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Abstract 

High Performance Fortran (RPF) does not allow &cient expression of mixed task/dat* 
pardel computations or the coupling of separately compiled datapardel modules. In 
this paper, we show how a coordination library implementing the Message Passing In- 
terface (MPI) can be used to represent these common parallel program structures. This 
library dows data-para.UeI tasks to exchange distributed data structures using c - 2 ~  to 

simple communication functions. We present microbenchmark results that chararterize 
the performance of this library and that quantify the impact of optimizations that allow 

reuse of communication schedules in common situations. Ln addition, results fiom two- 
dimensional FFT, convolution, and mdtiblock programs demonstrate that the HPF/MPI 
library can provide performance superior to that of pure RPF. We conclude that this 
synergistic combination of two parallel programming standards represents a usehl ap- 
proach to task pardelism in a data-parallel framework, increasing the range of problems 
addressable in HPF without requiring complex compiler technology. 
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1 Introduction 

High Performance Fortran (HPF) provides a portable, high-level notation for expressing data- 

parallel algorithms [14]. An HPF computation has a single-threaded control structure, global 

name space, and loosely synchronous parallel execution model. Many problems requiring high- 

performance implement ations can be expressed succinctly in HPF. 

However, HPF does not adequately address task parallelism or heterogeneous computing. 

Examples of applications that are not easily expressed using HPF alone [5 ,  111 include multidis- 

ciplinary applications where different modules represent distinct scientific disciplines, programs 

that interact with user interface devices, applications involving irregularly structured data such 

as multiblock codes, and image-processing applications in which pipeline structures can be 

used to increase performance. Such applications must exploit task parallelism for efficient exe- 

cution on multicomputers or on hetgrogeneous collections of parallel machines. Yet they may 
incorporate significant data-parallel substructures. 

These observations have motivated proposals for the integration of task and data paral- 

lelism. Two principal approaches have been investigated. Compiler-based approaches seek to 

identify task-parallel structures automatically, within data-parallel specifications [8, 11 , 161, 

while language-based approaches provide new language constructs for specifying task paral- 

lelism explicitly [3, 5, 15, 201. Both approaches have shown promise in certain application 

areas, but each also has disadvantages. Compiler-based approaches complicate compiler devel- 

opment and performance tuning, while language-based approaches also introduce the need to 
standardize new language features. 

In this paper, we propose an alternative approach to task/data-parallel integration, based 
on specialized coordination libraries designed to be called from data-parallel programs. These 

libraries support an execution model in which disjoint process groups (corresponding to data- 

parallel tasks) interact with each other by calling group-oriented communication functions. In 
keeping with the sequential reading normally associated with data-parallel programs, each task 

can be read as a sequential program that calls equivalent single-threaded coordination libraries. 

The potentially complex communication and synchronization operations required to transfer 

data among process groups are encapsulated within the coordination library implementations. 

To illustrate and explore this approach, we have defined and implemented a library that 

allows the use of a subset of the Message Passing Interface (MPI) [lo] to coordinate HPF tasks. 

MPE standardizes an interaction model that has been widely used and is well understood within 

the high-performance computing community. It defines functions for both point-to-point and 

collective communication among tasks executing in separate address spaces; its definition per- 
mits efficient implementations on both shared and distributed-memory computers [9]. Our 

HPF/MPI library allows these same functions to be used to communicate and synchronize 

among HPF tasks. This integration of two parallel programming standards allows us to incor- 

porate useful new functionality into HPF programming environments without requiring complex 

new directives or compiler technology. We argue that the approach provides a conceptually eco- 

nomical and hence easily understood model for parallel program development and performance 
tuning. 

In the rest of this paper, we describe the design and implementation of our HPF/MPI 

library, provide an example of its use, and evaluate its performance. In the implementation 
section, we focus on issues associated with point-to-point communication and describe tech- 

niques for determining data distribution information and for communicating distributed data 

structures efficiently from sender to receiver. We also show how specialized MPI communication 
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functions can be used to trigger optimizations that improve performance in typical communica- 

tion structures. We use microbenchmark experiments to quantify the costs associated with our 

techniques and the benefits of our optimizations. We also present results from multiblock and 

two-dimensional fast Fourier transform (FFT) and convolution codes that demonstrate that 

HPF/MPI can indeed offer performance advantages relative to pure HPF. 
In brief, the contributions of this paper are as follows: 

1. The definition of a novel parallel programming model in which group-oriented communi- 

cation libraries are used to coordinate the execution of process groups corresponding to 

data-parallel tasks. 

2. The demonstration that an HPF binding for MPI allows the range of problems efficiently 

expressible in HPF to be extepded without excessive conceptual or implementation com- 

plexity. 

3. The illustration and evaluation using realistic applications of design techniques for achiev- 

ing communication between data-parallel tasks, for integrating MPI library calls into HPF 

programs, and for exploiting information provided by MPI communication calls to im- 

prove communication performance. 

2 Data and Task Parallelism 

We motivate our approach to the integration of task and data parallelism by discussing data 
parallelism and HPF and then reviewing approaches to the extension of the data-parallel model. 

2.1 Data Parallelism and HPF 

Data-parallel languages allow programmers to exploit the concurrency that derives from the 

application of the same operation to all or most elements of large data structures 1121. Data- 

parallel languages have significant advantages relative to the lower-level mechanisms that might 

otherwise be used to develop parallel programs. Programs are deterministic and have a sequen- 

tial reading. This simplifies development and allows reuse of existing program development 

methodologies-and, with some modification, tools. In addition, programmers need not spec- 

ify how data is moved between processors. On the other hand, the high level of specification 

introduces significant challenges for compilers, which must be able to translate data-pasallel 

specifications into efficient programs fl, 13, 18, 221. 

High Performance Fortran [14] is perhaps the best-known data-parallel language. HPF 
exploits the data palallelism resulting from concurrent operations on arrays. These opera- 

tions may be specified either explicitly by using parallel constructs (e.g., array expressions and 

FORALL) or implicitly by using traditional DO loops. 

HPF addresses the problem of efficient implementation by providing directives that program- 

mers can use to guide the parallelization process. In particular, distribution directives specify 

how data is to be mapped to processors. An HPF compiler normally generates a single-program, 

multiple-data (SPMD) parallel program by applying the owner computes Tule to partition the 

operations performed by the program; the processor that “owns” a value is responsible for 

updating its value [l, 18, 221. The compiler also introduces communication operations when 

local computation requires remote data. An attractive feature of this implementation strategy 

3 



! HPFS processors pr (8) 
complex A ( 8 ,  8) 

! HPF$ d i s t r i b u t e  A (BLOCK, * )  

do i = 1, 100 

call r e a d ( A )  
call r o w f f t  (8, A 

A = t ranspose(A)  
call r o w f f t  (8, A 

call w r i t e  (A) 

end do 

A :  

+.. 

Figure 1: An HPF implementation of a 2-D FFT, in this case configured to use 8 processors and to 

operate on an array of size 8x8. Shading indicates the elements of the array A that are mapped to 

processor 0. 

is that the mapping from user program to executable code is fairly straightforward. Hence, 
programmers can understand how changes in program text affect performance. 

We use a two-dimensional fast Fourier transform (2-D FFT) to illustrate the application 
of HPF. The HPF implementation presented in Figure 1 calls the subroutine rowfft to apply 

a one-dimensional (I-D) FFT to each row of the 2-D array A, and then transposes the array 

and calls rowfft again to apply a 1-D FFT to each column. The 1-D FFTs performed within 

rowfft are independent of each other and can proceed in parallel. The PROCESSORS directive 

indicates that the program is to run on 8 virtual processors; the DISTRIBUTE directive indicates 

that A is distributed by row. This distribution allows the rowfft routine to proceed without 

communication. However, the transposition A = t  ranspose (A) involves all-to-all communication. 

2.2 Task Parallelism 

Certain important program structures and application classes are not directly expressible in 

HPF [5, 111. For example, both real-time monitoring and computational steering require that 

programmers connect a data-parallel simulation code to another sequential or parallel program 

that handles I/O. The simulation task periodically sends arrays to the 1/0 task, which processes 
them in some way (e.g., displays them) and perhaps also passes control information back to the 
simulation. One example of an application domain in which such dynamic control is desirable 

is automotive design. Figure 2 depicts static output from an HPF implementation of the 

CHAD code, in which the air velocity tracers (arrows) were generated in a time-consuming 

postprocessing phase. We plan to use our HPF/MPI library to introduce a computational 

steering capability that allows scientists to place and visualize tracers dynamically, during 

program execution. 

As a second example, we consider the 2-D FFT once again. Assume an array of size N x N  

and P processors. Because the computation associated with the FFT scales as N2 log N while 

the communication due to the transpose scales only as max(N2, P 2 ) ,  the data-parallel algorithm 

described in Section 2.1 is efficient when N is much larger than P. However, signal-processing 
systems must often process quickly a stream of arrays of relatively small size. (The =ray 

size corresponds to the sensor resolution and might be 256x256 or less.) In these situations, 
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Figure 2: Air velocities in a passenger vehicle duct, as computed by the CHAD fluid dynamics 
program (image courtesy of T. Canfield) 
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an alternative pipelined algorithm is often more efficient [4, 111. The alternative algorithm 

partitions the FFT computation among the processors such that P/Z processors perform the 

read and the first set of 1-D FFTs, while the other P/2 perform the second set of 1-D FFTs and 

the write. At each step, intermediate results are communicated from the first to the second set 

of processors. These intermediate results must be transposed on the way; since each processor 
set has size P/Z, P2/4 messages are required. In contrast, the data-parallel algorithm’s all-to- 

all communication involves P(P-I) messages, communicated by P processors: roughly twice as 

many per processor. 

These two examples show how both modularity and performance concerns can motivate us 

to structure programs as collections of data-parallel tasks. How are such task/data-parallel 
computations to be represented in a data-parallel language such as HPF? Two principal ap- 

proaches have been proposed: implicit approaches based on compiler technology and explicit 

approaches based on language exten3ions or programming environments for task coordination. 

Compiler-based approaches. Advocates of implicit, compiler-based approaches seek to 

develop more sophisticated compilers capable of extracting task-parallel algorithms from data- 

parallel specifications. Frequently, they will use new directives to trigger the application of 

specific transformations. This general approach has been used to exploit pipeline [Ill and 
functional parallelism [IS], €or example. 

Implicit, compiler-based approaches maintain a deterministic, sequential reading €or pro- 

grams. However, these approaches also tend to increase the complexity of the mapping from 

user program to executable code. This increased complexity can be a disadvantage for both 

programmers and compiler writers. For programmers, it becomes more difficult to understand 

how changes in program source affect achieved performance, and hence more difficult to write 

efficient programs. For compiler writers, it becomes more difficult to build compilers that gen- 

erate efficient code, particularly because optimization techniques for different constructs and 

situations tend to interact in complex ways. 

Language-based approaches. Advocates of explicit, language-based approaches propose 

new language constructs that allow programmers to specify the creation and coordination of 
tasks explicitly. The basic concept is that of a coordination language [2,6], except that because 

the tasks are themselves data-parallel programs, we obtain a hierarchical execution model in 

which task-parallel computation structures orchestrate the execution of multiple data-parallel 
tasks. 

Language-based approaches have been proposed that use a graphical notation [3], chan- 

nels [5] ,  remote procedure calls [15], and a simple pipeline notation [20] to connect data-parallel 

computations. Promising results have been obtained. Neverthekss, there is as yet no consensus 

on which language constructs are best. Since successful adoption depends on consensus and 
then standardization, language-based approaches clearly are not a near-term solution. 

3 An HPF Binding for MPI 

Explicit task-parallel coordination libraries represent an alternative approach to the integration 

of task and data parallelism that avoids the difficulties associated with compiler-based and 

language-based techniques. We use the example of an HPF binding for MPI to illustrate the 

approach and to explore practical issues associated with its implementation. 
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! HPF$ 

! HPF$ 

processors pr (4) 
complex A ( 8,8 ) 
distribute A(BLOCK, * )  

do i = 1, 100 
call read(A) 
call rowfft (8, A) 

A :  

end do 

! HPF$ pmcessors pr (4) 
complex B (8,8) 

do i = 1, 100 
HPF$ distribute B ( * ,  BLOCK) 

B, 8*8,MPI_COMPLEX, 0 , 9 9 ,  
COMM-WORLD,status,ierr) 

call colfft(8, B) 
calf write(B) 

end do 

Figure 3: HPF/MPI implementation of a task/data-parallel pipelined 2-D FFT configured as two 

tasks, each on four processors and operating on arrays of size 8x8. Shading indicates array elements 

mapped to processor 0 in task 0 and in task 1. Note that the arrays A and B me mapped to disjoint 

sets of processors. 

MPI provides a set of functions, datatypes, and protocols for exchanging data among and 

otherwise coordinating the execution of multiple tasks; a “binding” defines the syntax used for 

MPI functions and datatypes in a particular language. Previous MPI implementations have 

supported bindings only for the sequential languages C and Fortran 77 [9]. However, there is 

no reason why MPI functions may not also be used for communication among data-parallel 

tasks. Our HPF binding for MPI makes this possible. It is intended to be used as follows: 

e A programmer initiating a computation requests (using some implementation-dependent 
mechanism) that a certain number of tasks be created; each task executes a specified 

HPF program on a specified number of processors. 

0 Tasks can call MPI functions to exchange data with other tasks, using either point- 
to-point or collective communication operations. In point-to-point communications, a 

sender and a receiver cooperate to transfer data from sender to receiver; in collective 

communications, multiple tasks cooperate-for example, to perform a reduction. 

When reading HPF/MPI programs, HPF directives can be ignored, and code understood as if 

it implements a set of sequential tasks that communicate using MPI functions. 

Figure 3 uses HPF/MPI to implement the pipelined 2-D FFT algorithm described in Sec- 

tion 2.2. Task 0 calls rowfft to apply a 1-D FFT to each row of the array A (8x8 complex 
numbers, distributed by row) and then calls the MPI function MPISend to send the contents 
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Distribution inquiry . 
HPF extrinsic C a l i  i 

j .  

Descriptor exchange 

._ Comms scheduling 

I 

I Buffer pack I 1  Data receipt 1 

[-I Buffer unpack 

Figure 4: The steps executed during an HPF/MPI communication function. The rounded boxes 

distinguish the steps involving communication. The sending and receiving sides differ only in the last 

two steps. 

of A to task 1. Task 1 implements the transpose by using MPIRecv to receive this data from 

task 0 into an array B, distributed by column, and then calls a subroutine c o l f f t  to apply a 

1-D FFT to each column. The value 99 is a message tag. 

A comparison with Figure 1 shows that the HPF/MPI version is not significantly more 

complex. In essence, we have replaced the transpose in the HPF program with two subroutine 

calls. Notice that these calls specify only the logical transfer of data from one data-parallel task 

to another: the potentially complex communication operations required to achieve this transfer 

are encapsulated within the HPF/MPI library. This example illustrates how a coordination 

library can gain leverage from a data parallel language’s high-level support for the management 

of distributed data structures, while providing an explicit, easily-understood notation for spec- 

ifying task-parallel computations. In more complex situations-such as multiblock codes- an 
HPF/MPI formulation can actually be more succinct than a pure HPF version. 

4 Implement at ion 

An HPF/MPI impIementation must address a variety of HPF- and MPI-specific issues, particu- 

larly at the interface between HPF and MPI, as well as general issues relating to the transfer of 

distributed data structures among process groups. We briefly describe the techniques that we 

have developed to address these issues. We focus on point-to-point communication and consider 

just one of several possible implementation approaches, namely that illustrated in Figure 4. In 
the following, we describe each of the six steps involved in this figure, looking at the actions 
performed during a send operation. 
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1. Distribution inquiry. Standard HPF inquiry intrinsics are called to determine the distri- 

bution of the array that is to be communicated. 

2. HPF eztrinsic call. The communication operation is invoked as an HPF extrinsic call to 

a procedure in the HPF/MPI library. The procedure is invoked in “local” mode, meaning 

that a separate thread of control executes on each processor on which the invoking task 

is running [14]. 

3. Descriptor exchange. Sending processors exchange distribution information with receiving 

processors. In general, each sending processor need communicate only with a subset of 

the receiving processors. 

4. Communications schedule. Sending processors use the distribution information obtained 

in Step 3 to determine which‘iubsections of the input array should be sent to each receiving 

processor. 

5. Bufler pack. The schedule information computed in Step 4 is used to pack the array 

elements required by a particular receiving processor into a buffer. (Steps 5 and 6 are 

repeated once for each processor to which data must be sent.) 

6. Data send. The contents of the buffer packed in Step 5 are sent to the appropriate 

receiving processor. 

We have implemented a prototype HPF/MPI library using these techniques. This library 

supports a subset of MPI’s point-to-point communication functions and operates with pghpf 

(version 2.0), a commercial HPF compiler developed by the Portland Group, Inc. Our library 

requires minor modifications to the pghpf runtime system to create the initial set of tasks when 

a computation is started and to provide information about which tasks execute on which pro- 

cessors. The communication schedules required in Step 4 are computed with algorithms based 

on the F-4LLS (FAmiLy of Line Segments) representation of Ramaswamy and Banerjee [17]. 
These algorithms incorporate efficient and general techniques for computing the minimal se- 

quence of communication operations required to perform a redistribution. Note that while the 

implementation strategy of Figure 4 is efficient for typical multicomputers, other strategies are 

possible and may perform better in some situations. For example, in a low-latency network 

it may be useful to pipeline communications, while in a low-connectivity network it may be 

worthwhile to gather all data to one node, perform the transfer by using a single message, and 

then scatter from one receiving node. 

The techniques just described can be refined and optimized in various ways to improve 

performance in speciGc situations. For example, MPI provides functions M P I S e n d i n i t  and 

M P I R e c v i n i t  to define what are called persistent requests; once defined, these requests can 
be executed repeatedly using a third function, M P I S t a r t .  As illustrated in Figure 5,  MPI 

programmers can use these functions to indicate that the same data transfer will be performed 

many times. An HPF/MPI implementation of these calls can compute communication schedule 

information once (within the hit functions) and subsequently reuse this information (within 

M P I S t a r t )  so that costs associated with Steps 1, 3, and 4 are amortized over many communi- 

cations. 
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!HPF$ processors pr(4) 
complex A (8 , 8) 
integer request 

!HPF$ distribute A(BLOCK, * )  

call MP1-Send-init(A,8*8,MPI_COMPLEX,lr99, 

do i = 1, 100 
MPI-COMM-WORLD,request,ierr) 

call read(A) 
call rowfft(8, A) 
call MPI-Start(request,ierr) 

end do 

Figure 5 :  An alternative HPF/MPI formulation of the sending side of the pipelined 2-D FFT, in which 

MPISendin i t  is used to define a persistent request that is then executed repeatedly by MPIStart .  

5 Performance Studies 

We use a simple microbenchmark to quantify the costs associated with the implementation 

scheme just described. This “ping-pong” program, presented in Figure 6, exchanges repeatedly 

a 2-D array of fixed size between two tasks, where in each communication the array is distributed 

(BLOCK,*) in the sender and (*,BLOCK) in the receiver. We run this program for arrays of 

varying size and for varying numbers of processors within each task, allowing us to measure the 

total time per one-way communication in different situations. We also measure the time spent 

in the six steps illustrated in Figure 4. All experiments are performed on the Argonne IBM 
SP2, which contains 128 Power 1 processors connected by an SP2 multistage crossbar switch. 

We record the maximum execution time across all processors. 

Figure 7 shows our results. In studying these results, we first note that for small problem 

size (N) ,  cost increases with number of processors ( P),  while for large N, costs decreases with P. 
These results are to be expected: for small N, the dominant contributor to total communication 

cost is the message startup time, or latency, which increases with P; for large N, the dominant 

contributor is the message transfer time, which is proportional to message length and therefore 

decreases with P. 
It is useful to relate achieved performance to the sources of the various cost components. 

Steps 1, 3, and 4 are associated with determining how to perform a communication and can be 

avoided if persistent communications are used. These three components are shown uppermost in 
each bar, which in most cases allows us to distinguish the costs for nonpersistent and persistent 

communication. We note, however, that the time for Step 3 (descriptor exchange) includes 

synchronization delays resulting from extra processing performed at receiving processors in 

other steps, such as communication and buffer unpacking at the end of the receive. Hence the 

high Step 3 times for large N and small P are an artifact of the experimental protocol, not a 

sign of inefficiency in the implementation of descriptor exchange. 

Step 2 (HPF extrinsic call) represents the costs associated with the extrinsic interface. 

This component represents a fixed cost for multiple subroutine calls, plus a per-word overhead 

incurred by the use of the HPF extrinsic subroutine interface. Because the pghpf compiler 

uses a specialized internal representation for arrays, it typically must copy a distributed array 
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<*  

!HPF$ processors pr(P) 

!HPF$ distribute From(BLOCK,*), To(*,BLOCK) 
real From(N,N) , To (N,N) 

call MPI-Init(ierr) 
call MPI-Comm-Rank(MPI-COMM-WORLD,myid,ierr) 
if (myid .eq. 0) then 

do i = 1, 100 
call MPI_Send(From,N*N,MPI_REAL,1,99, 

call MPI-Recv(To,NfN,MPI-REAL,1,99, 
MPI_COMM-WORLD,ierr) 

MPI-COMM-WORLD,status,ierr) 
end do 

do i = 1, 100 
else 

call MPI-Recv (To,N*N, MPI-REAL, 0 , 9 9 ,  

call MPI-Send(Frorn,N*N,MPI-REAL,O,99, 
MPI-COMM-WORLD,status,ierr) 

MPI-COMM-WORLD,ierr) 
end do 

endif 
call MPI-Finalize (ierr) 
end 

Figure 6: The microbenchmark used to quantify HPF/MPI communication costs. This program is 

intended to execute as two tasks. MPIlnit and MPITinalize set up and shut down the MPI library, 

respectively, while MPI-Commiank returns the rank of the calling task (0 or 1 in this case). 
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Figure 7: Time required for a one-way HPF/MPI point-to-point communication on an IBM 
SP2, for various array sizes and numbers of processors in the sending and receiving tasks. 
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passed as an extrinsic procedure’s input argument into one contiguous region, to preserve 

the property of array element sequence association assumed within Fortran 77; return array 

arguments are similarly copied upon extrinsic subroutine return. Both the subroutine calls 

and the copying represent overhead that could, in principle, be avoided by a tighter coupling 

of HPF and the MPI library. (For example, buffer packing and unpacking operations could 

be performed directly on the pghpf internal array representation.) When P=l and N=l6  

(1 KB data), Step 2 costs 200 microseconds: when P=l and N=lO24 (4 MB data), the cost is 

33 milliseconds. These data suggest a fixed cost of roughly 200 microseconds and an incremental 

cost of 0.008 microseconds/byte (106 MB/sec bandwidth). 

Step 5 (Buffer pack/unpack) corresponds to the costs incurred when transferring data be- 

tween potentially noncontiguous locations in an array and a communication buffer. Our im- 

plementation performs these transfers explicitly in all cases; optimized implementations might 

be able to avoid this extra copyidg for some distributions on some platforms. As the amount 

of copying performed in Step 5 appears to be equivalent to that performed in the extrinsic 

interface, we might expect Steps 2 and 5 to have similar costs. In practice, we find that for 

large messages Step 2 runs at about 106 MB/sec while Step 5 achieves only 58 MB/sec. We are 

currently investigating the reason for this difference, which we suspect is due to more highly 

optimized copying routines in pghpf. 

The final component is the actual communication. Since we always use a direct commu- 

nication structure, we expect cost to be roughly Pt, + (N2 /P) t , ,  where P is the number of 
processors per task, t ,  is the per-message startup cost, and t ,  is the per-word data transfer 

time. The experimental data fit this model reasonably well. 
Overall, we see that the persistent communication optimization can make a large difference 

for small N (up to 40-60 percent, depending on P) but has progressively less impact as N 
increases, always accounting for less than 25 percent for Q 2 5 6 .  Extrinsic call and buffer 

pack/unpack overheads vary significantly with N and P, peaking at around 50 percent of the 

time remaining once the persistent communication optimization has been applied. For N=lOZ4 
and P=l, we achieve a transfer rate of 12.8 MB/sec without the persistent communication 

optimization; the low-level MPICH library on which our HPF/MPI library is based achieves 

30 MB/sec in this situation. 

In summary, the microbenchmark results show that the persistent communication optimiza- 

tion provides significant benefits, particularly for small arrays; that our HPF/MPI implemen- 

tation achieves reasonable performance for small arrays when the persistent communication 

optimization is applied, and for large arrays in all cases; and that there is considerable benefit 

to be gained from a tighter coupling of HPF and MPI implementations. 

6 Larger Programs 

We also studied the performance of HPF/MPI implementations of 2-D FFT, 2-D convolution, 

and multiblock codes, comparing each with an equivalent pure HPF program. In each case, 

we employ the persistent communication optimization when transferring data between tasks. 

Our results demonstrate that in most instances the HPFIMPI library achieves performance 

superior to that of pure HPF. 

2-D FFT. For our experiments, we replace the read call in the 2-D FFT with a statement 

that initializes array A, and eliminate the write call entirely. The HPF/MPI code is executed 
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Figure 8: Execution time per input array for HPF and HPF/MPI implementations of the 2-D FFT 

application, as a function of the number of processors. Results are given for different problem sizes. 

as a pipeline of two tasks, with an equal number of processors assigned to each task. Figure 8 
presents our results, which are performed for a number of images large enough to render pipeline 

startup and shutdown costs insignificant. -4s expected, the HPF/MPI program is faster than 

the HPF code for larger numbers of processors and smaller problems. 

Convolution. ConvoIution is a standard technique used to extract feature information from 

images [4, 191. It involves two 2-D FFTs, an elementwise multiplication, and an inverse 2-D 

FFT (Figure 9) and is applied to two streams of input images to generate a single output 

stream. A data-parallel convolution algorithm performs the steps illustrated in Figure 9 in 

sequence for each image, while a pipelined algorithm can execute each block in Figure 9 as a 

* FFT 

m 
F F T - ~  

* FFT 

Figure 9: Convolution algorithm structure. Two image streams are passed through forward FFTs 

and then to a pointwise matrix multiplication (MM) and inverse FFT. 
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Figure 10: Execution time per input array for HPF and HPF/MPI implementations of convolution, 

as a function of the number of processors. Results are given for different problem sizes. 

separate task. As in the 2-D FFT, this pipeline structure can improve performance by reducing 

the number of messages. (It is also possible to exploit pipelining within each FFT, to increase 

parallelism further. We do not consider this option here.) Figure 10 shows our results. Once 

again, we see that the HPF/MPI version is often significantly faster than the pure HPF version. 

Multiblock. 
A solver is run within each block, and boundary data is exchanged between blocks periodically. 

For our experiments, we use a program that applies a simple Poisson solver within each block 

and that supports only simple geometries [7]. Figure 11 shows the three-block geometry used in 

our experiments, and an intermediate solution computed on this geometry. We compare the per- 

formance of an HPF program that computes each of the three blocks in turn and an HPF/MPI 

program in which three tasks compute the three blocks concurrently. (In the HPF/MPI version, 
processors are allocated to blocks in proportion to their size.) Figure 12 shows our results. The 

HPF/MPI program is always faster than the pure HPF program. 

Multiblock codes decompose a complex geometry into multiple simpler blocks [21]. 

7 Conclusions 

An HPF binding for MPI can be used to construct task-parallel HPF applications and to cou- 

ple separately compiled data-parallel programs, without a need for new compiler technology or 

language extensions. Our implementation of this binding executes efficiently on multicomput- 

ers, allowing us to write task/data-parallel 2-D FFT, convolution, and multiblock codes that 

execute faster than equivalent codes developed in HPF alone. On the basis of these results, we 

argue that the combination of the HPF and MPI standards provides a useful and economical 
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Figure 11: The three-block geometry used to evaluate the performance of the multiblock code. 

The three blocks shown in this figure have size 192 x 192, 96 x 96, and 192 x 192. 
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Figure 12: Execution time for HPF and HPF/MPI implementations of the multiblock code, as a 

function of the number of processors. 
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approach to the implementation of task/data-parallel computations. 

Microbenchmark results reveal various overheads associated with the HPF/MPI library. 

The MPI persistent request facility can be used to trigger optimizations that avoid overheads 

associated with exchange of distribution information and the computation of communication 

schedules. Overheads associated with the HPF extrinsic interface remain. The extent to which 

these overheads can be avoided by a tighter coupling between HPF/MPI and pghpf , by refin- 

ing the HPF extrinsic interface or by using compiler-derived information to select specialized 

communication functions, are topics for future research. 

The ideas deveIoped in this paper can be extended in a number of ways. It appears likely 

that similar techniques can be used to support other task interaction mechanisms. MPI and 

HPF extensions also suggest directions for further work. For example, MPI extensions proposed 

by the MPI Forum support client-server structures, dynamic task management, and single-sided 

operations. These constructs coUri3 be incorporated into an HPF/MPI system to support, for 

example, attachment to 1/0 servers and asynchronous coupling. Similarly, proposed support 

for mapping constructs within HPF (task regions) would allow the creation of task-parallel 

structures within a single program, by using HPF/MPI calls to communicate between task 

regions. 
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