 T 67 02 19 2 2  14 36 6.1  -9.2 113.1 080 229153 051137 1 4 0 / 0 0  W P I 1  
JA116nT 70 08 13 04 2 2  35 6 . 0  -9.0 118.0 099 135121 340166 22811n W.A nu 

050 47 SIJTUTRA 

s i m 3  T 6 4  04 03 04 12 o2 6.2 4.n 96.6 070 200165 020126 iinlno IJ A I I  
S1104nT 67 05 21 I R  45 1 1  6.3 -1.0 101.5 173 244125 077165 335105 WLA 12 

SUnlnT 60 07 10 00 05 3R 6.5 1.0 9R.0 150 209129 029161 119/00 B P 44 
SlIOZnT 6 7  06 30 Oh 45 39 5.5 -2.6 102.5 181 207132 080145 320130 WLA 12 

CARIBBEAN 
cnoi T 64 OR 

225 80 NORTH 

SPOZ T 64 05 
SNOI N 6 3  I 2  

SCOTIA (55  TO S R . 2 S )  
10 06 30 55 5.5 -58.1 -26.4 110 095115 275115 005100 WAP I 3  
26 LO 59 1 3  7.3 -56.5 -27.7 120 083106 179157 348131 WLL 01 
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Double seismic zones zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
In TY ORICIN TIHF MAC LA? l.nN6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP T 0 QU REF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA155 

SNO3 T 6 4  0 5  27 00 56 4 3  5 . 8  -56.1 

SNO5 T 6 5  05 26 1 9  4 4  I 1  h . 7  - 5 6 . 1  
SN06 T 6 5  12 1 3  1 5  OR 27 5 . 2  -56.1 
SNO7DT 6 7  0 2  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2  06 25 50 5.R -57.9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SN08  T 6 7  03 22 21 17 37 5.6 -56.2 
SN09 T 68 10 0 4  Oh 0 4  32 5 . 9  -56.2 

s w 4 n T  6 5  n i  16 11 3 2  37 6.1 -56.6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
SNIO T 6 9  n i  I R  03 02 39 5.9 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 5 6 . 8  
S N I I  T 70 0 5  2 0  2 0  0 3  42 6 . 0  -55.9 

S N L ~  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA 72 04 0 6  0 3  21 16 5 . 4  -57.9 

SNIZDT 7 0  12 1 7  08 42 2 2  5 . 9  -56.0 
SN13 T 71 09 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA26 I 1  02 5 9  5 . 6  -56.7 

- 2 7 . 6  101 
-27.4 101 
-27.6 1 2 0  
-27.8 1 5 3  

-27.7 OR5 

-26.R 1 4 1  

- 2 7 . 5  1 1 5  
-27.4 181 
-26.6 1 3 5  

-25.4 0 7 9  

-27.0 090 

-28.3 080 

221106 125157 315134 w A 20 
068130 248160 158100 w A 20 
O ~ Z I O O  146150 322139 Y A 20 
094102 180151 003139 RSP 25 
070116 277172 1 6 2 1 0 8  WAA 1 3  
071103 162156 347141 WAA 1 3  
0 2 1 1 3 4  I 8 0 1 5 4  2 8 3 1 1 0  WAA 13 
0 6 4 1 0 4  1 6 0 1 5 5  3 3 0 1 3 5  WAA 1 3  
2 1 6 1 0 9  120132 3 1 7 1 5 5  WAA 1 3  
230113 1 0 1 1 7 0  326114 WA 1 3  
070125 250165 i w l n o  WSP 1 3  
0 9 5 1 7 5  275115 oo51no WSP 1 3  

2 5 8  5 8  SOllTH SCOTIA ( 5 8 . 2  TO 6 1 s )  
SSOlnP 6 7  Oh 17 05 00 1 2  6 . 1  -5R.3 -2h.h 1 4 0  2 7 2 1 6 4  0 7 3 1 2 4  167lOR W A 20 
SSOZDP 69 12 01 20 3 5  05 5 . 6  -60.0 - 2 p . 5  1 5 0  308174 096112 1 ~ 7 1 0 7  WAA 13 
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Appendix B 

Centrol Americc 
N 

Komchotko Peninsula 
N 

North Chile 
N 

Ecuador- North Peru Peru 

@@ 00 

Northern Kuriles Southern Kuriles 

+ 

Centrol Chile Aleut ions ( M.GT. 4) 
N N 
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156 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK. Fujita and H Kanamori zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Tohoku, Jopon Ogosaworo New Hebrides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S. of -12.5) 

+ + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ o  

o t  0 

+ + + 
0 0  

Tongo -F i j i  ( t o  28.55) Kermodec-New Zeolond Tirnor 

Jovo (106 to 124E) North Scotlo ( 5 5  to  58.2s) 
N N 
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