
I d

eodfe 96 1104 - 0 7

Double Standards:

Bringing Task Parallelism to HPF

via the Message Passing Interface

Ian Fostert David R. Kohr, Jr.t Rakesh Krishnaiyert Alok Choudharys

.> -
3 -

jMathematics and Computer Science Division

Argonne National Laboratory

Argonne, E 60439
U.S.A.

(foster,kohr)Qmcs.anl.gov

$Department of Computer and Information Science

Syracuse University

Syracuse, NY 13244
U.S.A.

rakesh@cat.syr.edu

§Department of Electrical and Computer Engineering
Syracuse University

Syracuse, NY 13244
U.S.A.

choudhar8cat .syr.edu

Abstract

High Performance Fortran (RPF) does not allow &cient expression of mixed task/dat*
pardel computations or the coupling of separately compiled datapardel modules. In
this paper, we show how a coordination library implementing the Message Passing In-
terface (MPI) can be used to represent these common parallel program structures. This
library dows data-para.UeI tasks to exchange distributed data structures using c - 2 ~ to

simple communication functions. We present microbenchmark results that chararterize
the performance of this library and that quantify the impact of optimizations that allow

reuse of communication schedules in common situations. Ln addition, results fiom two-
dimensional FFT, convolution, and mdtiblock programs demonstrate that the HPF/MPI
library can provide performance superior to that of pure RPF. We conclude that this
synergistic combination of two parallel programming standards represents a usehl ap-
proach to task pardelism in a data-parallel framework, increasing the range of problems
addressable in HPF without requiring complex compiler technology.

1

http://foster,kohr)Qmcs.anl.gov
mailto:rakesh@cat.syr.edu
http://syr.edu

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or cesponsib2ity for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, proces, or service by

trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

Portions of this document rmay be illegible
in dectrOaic image products. mes are
produced from the best available original
document.

1 Introduction

High Performance Fortran (HPF) provides a portable, high-level notation for expressing data-

parallel algorithms [14]. An HPF computation has a single-threaded control structure, global

name space, and loosely synchronous parallel execution model. Many problems requiring high-

performance implement ations can be expressed succinctly in HPF.

However, HPF does not adequately address task parallelism or heterogeneous computing.

Examples of applications that are not easily expressed using HPF alone [5 , 111 include multidis-

ciplinary applications where different modules represent distinct scientific disciplines, programs

that interact with user interface devices, applications involving irregularly structured data such

as multiblock codes, and image-processing applications in which pipeline structures can be

used to increase performance. Such applications must exploit task parallelism for efficient exe-

cution on multicomputers or on hetgrogeneous collections of parallel machines. Yet they may
incorporate significant data-parallel substructures.

These observations have motivated proposals for the integration of task and data paral-

lelism. Two principal approaches have been investigated. Compiler-based approaches seek to

identify task-parallel structures automatically, within data-parallel specifications [8, 11 , 161,

while language-based approaches provide new language constructs for specifying task paral-

lelism explicitly [3, 5, 15, 201. Both approaches have shown promise in certain application

areas, but each also has disadvantages. Compiler-based approaches complicate compiler devel-

opment and performance tuning, while language-based approaches also introduce the need to
standardize new language features.

In this paper, we propose an alternative approach to task/data-parallel integration, based
on specialized coordination libraries designed to be called from data-parallel programs. These

libraries support an execution model in which disjoint process groups (corresponding to data-

parallel tasks) interact with each other by calling group-oriented communication functions. In
keeping with the sequential reading normally associated with data-parallel programs, each task

can be read as a sequential program that calls equivalent single-threaded coordination libraries.

The potentially complex communication and synchronization operations required to transfer

data among process groups are encapsulated within the coordination library implementations.

To illustrate and explore this approach, we have defined and implemented a library that

allows the use of a subset of the Message Passing Interface (MPI) [lo] to coordinate HPF tasks.

MPE standardizes an interaction model that has been widely used and is well understood within

the high-performance computing community. It defines functions for both point-to-point and

collective communication among tasks executing in separate address spaces; its definition per-
mits efficient implementations on both shared and distributed-memory computers [9]. Our

HPF/MPI library allows these same functions to be used to communicate and synchronize

among HPF tasks. This integration of two parallel programming standards allows us to incor-

porate useful new functionality into HPF programming environments without requiring complex

new directives or compiler technology. We argue that the approach provides a conceptually eco-

nomical and hence easily understood model for parallel program development and performance
tuning.

In the rest of this paper, we describe the design and implementation of our HPF/MPI

library, provide an example of its use, and evaluate its performance. In the implementation
section, we focus on issues associated with point-to-point communication and describe tech-

niques for determining data distribution information and for communicating distributed data

structures efficiently from sender to receiver. We also show how specialized MPI communication

2

functions can be used to trigger optimizations that improve performance in typical communica-

tion structures. We use microbenchmark experiments to quantify the costs associated with our

techniques and the benefits of our optimizations. We also present results from multiblock and

two-dimensional fast Fourier transform (FFT) and convolution codes that demonstrate that

HPF/MPI can indeed offer performance advantages relative to pure HPF.
In brief, the contributions of this paper are as follows:

1. The definition of a novel parallel programming model in which group-oriented communi-

cation libraries are used to coordinate the execution of process groups corresponding to

data-parallel tasks.

2. The demonstration that an HPF binding for MPI allows the range of problems efficiently

expressible in HPF to be extepded without excessive conceptual or implementation com-

plexity.

3. The illustration and evaluation using realistic applications of design techniques for achiev-

ing communication between data-parallel tasks, for integrating MPI library calls into HPF

programs, and for exploiting information provided by MPI communication calls to im-

prove communication performance.

2 Data and Task Parallelism

We motivate our approach to the integration of task and data parallelism by discussing data
parallelism and HPF and then reviewing approaches to the extension of the data-parallel model.

2.1 Data Parallelism and HPF

Data-parallel languages allow programmers to exploit the concurrency that derives from the

application of the same operation to all or most elements of large data structures 1121. Data-

parallel languages have significant advantages relative to the lower-level mechanisms that might

otherwise be used to develop parallel programs. Programs are deterministic and have a sequen-

tial reading. This simplifies development and allows reuse of existing program development

methodologies-and, with some modification, tools. In addition, programmers need not spec-

ify how data is moved between processors. On the other hand, the high level of specification

introduces significant challenges for compilers, which must be able to translate data-pasallel

specifications into efficient programs fl, 13, 18, 221.

High Performance Fortran [14] is perhaps the best-known data-parallel language. HPF
exploits the data palallelism resulting from concurrent operations on arrays. These opera-

tions may be specified either explicitly by using parallel constructs (e.g., array expressions and

FORALL) or implicitly by using traditional DO loops.

HPF addresses the problem of efficient implementation by providing directives that program-

mers can use to guide the parallelization process. In particular, distribution directives specify

how data is to be mapped to processors. An HPF compiler normally generates a single-program,

multiple-data (SPMD) parallel program by applying the owner computes Tule to partition the

operations performed by the program; the processor that “owns” a value is responsible for

updating its value [l, 18, 221. The compiler also introduces communication operations when

local computation requires remote data. An attractive feature of this implementation strategy

3

! HPFS processors pr (8)
complex A (8 , 8)

! HPF$ d i s t r i b u t e A (BLOCK, *)

do i = 1, 100

call r e a d (A)
call r o w f f t (8, A

A = t ranspose(A)
call r o w f f t (8, A

call w r i t e (A)

end do

A :

+..

Figure 1: An HPF implementation of a 2-D FFT, in this case configured to use 8 processors and to

operate on an array of size 8x8. Shading indicates the elements of the array A that are mapped to

processor 0.

is that the mapping from user program to executable code is fairly straightforward. Hence,
programmers can understand how changes in program text affect performance.

We use a two-dimensional fast Fourier transform (2-D FFT) to illustrate the application
of HPF. The HPF implementation presented in Figure 1 calls the subroutine rowfft to apply

a one-dimensional (I-D) FFT to each row of the 2-D array A, and then transposes the array

and calls rowfft again to apply a 1-D FFT to each column. The 1-D FFTs performed within

rowfft are independent of each other and can proceed in parallel. The PROCESSORS directive

indicates that the program is to run on 8 virtual processors; the DISTRIBUTE directive indicates

that A is distributed by row. This distribution allows the rowfft routine to proceed without

communication. However, the transposition A = t ranspose (A) involves all-to-all communication.

2.2 Task Parallelism

Certain important program structures and application classes are not directly expressible in

HPF [5, 111. For example, both real-time monitoring and computational steering require that

programmers connect a data-parallel simulation code to another sequential or parallel program

that handles I/O. The simulation task periodically sends arrays to the 1/0 task, which processes
them in some way (e.g., displays them) and perhaps also passes control information back to the
simulation. One example of an application domain in which such dynamic control is desirable

is automotive design. Figure 2 depicts static output from an HPF implementation of the

CHAD code, in which the air velocity tracers (arrows) were generated in a time-consuming

postprocessing phase. We plan to use our HPF/MPI library to introduce a computational

steering capability that allows scientists to place and visualize tracers dynamically, during

program execution.

As a second example, we consider the 2-D FFT once again. Assume an array of size N x N

and P processors. Because the computation associated with the FFT scales as N2 log N while

the communication due to the transpose scales only as max(N2, P 2) , the data-parallel algorithm

described in Section 2.1 is efficient when N is much larger than P. However, signal-processing
systems must often process quickly a stream of arrays of relatively small size. (The =ray

size corresponds to the sensor resolution and might be 256x256 or less.) In these situations,

4

1 .

Figure 2: Air velocities in a passenger vehicle duct, as computed by the CHAD fluid dynamics
program (image courtesy of T. Canfield)

5

, ,

an alternative pipelined algorithm is often more efficient [4, 111. The alternative algorithm

partitions the FFT computation among the processors such that P/Z processors perform the

read and the first set of 1-D FFTs, while the other P/2 perform the second set of 1-D FFTs and

the write. At each step, intermediate results are communicated from the first to the second set

of processors. These intermediate results must be transposed on the way; since each processor
set has size P/Z, P2/4 messages are required. In contrast, the data-parallel algorithm’s all-to-

all communication involves P(P-I) messages, communicated by P processors: roughly twice as

many per processor.

These two examples show how both modularity and performance concerns can motivate us

to structure programs as collections of data-parallel tasks. How are such task/data-parallel
computations to be represented in a data-parallel language such as HPF? Two principal ap-

proaches have been proposed: implicit approaches based on compiler technology and explicit

approaches based on language exten3ions or programming environments for task coordination.

Compiler-based approaches. Advocates of implicit, compiler-based approaches seek to

develop more sophisticated compilers capable of extracting task-parallel algorithms from data-

parallel specifications. Frequently, they will use new directives to trigger the application of

specific transformations. This general approach has been used to exploit pipeline [Ill and
functional parallelism [IS], €or example.

Implicit, compiler-based approaches maintain a deterministic, sequential reading €or pro-

grams. However, these approaches also tend to increase the complexity of the mapping from

user program to executable code. This increased complexity can be a disadvantage for both

programmers and compiler writers. For programmers, it becomes more difficult to understand

how changes in program source affect achieved performance, and hence more difficult to write

efficient programs. For compiler writers, it becomes more difficult to build compilers that gen-

erate efficient code, particularly because optimization techniques for different constructs and

situations tend to interact in complex ways.

Language-based approaches. Advocates of explicit, language-based approaches propose

new language constructs that allow programmers to specify the creation and coordination of
tasks explicitly. The basic concept is that of a coordination language [2,6], except that because

the tasks are themselves data-parallel programs, we obtain a hierarchical execution model in

which task-parallel computation structures orchestrate the execution of multiple data-parallel
tasks.

Language-based approaches have been proposed that use a graphical notation [3], chan-

nels [5] , remote procedure calls [15], and a simple pipeline notation [20] to connect data-parallel

computations. Promising results have been obtained. Neverthekss, there is as yet no consensus

on which language constructs are best. Since successful adoption depends on consensus and
then standardization, language-based approaches clearly are not a near-term solution.

3 An HPF Binding for MPI

Explicit task-parallel coordination libraries represent an alternative approach to the integration

of task and data parallelism that avoids the difficulties associated with compiler-based and

language-based techniques. We use the example of an HPF binding for MPI to illustrate the

approach and to explore practical issues associated with its implementation.

6

! HPF$

! HPF$

processors pr (4)
complex A (8,8)
distribute A(BLOCK, *)

do i = 1, 100
call read(A)
call rowfft (8, A)

A :

end do

! HPF$ pmcessors pr (4)
complex B (8,8)

do i = 1, 100
HPF$ distribute B (* , BLOCK)

B, 8*8,MPI_COMPLEX, 0 , 9 9 ,
COMM-WORLD,status,ierr)

call colfft(8, B)
calf write(B)

end do

Figure 3: HPF/MPI implementation of a task/data-parallel pipelined 2-D FFT configured as two

tasks, each on four processors and operating on arrays of size 8x8. Shading indicates array elements

mapped to processor 0 in task 0 and in task 1. Note that the arrays A and B me mapped to disjoint

sets of processors.

MPI provides a set of functions, datatypes, and protocols for exchanging data among and

otherwise coordinating the execution of multiple tasks; a “binding” defines the syntax used for

MPI functions and datatypes in a particular language. Previous MPI implementations have

supported bindings only for the sequential languages C and Fortran 77 [9]. However, there is

no reason why MPI functions may not also be used for communication among data-parallel

tasks. Our HPF binding for MPI makes this possible. It is intended to be used as follows:

e A programmer initiating a computation requests (using some implementation-dependent
mechanism) that a certain number of tasks be created; each task executes a specified

HPF program on a specified number of processors.

0 Tasks can call MPI functions to exchange data with other tasks, using either point-
to-point or collective communication operations. In point-to-point communications, a

sender and a receiver cooperate to transfer data from sender to receiver; in collective

communications, multiple tasks cooperate-for example, to perform a reduction.

When reading HPF/MPI programs, HPF directives can be ignored, and code understood as if

it implements a set of sequential tasks that communicate using MPI functions.

Figure 3 uses HPF/MPI to implement the pipelined 2-D FFT algorithm described in Sec-

tion 2.2. Task 0 calls rowfft to apply a 1-D FFT to each row of the array A (8x8 complex
numbers, distributed by row) and then calls the MPI function MPISend to send the contents

7

Distribution inquiry .
HPF extrinsic C a l i i

j .

Descriptor exchange

._ Comms scheduling

I

I Buffer pack I 1 Data receipt 1

[-I Buffer unpack

Figure 4: The steps executed during an HPF/MPI communication function. The rounded boxes

distinguish the steps involving communication. The sending and receiving sides differ only in the last

two steps.

of A to task 1. Task 1 implements the transpose by using MPIRecv to receive this data from

task 0 into an array B, distributed by column, and then calls a subroutine c o l f f t to apply a

1-D FFT to each column. The value 99 is a message tag.

A comparison with Figure 1 shows that the HPF/MPI version is not significantly more

complex. In essence, we have replaced the transpose in the HPF program with two subroutine

calls. Notice that these calls specify only the logical transfer of data from one data-parallel task

to another: the potentially complex communication operations required to achieve this transfer

are encapsulated within the HPF/MPI library. This example illustrates how a coordination

library can gain leverage from a data parallel language’s high-level support for the management

of distributed data structures, while providing an explicit, easily-understood notation for spec-

ifying task-parallel computations. In more complex situations-such as multiblock codes- an
HPF/MPI formulation can actually be more succinct than a pure HPF version.

4 Implement at ion

An HPF/MPI impIementation must address a variety of HPF- and MPI-specific issues, particu-

larly at the interface between HPF and MPI, as well as general issues relating to the transfer of

distributed data structures among process groups. We briefly describe the techniques that we

have developed to address these issues. We focus on point-to-point communication and consider

just one of several possible implementation approaches, namely that illustrated in Figure 4. In
the following, we describe each of the six steps involved in this figure, looking at the actions
performed during a send operation.

8

1. Distribution inquiry. Standard HPF inquiry intrinsics are called to determine the distri-

bution of the array that is to be communicated.

2. HPF eztrinsic call. The communication operation is invoked as an HPF extrinsic call to

a procedure in the HPF/MPI library. The procedure is invoked in “local” mode, meaning

that a separate thread of control executes on each processor on which the invoking task

is running [14].

3. Descriptor exchange. Sending processors exchange distribution information with receiving

processors. In general, each sending processor need communicate only with a subset of

the receiving processors.

4. Communications schedule. Sending processors use the distribution information obtained

in Step 3 to determine which‘iubsections of the input array should be sent to each receiving

processor.

5. Bufler pack. The schedule information computed in Step 4 is used to pack the array

elements required by a particular receiving processor into a buffer. (Steps 5 and 6 are

repeated once for each processor to which data must be sent.)

6. Data send. The contents of the buffer packed in Step 5 are sent to the appropriate

receiving processor.

We have implemented a prototype HPF/MPI library using these techniques. This library

supports a subset of MPI’s point-to-point communication functions and operates with pghpf

(version 2.0), a commercial HPF compiler developed by the Portland Group, Inc. Our library

requires minor modifications to the pghpf runtime system to create the initial set of tasks when

a computation is started and to provide information about which tasks execute on which pro-

cessors. The communication schedules required in Step 4 are computed with algorithms based

on the F-4LLS (FAmiLy of Line Segments) representation of Ramaswamy and Banerjee [17].
These algorithms incorporate efficient and general techniques for computing the minimal se-

quence of communication operations required to perform a redistribution. Note that while the

implementation strategy of Figure 4 is efficient for typical multicomputers, other strategies are

possible and may perform better in some situations. For example, in a low-latency network

it may be useful to pipeline communications, while in a low-connectivity network it may be

worthwhile to gather all data to one node, perform the transfer by using a single message, and

then scatter from one receiving node.

The techniques just described can be refined and optimized in various ways to improve

performance in speciGc situations. For example, MPI provides functions M P I S e n d i n i t and

M P I R e c v i n i t to define what are called persistent requests; once defined, these requests can
be executed repeatedly using a third function, M P I S t a r t . As illustrated in Figure 5, MPI

programmers can use these functions to indicate that the same data transfer will be performed

many times. An HPF/MPI implementation of these calls can compute communication schedule

information once (within the hit functions) and subsequently reuse this information (within

M P I S t a r t) so that costs associated with Steps 1, 3, and 4 are amortized over many communi-

cations.

9

. .

!HPF$ processors pr(4)
complex A (8 , 8)
integer request

!HPF$ distribute A(BLOCK, *)

call MP1-Send-init(A,8*8,MPI_COMPLEX,lr99,

do i = 1, 100
MPI-COMM-WORLD,request,ierr)

call read(A)
call rowfft(8, A)
call MPI-Start(request,ierr)

end do

Figure 5 : An alternative HPF/MPI formulation of the sending side of the pipelined 2-D FFT, in which

MPISendin i t is used to define a persistent request that is then executed repeatedly by MPIStart .

5 Performance Studies

We use a simple microbenchmark to quantify the costs associated with the implementation

scheme just described. This “ping-pong” program, presented in Figure 6, exchanges repeatedly

a 2-D array of fixed size between two tasks, where in each communication the array is distributed

(BLOCK,*) in the sender and (*,BLOCK) in the receiver. We run this program for arrays of

varying size and for varying numbers of processors within each task, allowing us to measure the

total time per one-way communication in different situations. We also measure the time spent

in the six steps illustrated in Figure 4. All experiments are performed on the Argonne IBM
SP2, which contains 128 Power 1 processors connected by an SP2 multistage crossbar switch.

We record the maximum execution time across all processors.

Figure 7 shows our results. In studying these results, we first note that for small problem

size (N) , cost increases with number of processors (P), while for large N, costs decreases with P.
These results are to be expected: for small N, the dominant contributor to total communication

cost is the message startup time, or latency, which increases with P; for large N, the dominant

contributor is the message transfer time, which is proportional to message length and therefore

decreases with P.
It is useful to relate achieved performance to the sources of the various cost components.

Steps 1, 3, and 4 are associated with determining how to perform a communication and can be

avoided if persistent communications are used. These three components are shown uppermost in
each bar, which in most cases allows us to distinguish the costs for nonpersistent and persistent

communication. We note, however, that the time for Step 3 (descriptor exchange) includes

synchronization delays resulting from extra processing performed at receiving processors in

other steps, such as communication and buffer unpacking at the end of the receive. Hence the

high Step 3 times for large N and small P are an artifact of the experimental protocol, not a

sign of inefficiency in the implementation of descriptor exchange.

Step 2 (HPF extrinsic call) represents the costs associated with the extrinsic interface.

This component represents a fixed cost for multiple subroutine calls, plus a per-word overhead

incurred by the use of the HPF extrinsic subroutine interface. Because the pghpf compiler

uses a specialized internal representation for arrays, it typically must copy a distributed array

10

<*

!HPF$ processors pr(P)

!HPF$ distribute From(BLOCK,*), To(*,BLOCK)
real From(N,N) , To (N,N)

call MPI-Init(ierr)
call MPI-Comm-Rank(MPI-COMM-WORLD,myid,ierr)
if (myid .eq. 0) then

do i = 1, 100
call MPI_Send(From,N*N,MPI_REAL,1,99,

call MPI-Recv(To,NfN,MPI-REAL,1,99,
MPI_COMM-WORLD,ierr)

MPI-COMM-WORLD,status,ierr)
end do

do i = 1, 100
else

call MPI-Recv (To,N*N, MPI-REAL, 0 , 9 9 ,

call MPI-Send(Frorn,N*N,MPI-REAL,O,99,
MPI-COMM-WORLD,status,ierr)

MPI-COMM-WORLD,ierr)
end do

endif
call MPI-Finalize (ierr)
end

Figure 6: The microbenchmark used to quantify HPF/MPI communication costs. This program is

intended to execute as two tasks. MPIlnit and MPITinalize set up and shut down the MPI library,

respectively, while MPI-Commiank returns the rank of the calling task (0 or 1 in this case).

11

16 by 16 REAL

2.0

1 2 4 8 1 6

128 by 128 REAL
8.0

6.0

ri
a
v) .- - -

4.0
C .-

,E
i=

2.0

0.0
1 2 4 8 1 6

Processors per Task

3.0

2.0

1 .o

0.0

30.0

20.0

10.0

0.0

32 by 32 REAL
7

~

i
i
1

... . .

5 - 1
i
i

1 2 4 8 1 6

256 by 256 REAL

1 2 4 8 1 6

4.0

3.0

2.0

1 .o

0.0

100.0

80.0

60.0

40.0

20.0

0.0

64 by 64 REAL

1 2 4 8 1 6

512 by 512 REAL

1 2 4 8 1 6

u (1) Distnbution inquiry

0 (3) Descriptorexchange

(4) Communications schedule

(2) HPF extrinsic call
I

I m (5) Buffer pack

fl (6) Datasend

1024 by 1024 REAL
400.0

300.0

200.0

100.0

0.0
1 2 4 8 1 6

Figure 7: Time required for a one-way HPF/MPI point-to-point communication on an IBM
SP2, for various array sizes and numbers of processors in the sending and receiving tasks.

12

passed as an extrinsic procedure’s input argument into one contiguous region, to preserve

the property of array element sequence association assumed within Fortran 77; return array

arguments are similarly copied upon extrinsic subroutine return. Both the subroutine calls

and the copying represent overhead that could, in principle, be avoided by a tighter coupling

of HPF and the MPI library. (For example, buffer packing and unpacking operations could

be performed directly on the pghpf internal array representation.) When P=l and N=l6

(1 KB data), Step 2 costs 200 microseconds: when P=l and N=lO24 (4 MB data), the cost is

33 milliseconds. These data suggest a fixed cost of roughly 200 microseconds and an incremental

cost of 0.008 microseconds/byte (106 MB/sec bandwidth).

Step 5 (Buffer pack/unpack) corresponds to the costs incurred when transferring data be-

tween potentially noncontiguous locations in an array and a communication buffer. Our im-

plementation performs these transfers explicitly in all cases; optimized implementations might

be able to avoid this extra copyidg for some distributions on some platforms. As the amount

of copying performed in Step 5 appears to be equivalent to that performed in the extrinsic

interface, we might expect Steps 2 and 5 to have similar costs. In practice, we find that for

large messages Step 2 runs at about 106 MB/sec while Step 5 achieves only 58 MB/sec. We are

currently investigating the reason for this difference, which we suspect is due to more highly

optimized copying routines in pghpf.

The final component is the actual communication. Since we always use a direct commu-

nication structure, we expect cost to be roughly Pt, + (N2 /P) t , , where P is the number of
processors per task, t , is the per-message startup cost, and t , is the per-word data transfer

time. The experimental data fit this model reasonably well.
Overall, we see that the persistent communication optimization can make a large difference

for small N (up to 40-60 percent, depending on P) but has progressively less impact as N
increases, always accounting for less than 25 percent for Q 2 5 6 . Extrinsic call and buffer

pack/unpack overheads vary significantly with N and P, peaking at around 50 percent of the

time remaining once the persistent communication optimization has been applied. For N=lOZ4
and P=l, we achieve a transfer rate of 12.8 MB/sec without the persistent communication

optimization; the low-level MPICH library on which our HPF/MPI library is based achieves

30 MB/sec in this situation.

In summary, the microbenchmark results show that the persistent communication optimiza-

tion provides significant benefits, particularly for small arrays; that our HPF/MPI implemen-

tation achieves reasonable performance for small arrays when the persistent communication

optimization is applied, and for large arrays in all cases; and that there is considerable benefit

to be gained from a tighter coupling of HPF and MPI implementations.

6 Larger Programs

We also studied the performance of HPF/MPI implementations of 2-D FFT, 2-D convolution,

and multiblock codes, comparing each with an equivalent pure HPF program. In each case,

we employ the persistent communication optimization when transferring data between tasks.

Our results demonstrate that in most instances the HPFIMPI library achieves performance

superior to that of pure HPF.

2-D FFT. For our experiments, we replace the read call in the 2-D FFT with a statement

that initializes array A, and eliminate the write call entirely. The HPF/MPI code is executed

13

32 by 32 REAL

L \. --: 1
I

-. --
2.0 p

t
0.0 leO

0 5 10 15 20

128 by 128 REAL
100.03 I , I , s , I

t .

0.0 -
0 10 20 30 40

Number of Processors

64 by 64 REAL

15.0

0.0
0 5 10 15 20

256 by 256 REAL

400.0

300.0

200.0

100.0

0.0

Figure 8: Execution time per input array for HPF and HPF/MPI implementations of the 2-D FFT

application, as a function of the number of processors. Results are given for different problem sizes.

as a pipeline of two tasks, with an equal number of processors assigned to each task. Figure 8
presents our results, which are performed for a number of images large enough to render pipeline

startup and shutdown costs insignificant. -4s expected, the HPF/MPI program is faster than

the HPF code for larger numbers of processors and smaller problems.

Convolution. ConvoIution is a standard technique used to extract feature information from

images [4, 191. It involves two 2-D FFTs, an elementwise multiplication, and an inverse 2-D

FFT (Figure 9) and is applied to two streams of input images to generate a single output

stream. A data-parallel convolution algorithm performs the steps illustrated in Figure 9 in

sequence for each image, while a pipelined algorithm can execute each block in Figure 9 as a

* FFT

m
F F T - ~

* FFT

Figure 9: Convolution algorithm structure. Two image streams are passed through forward FFTs

and then to a pointwise matrix multiplication (MM) and inverse FFT.

14

i n

64 by 64 REAL 32 by 32 REAL
20.0, I , 8 1 , 1 I

t

15.0

10.0

5.0

0.0 u
0 5 10 15

~ 20

128 by 128 REAL

2~.~~I-
0.0 -

0 10 20 30 40
Number of Processors

50.0

10.0

0.0
0 10 20 30 40

256 by 256 REAL

600.0

0.0 -
0 10 20 30 40

51 2 by 51 2 REAL

3000.0

Figure 10: Execution time per input array for HPF and HPF/MPI implementations of convolution,

as a function of the number of processors. Results are given for different problem sizes.

separate task. As in the 2-D FFT, this pipeline structure can improve performance by reducing

the number of messages. (It is also possible to exploit pipelining within each FFT, to increase

parallelism further. We do not consider this option here.) Figure 10 shows our results. Once

again, we see that the HPF/MPI version is often significantly faster than the pure HPF version.

Multiblock.
A solver is run within each block, and boundary data is exchanged between blocks periodically.

For our experiments, we use a program that applies a simple Poisson solver within each block

and that supports only simple geometries [7]. Figure 11 shows the three-block geometry used in

our experiments, and an intermediate solution computed on this geometry. We compare the per-

formance of an HPF program that computes each of the three blocks in turn and an HPF/MPI

program in which three tasks compute the three blocks concurrently. (In the HPF/MPI version,
processors are allocated to blocks in proportion to their size.) Figure 12 shows our results. The

HPF/MPI program is always faster than the pure HPF program.

Multiblock codes decompose a complex geometry into multiple simpler blocks [21].

7 Conclusions

An HPF binding for MPI can be used to construct task-parallel HPF applications and to cou-

ple separately compiled data-parallel programs, without a need for new compiler technology or

language extensions. Our implementation of this binding executes efficiently on multicomput-

ers, allowing us to write task/data-parallel 2-D FFT, convolution, and multiblock codes that

execute faster than equivalent codes developed in HPF alone. On the basis of these results, we

argue that the combination of the HPF and MPI standards provides a useful and economical

15

. -

Figure 11: The three-block geometry used to evaluate the performance of the multiblock code.

The three blocks shown in this figure have size 192 x 192, 96 x 96, and 192 x 192.

192/96/192 Problem
20.0

15.0

10.0

5.0

0.0
0 5 10 15 20

256/128/256 Problem
30.0

ci g 20.0

c

a
.-

E 10.0
i=

0.0
0 5 10 15 20

Number of Processors

80.0

60.0

40.0

20.0

0.0

- HPWMPII

512/256/512 Problem

0 5 10 15 20

Figure 12: Execution time for HPF and HPF/MPI implementations of the multiblock code, as a

function of the number of processors.

I 16

approach to the implementation of task/data-parallel computations.

Microbenchmark results reveal various overheads associated with the HPF/MPI library.

The MPI persistent request facility can be used to trigger optimizations that avoid overheads

associated with exchange of distribution information and the computation of communication

schedules. Overheads associated with the HPF extrinsic interface remain. The extent to which

these overheads can be avoided by a tighter coupling between HPF/MPI and pghpf , by refin-

ing the HPF extrinsic interface or by using compiler-derived information to select specialized

communication functions, are topics for future research.

The ideas deveIoped in this paper can be extended in a number of ways. It appears likely

that similar techniques can be used to support other task interaction mechanisms. MPI and

HPF extensions also suggest directions for further work. For example, MPI extensions proposed

by the MPI Forum support client-server structures, dynamic task management, and single-sided

operations. These constructs coUri3 be incorporated into an HPF/MPI system to support, for

example, attachment to 1/0 servers and asynchronous coupling. Similarly, proposed support

for mapping constructs within HPF (task regions) would allow the creation of task-parallel

structures within a single program, by using HPF/MPI calls to communicate between task

regions.

Acknowledgments

We are grateful to the Portland Group, Inc., for making their HPF compiler and runtime

system available to us for this research, and to Shankar Ramaswamy and Prith Banerjee for

allowing us to use their implementation of the FALLS algorithm. The multiblock Poisson solver

is based on a code supplied by Scott Baden and Stephen Fink. We have enjoyed stimulating

discussions on these topics with Chuck Koelbel and Rob Schreiber. This work was supported by

the National Science Foundation’s Center for Research in Parallel Computation under Contract

CCR-8809615.

References

[l] D. Callahan and K. Kennedy. Compiling programs for distributed-memory multiprocessors. The

Journal of Supercomputing, 2:151-169, October 1988.

[2] N. Carrier0 and D. Gelernter. Linda in context. Communications of the ACM, 32(4):444-458,

April 1989.

[3] G. Cheng, G. Fox, and K. Mills. Integrating multiple programming paradigms on Connection
Machine CM5 in a dataflow-based software environment. Technical report, Northeast Parallel

Architectures Center, Syracuse University, 1993.

[4] A. N. Choudhary, Narahari, D. M. Nicol, and R. Simha. Optimal processor assignment for

pipeline computations. IEEE Transactions on Parallel and Distributed Systems, 5(4):439-445,

1994.

[5] I. Foster, B. Avalani, A. Choudhary, and M. Xu. A compilation system that integrates High
Performance Fortran and Fortran M. In Proceedings of the 1994 Scalable High Performance

Computing Conference, pages 293-300. IEEE Computer Society, 1994.

17

161 I. Foster and S. Taylor. Strand: New Concepts in Parallel Programming. Prentice-Hall, Englewood

[7] K. S. Gatlin and S. B. Baden. Brick: A benchmark for irregular block structured applications.
Technical report, University of California at San Diego, Department of Computer Science and

Engineering, 1996.

Cliffs, N.J., 1990.

[8] M. Girkar and C. Polychronopoulos. Automatic extraction of functional pardelism from ordinary

programs. IEEE Transactions on Parallel and Distributed Systems, 3(2):166-178,1992.

[9] W. Gropp, E. Lusk, N. DOSS, and A. Skjellum. A high-performance, portable implementation

of the MPI message passing interface standard. Preprint MCS-P567-0296, Mathematics and

Computer Science Division, Argonne National Laboratory, Argonne, Ill., 1996.

[lo] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Processing with the Message-

Passing Interface. The MIT Press, Cambridge, Mass., 1994.

[ll] T. Gross, D. O'Hallaron, and J. Subhlok. Task parallelism in a High Performance Fortran

framework. IEEE Parallel and Distributed Technology, 2(2):16-26, Fall 1994.

[12] W. Hillis and G. Steele, Jr. Data pa rde l algorithms. Communications of the ACM, 29(12):1170-

1183, 1986.

[13] S. Hiranandani, K. Kennedy, and C. Tseng. Compiling Fortran D for MIMD distributed-memory

[14] C. Koelbel, D. Loveman, R. Schreiber, G. Steele Jr., and M. Zosel. The High Performance Fortran

machines. Communications of the ACM, 35(8):66-80, August 1992.

Handbook. The MIT Press, 1994.

[15] P. Mehrotra and M. Haines. An overview of the Opus language and runtime system. ICASE

Report 94-39, Institute for Computer Application in Science and Engineering, Hampton, Va.,
May 1994.

[16] S. Ramaswamy, S. Sapatnekar, and P. Banerjee. A framework for exploiting data and functional
parallelism on distributed memory multicomputers. Technical Report CRHC-94-10, Center for

Reliable and High-Performance Computing, University of Illinois, Urbana, Ill., 1994.

[17] Shankar Ramaswamy and Prithviraj Banerjee. Automatic generation of efficient array redistri-

bution routines for distributed memory multicomputers. In Frontiers '95: The 5th Symposium

on the Frontiers of Massively Parallel Computation, pages 342-349, McLean, Va., February 1995.

[18] A. Rogers and K. Ping&. Process decomposition through locality of reference. In Proceedings of

the SIGPLAN '89 Conference on Program Language Design and Implementation, Portland, OR,
June 1989. ACM.

[19] A. Rosenfeld and A. Kak. Digital Picture Processing. Academic Press, New York, 1976.

[20] B. Seevers, M. Quinn, and P. Hatcher. A parallel programming environment supporting data-
parallel modules. International Journal of Parallel Programming, 21(5), October 1992.

[21] V. N. Vatsa, M. D. Sanetrik, and E. B. Parlette. Development of a flexible and efficient multigrid-

based muliblock flow solver; AIAA-93-0677. In Proc. 3lst Aerospace Sciences Meeting and Exhibit,

January 1993.

[22] H. Zima, H.-J. Bast, and M. Gerndt. SUPERB: A tool for semi-automatic MIMD/SIMD paral-
lelization. Parallel Computing, 6:l-18, 1988.

18

