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Abstract

Chronic exposure to inducers of DNA base oxidation and single and double strand breaks contribute to tumorigenesis. In
addition to the genetic changes caused by this DNA damage, such tumors often contain epigenetically silenced genes with
aberrant promoter region CpG island DNA hypermethylation. We herein explore the relationships between such DNA
damage and epigenetic gene silencing using an experimental model in which we induce a defined double strand break in
an exogenous promoter construct of the E-cadherin CpG island, which is frequently aberrantly DNA hypermethylated in
epithelial cancers. Following the onset of repair of the break, we observe recruitment to the site of damage of key proteins
involved in establishing and maintaining transcriptional repression, namely SIRT1, EZH2, DNMT1, and DNMT3B, and the
appearance of the silencing histone modifications, hypoacetyl H4K16, H3K9me2 and me3, and H3K27me3. Although in most
cells selected after the break, DNA repair occurs faithfully with preservation of activity of the promoter, a small percentage
of the plated cells demonstrate induction of heritable silencing. The chromatin around the break site in such a silent clone is
enriched for most of the above silent chromatin proteins and histone marks, and the region harbors the appearance of
increasing DNA methylation in the CpG island of the promoter. During the acute break, SIRT1 appears to be required for the
transient recruitment of DNMT3B and subsequent methylation of the promoter in the silent clones. Taken together, our
data suggest that normal repair of a DNA break can occasionally cause heritable silencing of a CpG island–containing
promoter by recruitment of proteins involved in silencing. Furthermore, with contribution of the stress-related protein
SIRT1, the break can lead to the onset of aberrant CpG island DNA methylation, which is frequently associated with tight
gene silencing in cancer.
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Introduction

Chronic inflammation along with aging causes an increase in

reactive oxygen species that induces DNA damage in the form of

base oxidation, single stand breaks, and double strand breaks

(DSBs) [1]. Errors in DSB repair can cause mutations and

chromosome instability that lead to cancer or cell death [2]. In

response to DSBs, cells undergo cell cycle arrest or apoptosis. Cell

cycle arrest gives the cell time to repair the damage utilizing repair

proteins that are recruited to the site of damage and activated.

DSBs are repaired by either homologous recombination (HR) or

nonhomologous end joining (NHEJ) [3]. The pathway followed to

repair DSBs is determined by the location in the cell cycle and the

type of cell [4].

The above repair processes occur in DNA that is often packaged

in highly organized, mostly condensed chromatin, which also

consists of histones and histone-associated proteins. Chromatin

structure and dynamics regulate the genome such that non-

desirable transcription is repressed [5]. This chromatin structure

is determined by modifications of histone tails by acetylation,

methylation, and phosphorylation in patterns which have been

termed the histone code [6]. In general, acetylation of lysine

residues induces an open chromatin configuration associated with

gene expression, whereas deacetylation induces closed, compact

chromatin associated with transcriptional repression. The amino-

terminal tails of both histones H3 and H4 contain several lysine

residues that can be acetylated by histone acetyl transferases (HATs)

and deacetylated by histone deacetylases (HDACs) [7,8]. Acetyla-

tion neutralizes the positive charge of the lysine residues and

changes the structure of the histone, likely affecting the interaction

of these histones with both proteins and DNA [9]. Specifically,

mutational studies have indicated that lysine 16 of histone H4

(H4K16) and lysines 9, 14, and 18 of H3 are critical in silencing and

are all acetylated in active chromatin and hypoacetlyated in

transcriptionally-repressive chromatin [9,10]. Histone methylation

also plays a role in chromatin dynamics with mono-, di-, and tri-

methylation of H3K4 being associated with active chromatin, and

alternatively with mono-, di-, and tri-methylation of H3K9 and

H4K20 and di- and tri-methylation of H3K27 being associated with

closed chromatin and gene silencing [11–13].

It has become increasingly apparent that DNA repair must be

intimately involved with regulation of chromatin. For the repair of

DSBs there is an access, repair, restore (ARR) hypothesis wherein

chromatin after a DSB is first modified to generate an open
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chromatin structure allowing access to the DNA by repair proteins

[14]. Additionally, specific modifications of chromatin may be

necessary for components of the DNA repair or checkpoint

machinery to recognize damaged DNA [15]. In support of this

step, in yeast, both HATs and chromatin remodeling complexes

are recruited to DSBs [16–19]. Repair of the break then occurs,

followed by the need to restore the chromatin back to its original,

more condensed state [14,20]. Condensed chromatin might also

prevent transcription and/or replication machinery from accessing

the DNA and/or interfering with the repair process [21,22].

Additionally, condensed chromatin may play a role in ending the

DNA damage response signaling cascade [23]. Restoration of the

chromatin around a break suggests that silencing factors such as

HDACs and histone methyl transferases (HMTs) might be

recruited to the area of DSBs [19]. Additionally, DNA methylation

patterns also need to be restored, suggesting a possible role for

DNA methyltransferases (DNMTs) in DSB repair [24].

One example of a histone-modifying protein involved in DNA

repair in the yeast S. cervisiae is Sir2, a NAD+ dependent protein and

histone deacetylase [25]. The family of yeast sirtuins (Sir2-4) has

been shown to be involved in telomeric silencing, silencing at the

mating-type locus, and DSB repair [26,27]. In telomeres Sir2-4,

with the help of Rap1, a telomere DNA-binding protein, polymerize

across nucleosomes by binding to the histone tails of H3 and H4 to

create an inactive heterochromatin state causing silencing of the

region [28]. In response to activation of the DNA damage

checkpoint pathway Sir2-4 are recruited from the telomeres to the

DSB where they facilitate end-joining to such an extent that yeast

with mutations in any of the Sir proteins have a defect in NHEJ

[29,30]. Sir2 specifically modifies chromatin by deacetylating

H4K16 and H3K9 [31]. In the area of a defined DSB in yeast

there is an increase followed by a decrease in H4K16 acetylation

[19]. Localization of Sir2 to the region occurs in the same time

frame as the decrease in acetylation, suggesting that Sir2 is

responsible for the deacetylation [19]. Additionally, mutations of

four lysine residues on the histone H4 tail increase the sensitivity of

yeast to DSB-inducing agents [32]. In mammalian cells, acetylation

of H4 also seems to play a role in DSB repair because TRRAP

(Transactivation-transformation domain-associated protein)/TIP60

(HIV Tat-Interacting Protein, 60 kDa) dependent acetylation of H4

occurs immediately after a DSB [33]. TIP60 binds to the chromatin

around the DSB and plays a role in chromatin relaxation required

for the efficient recruitment of repair factors as well as repair of the

DSB [33]. Mutants that lack this ability accumulate DSBs following

exposure to gamma-irradiation [34]. After repair of the DSB, there

may be a need to deacetylate H4 to return the acetylation levels

back to normal.

SIRT1, the mammalian homolog of Sir2, mediates transcrip-

tional repression, heterochromatin formation, heritable gene

silencing, p53 function, and lifespan [35–39]. SIRT1 has been

shown to be involved in the maintenance of silencing associated

with abnormal promoter region CpG island DNA methylation in

tumor suppressor genes [39]. SIRT1 is localized to the promoters

of these methylated and silenced tumor suppressor genes, but not

to promoters of the same genes in cell lines where they are

normally maintained in an unmethylated, open chromatin state

facilitating gene expression [39]. Inhibition of SIRT1 caused re-

expression of these genes along with a corresponding increase in

H4K16 and H3K9 acetylation and SIRT1 recruitment to an

artificial promoter via a gal4 DNA binding site mediates

transcriptional repression, H4K16 deacetylation, and an increase

in H3K9me3 [40]. Additionally SIRT1 has been found in a stem/

precursor cell and/or ‘‘transformation specific’’ polycomb group

(PcG) complex (PRC4) containing Enhancer of Zeste Homologue

2 (EZH2), the enzyme catalyzing H3K27me3 and H1K26me

[41,42], and Eed2 [43]. Previously, EZH2 had been identified as

part of the PRC2/3 complex that plays a role in the initiation of

chromatin silencing during development [41,42]. SIRT1 is also

linked to the increased methylation of H3K9 because SIRT1 has

been shown to bind to, and increase the activity of, the suppressor

of variegation 3–9 homologue (SUV39H1), a HMT that tri-

methylates H3K9 [44]. These findings suggest that the recruit-

ment of SIRT1 (and possibly EZH2) to the promoter of a gene can

induce gene silencing via closed chromatin and that the continual

presence of SIRT1 helps maintain the silencing.

In this study, we demonstrate the recruitment of silencing

factors to a DSB induced in a model exogenous construct

containing the CpG island region of the E-cadherin (E-cad)

promoter, which is often aberrantly silenced and DNA hyper-

methylated in human cancer [45]. After an induced break, both

SIRT1 and EZH2 are transiently recruited to the area

surrounding the break. Their recruitment corresponds, following

an initial increase, to a decrease in H4K16ac and an increase in

H3K27me3. Additionally, DNMT1 and DNMT3B are also

transiently recruited to the break site. By inducing DNA damage

and then selecting for silencing of the HSVTK gene, driven by the

E-cad promoter in our system, we demonstrate occasional gene

silencing and onset of DNA methylation in the CpG island area.

Moreover, the induced DNA methylation and recruitment of

DNMT3B appear to be dependent on the presence of SIRT1

during the initial break and repair cycle.

Results

In order to induce a defined DSB in mammalian cells, we

utilized the homing endonuclease I-SceI that has an 18 base pair

recognition sequence [46]. MB-MDA-231 cells were first trans-

fected with a tetracycline (tet) repressor plasmid and a tet operon

plasmid that drives the expression of the hemagglutinin (HA)-

tagged I-SceI endonuclease (Figure 1A). A single clone was

selected that had no basal level of HA-I-SceI expression but had a

high level of tet-induced expression. This clone was stably

transfected with a plasmid that contains a consensus I-SceI cut

Author Summary

Human cancers contain epigenetic changes as well as DNA
mutations that play a role in abnormal silencing of tumor
suppressor genes. In contrast to DNA mutations that
change the sequence of DNA, epigenetic changes cause
abnormal silencing of genes through DNA methylation via
the addition of methyl groups to DNA and through
modifications to the associated chromatin proteins. One
important event in tumor initiation and progression is the
exposure of cells to DNA damage during events such as
chronic inflammation and carcinogen exposure. We
hypothesized that such damage may play a role in
producing chromatin alterations, which could initiate
epigenetic silencing of tumor suppressor genes. Here we
show, using an exogenous gene promoter model, that key
proteins involved in epigenetic silencing are recruited to
the DNA near a double strand break. Occasionally,
sustained localization of these proteins to the gene
promoter leads to silencing of the associated gene and
to the seeding and spreading of DNA methylation within
the promoter that further stabilizes the silencing. This
finding suggests that DNA damage may directly contribute
to the large number of epigenetically silenced genes in
tumors.

Gene Silencing Induced by a Double Strand Break
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site inserted into a copy of the E-cad promoter, containing a CpG

island often DNA hypermethylated in multiple human tumor

types including the MB-MDA-231 cell line [45]. The promoter

drives the expression of the herpes simplex virus gene, thymidine

kinase (HSVTK). A single copy clone was then tested for inducible

expression of the enzyme by adding tet for 4 hours followed by

Figure 1. Treatment with tetracycline induces a double strand break in the inserted E-cad promoter. (A) MDA-MB-231 cells were stably
transfected with constructs expressing the tet repressor, the HA-tagged I-SceI enzyme, and the E-cadherin promoter containing the I-SceI consensus
cut site driving the Herpes Simplex Virus thymidine kinase gene (HSVTK). The cell line used throughout this study containing these 3 vectors is named
ROS8. (B) Time course for tet treatment. (C) Treatment of cells with 1 ug/ml tet induces expression of the HA-I-SceI enzyme by RT-PCR. Expression of
HSVTK by RT-PCR remains unchanged. (D) At the 4+4 hour time point, the majority of the cells express the HA-I-SceI enzyme by immunofluorescence.
Cells were fixed after treatment with tet as indicated. HA-I-SceI enzyme localization was determined using an anti-HA primary antibody followed by
an anti-rabbit FITC secondary antibody (green). Blue = nuclear DAPI stain. (E) DNA was collected from cells treated with tet as indicated. PCR was
performed using primers on either side of the cut site with the 39 primer being unique for the exogenous E-cad promoter. (F) Cells treated with tet
were analyzed via ChIP for the enrichment of phospho-H2AX using primers in the promoter region (labeled SCE) and using primers in the gene
sequence (labeled TK). The average change in phospho-H2AX recruitment over input as measured by ChIP was quantitated by gel densitometry with
error bars indicating the standard error of 3 PCRs.
doi:10.1371/journal.pgen.1000155.g001

Gene Silencing Induced by a Double Strand Break
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washing out the tet and collecting cells at indicated intervals

(Figure 1B). By RT-PCR analyses, HA-I-SceI was induced after

4 hours of tet treatment, and this expression was maintained after

a 4 hour wash (Figure 1C). By immunofluorescence each cell was

shown to express high levels of nuclear HA-I-SceI protein at the

4+4 hour time point (Figure 1D).

To determine the timing of the DSB formation and repair, the

HA-I-SceI induced breaks were monitored by a PCR assay with

primers spanning the cut site. Using this PCR, only uncut or

repaired DNA will result in a PCR product. The PCR product was

slightly decreased at the 4 hour time point, followed by a more

substantial decrease at the 4+4 hour time point, which corre-

sponds to the induction of the enzyme by RT-PCR (Figure 1E).

The PCR product level increased at the 4+24 hour time point

suggesting that a significant portion of the cells repair the DNA

break during this time frame. Within minutes of damage, H2AX is

phosphorylated on its C-terminal residue serine 139 at the site of

DNA damage [47]. Phospho-H2AX plays a role in stabilizing

repair foci containing DNA repair factors, and the mark is

maintained at the break site until the break is repaired [47,48].

Therefore, phospho-H2AX foci are a way to monitor DNA

damage and repair. By chromatin immunoprecipitation (ChIP)

following induction of the cutting enzyme, phospho-H2AX was

localized to the DNA near the DSB at the 4+4 hour time point

(Figure 1F). The presence of phospho-H2AX also suggests that not

only did the break occur but that the chromatin around the break

was modified as expected. Also, because both the greatest

phospho-H2AX localization and the greatest amount of cut

DNA as determined by PCR occur at the same time point,

4+4 hours, it suggests that this time point represents the immediate

response to double strand breaks in contrast to a response to

unrepaired persistent lesions that might be present at later time

points [49].

As part of the ARR model of DSB repair, the restoration phase

may require the recruitment of histone marks indicative of closed

chromatin, as well as the proteins responsible for establishing these

histone marks [14,19,20]. We examined the enrichment of histone

marks and the recruitment of chromatin-binding proteins after

inducing the DSB to determine if chromatin takes on character-

istics of closed chromatin after DNA damage. Using protein from

the sonicated material for ChIP, we confirmed that the HA-I-SceI

enzyme was expressed at the 4 hour and 4+4 hour time point,

corresponding to induction of phospho-H2AX at the 4+4 hour

time point (Figure 2A). As previously introduced, SIRT1 is a stress

response protein associated with DNA repair in yeast [19,50] and

transcriptional repression [39], and is a component, in drosophila

and mammalian cells, of the PcG silencing complex PRC4 [43].

SIRT1 recruited transiently to the DNA near the break (SCE

PCR) increased from the 4 hour time point to the 4+16 hour time

point. The highest recruitment levels correspond to when the

DNA begins to be repaired in our experimental design (Figure 2B

– right lower panel). A lesser and earlier increase occurred at the

downstream TK gene site which persisted to a varying degree over

24 hours (Figure 2B – right lower panel). Importantly, H4K16ac,

the residue that SIRT1 is known to deacetylate, shows an early

increase in enrichment at 4 hours followed by a decrease at the

4+4 hour time point, particularly at the SCE site (Figure 2B –

upper right panel). The most significant decrease in the

enrichment of H4K16ac corresponds to the sharp increase in

SIRT1 recruitment at the 4+16 hour time point (Figure 2B –

compare right upper and lower panels). We also looked for other

silent chromatin marks at the break site. Importantly with respect

to participation of SIRT1, we demonstrated a strong enrichment

of H3K27me3, the mark catalyzed by the EZH2 enzyme in PRC4

in the absence of histone H1, again primarily to the area near the

break site. There was also a less substantial enrichment of the

repressive mark K9H3me2 at the SCE region at the 4+16 hour

time point and in the TK region at the 4 hour time point of I-SceI

induction. In addition, H3K9me3 increased sharply in the same

TK region at the 4+4 hour time point (Figure 2C).

After DNA repair, in addition to changes in and restoration of

histone modifications, we were particularly interested in the

possible recruitment of DNMTs to the promoter after DNA

damage because DNA methylation is abnormally increased at the

E-cad promoter in many cancers [45]. In previous studies, using a

model of UVA laser microirradiation, the DNA methylation

catalyzing enzyme DNMT1 has been shown to be localized grossly

to the regions irradiated immediately following damage [24].

Therefore, we looked for localization of this maintenance DNA

methylation enzyme plus the de novo DNMT, 3B, to the break

site. DNMT1 was localized to the break, in modest increases,

mostly at the 4+4 hour time point for both the SCE and TK

regions and interestingly this enrichment is maintained at the SCE

site only at later time points (Figure 2D). On the other hand,

DNMT3B was localized to the break site only early in the time

course. Enrichment was demonstrated at the 4 hour time point

only at the SCE region and at both the SCE and TK regions at the

4+4 hour time point when the I-SceI enzyme expression is the

highest and the DNA is undergoing cutting.

We next looked to further understand the potential interactive

roles of the demonstrated recruitment of SIRT1, the DNMTs, and

histone modifications to the promoter in the function and DNA

methylation of the promoter. We initially focused on the role of

SIRT1 in the kinetics of break repair by knocking down levels of

this protein. By western blot, overall levels of cellular SIRT1 were

significantly knocked down in SIRT1 small interfering RNA

(siRNA) treated cells versus the non-target (NT) treated cells

(Figure 3A). In addition to its role in deacetylating histones SIRT1

can also deacetylate p53, and we used this latter modification to

further monitor the efficacy of our knockdown. In the SIRT1

knockdown cells there is a significant increase in acetyl lysine 382

p53 consistent with SIRT1 depletion. Importantly, in MDA-MB-

231 cells, p53 contains a point mutation that makes the protein

non-functional, so this increase in acetyl p53 has no functional

consequence [51].

In our SIRT1 knockdown studies, it is first important to note

that the kinetics of SIRT1 recruitment to the DSB is somewhat

different from those shown in Figure 2, possibly because the

rounds of transfection necessary for the siRNA knockdown

additionally stress the cells. Thus, in the non-target control (NT)

cells, SIRT1 recruitment is seen at the SCE and TK sites

(Figures 3B and C) earlier than in the studies in Figure 2B, peaking

at 4 hours, and being maintained over 48 hours. Even though, in

the SIRT1 knock down studies, there is a striking reduction of

overall levels of the cellular SIRT1 protein (Figure 3A), the

reduction at the SCE and TK sites, relative to that in the control

NT cells, was less severe (Figure 3B and C). However, this

reduction did correlate with changes in levels of H4K16ac. Thus,

overall, SIRT1 localization appeared delayed at the promoter

region in the SIRT1 knockdown cells as compared to the NT cells,

and this correlated with sustained enrichment of the H4K16ac

mark early after I-SceI induction and lasting through the

4+16 hour time point (Figure 3B). Importantly, at the 4+24 hour

time point where we see late enrichment of SIRT1 at the SCE site

in the knockdown cells, H4K16ac levels are again reduced,

suggesting that the level of acetylation of H4K16 is dependent on

SIRT1 recruitment to the break site and the SIRT1 knockdown

has a functional consequence. In addition, there was a modest

Gene Silencing Induced by a Double Strand Break
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early decrease (4 and 4+4 hour time points) of SIRT1 at the TK

site, and this correlated with increased H4K16ac at the 4+4 hour

and 4+16 hour time points (Figure 3C). The most informative

local result for SIRT1 knockdown appears to be the levels of

H4K16ac as discussed above. The persistent high levels of

H4K16ac recruitment through the 4+16 time point in the

knockdown cells demonstrate the effect of the SIRT1 knockdown

at the chromatin near the break site.

We performed ChIP for phospho-H2AX in knockdown cells to

see if the kinetics of phospho-H2AX recruitment to, and removal

from, the break site were altered (Figure 3D). In the SIRT1

knockdown cells, the levels of phospho-H2AX recruitment at the

SCE site were distinctly diminished by ChIP but had the same

overall time frame of recruitment and loss as in the NT cells.

Importantly, for the levels of knock down of SIRT1 achieved, and

with the delayed recruitment of SIRT1 to the break site, there did

not appear to be a significant effect on the kinetics of repair as

analyzed by our PCR assay using primers that are on either side of

the cut site (Figure 3E).

We next examined the potential role of SIRT1 in recruitment of

the PcG mark H3K27me3 and the recruitment of EZH2, the

enzyme responsible for catalyzing the mark [42]. In the NT cells,

EZH2 was enriched in the promoter and in the body of the gene at

the 4 hour time point and, to a greater extent, at the 4+4 hour

time point in the promoter (Figure 4A and 4B). H3K27me3,

correspondingly, was enriched in the promoter and the body of the

gene at these time points, directly corresponding to the localization

of EZH2. Interestingly, in the SIRT1 knockdown cells there was

an increased enrichment of EZH2 in the promoter at 4 hours as

compared to NT knockdown cells, but similar levels of

H3K27me3 over the entire time course (Figure 4A and 4B). In

contrast, in the TK gene, EZH2 enrichment was sharply increased

at the 4 and 4+4 hour time points in the SIRT1 knockdown as

compared to the NT cells and, correspondingly, the H3K27me3

Figure 2. DSB damage and/or repair induces the transient recruitment of SIRT1, DNMT1, and DNMT3B. (A) Cells were treated with tet
as indicated, crosslinked and sonicated for ChIP. A western blot for HA-I-SceI and phospho-H2AX was performed using a portion of the sonicated
material. (B) SIRT1 is localized to the DNA in the vicinity of the cut site following DNA damage. ChIP was performed using the material from (A) and
antibodies against SIRT1 and H4K16ac. Representative gels (left panel) are shown for PCR using the promoter SCE primers. Graphs (right panel) are
shown, using primers for the SCE and TK regions, for the quantitative average change in recruitment over input as measured by gel densitometry.
Error bars indicate the standard error for three or four PCRs. (C) Silent chromatin marks are observed transiently in the vicinity of the cut site. ChIP was
performed using the material treated as in (A) and employing antibodies against di- and trimethyl H3K9 and H3K27me3. Data is presented as in (B).
Error bars indicate the standard error for four PCRs. (D) DNMTs are localized to the chromatin near the cut site. ChIP was performed using the material
treated as in (A) and employing antibodies against DNMT1 and DNMT3B. Data is presented as in (B). Error bars indicate the standard error for three
PCRs.
doi:10.1371/journal.pgen.1000155.g002
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Figure 3. Effects of knockdown of SIRT1 by siRNA. (A) Cells were transiently transfected for three consecutive days with non-target siRNA (NT)
or SIRT1 siRNA (SIRT1), treated with tetracycline to induce HA-I-SceI as indicated, and crosslinked and sonicated for ChIP analyses. A western blot was
performed for anti-SIRT1, anti-acetyl lysine 382 of p53, anti-HA, and anti-b-actin using a portion of the sonicated sample. (B) Changes in ChIP results at
the SCE site with SIRT1 knockdown. ChIP was performed using material from (A) and antibodies against SIRT1 and H4K16ac. Representative gels (top
panels) are shown for PCR using primers in the SCE promoter region. The average change in recruitment to the promoter over input as measured by
ChIP was quantitated (bottom panels) by gel densitometry for three PCRs with error bars indicating the standard error. (C) Changes in ChIP results at
the TK site with SIRT1 knockdown. Using ChIP samples from (B) PCR was performed using primers in the body of the gene labeled TK with
representative gels (top panels) and quantitation of results as in (B) (bottom panels). (D) Effects of knockdown of SIRT1 on phospho-H2AX
recruitment kinetics. ChIP was performed using antibodies against phospho-H2AX. Representative gels (top panels) are shown for PCR using primers
in the promoter region. Graphs for quantitation (bottom panel) are shown using the SCE primers, and error bars indicate the standard error for three
PCRs. (E) Effects of knockdown of SIRT1 on the kinetics of break repair. Input DNA was used from the ChIP samples from (B). PCR was performed using
primers on either side of the cut site with the 39 primer being unique to the exogenous E-cad promoter. PCR using genomic GAPDH primers is used
as a loading control. The average change in PCR across the break site over GAPDH was quantitated by gel densitometry for four PCRs with error bars
indicating standard error (bottom panel).
doi:10.1371/journal.pgen.1000155.g003
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mark was greater at all time points in the body of the gene. Thus,

even modest SIRT1 knockdown appears to increase the

magnitude of recruitment of EZH2 to the break region

downstream to the actual cut site. Recruitment of H3K27me3 in

the promoter of both the NT and SIRT1 knockdown cells

decreased at 4+16 hours but increased again at 4+24 hours. This

later increase may be indicative of some persistent double strand

breaks. Alternatively, this increase may reflect altered kinetics

observed selectively in the knockdown experiments. Both the NT

and SIRT1 knockdown cells have similar H3K27me3 enrichment

whereas the non-siRNA treated cells (Figure 2) show no

enrichment for this modification at this later time point.

To determine whether there is any dependence, on SIRT1, of

DNMT1 and DNMT3B recruitment to the DSB, we examined

localization in the NT and SIRT1 siRNA treated cells. In the

SIRT1 knockdown cells, there was a much increased enrichment

of DNMT1 which occurred earlier than in the NT treated cells—

at the 4 and 4+4 hour time point—and persisted through the

4+24 hour time point in the promoter and mostly at the 4 hour

time point in the gene (Figure 4C and 4D). These data suggest that

DNMT1 can be recruited, possibly to an increased degree and

with slightly different timing, to the area around the break when

SIRT1 levels are reduced. The most striking change, however, was

that DNMT3B recruitment, even with the modest change in

SIRT1 knockdown, was virtually absent in the SIRT1 knock down

cells. These data suggest that SIRT1 may play a role in early

recruitment of DNMT3B to the DNA around the DSB.

We next sought to further place the above findings for changes

in chromatin surrounding an induced DSB into the context of

genes that are DNA hypermethylated and heritably silenced in

cancer—and for which our engineered E-cad promoter region

provides a model. Despite the dynamic chromatin changes and

Figure 4. Changes in enrichment of silencing proteins and chromatin marks with knockdown of SIRT1. (A) Changes in ChIP results at
the SCE site with SIRT1 knockdown. Using sonicated material from Figure 3A, ChIP was performed using antibodies against EZH2 and H3K27me3.
Representative gels (top panels) are shown for PCR using primers in the SCE promoter region. The average change in recruitment to the promoter
over input as measured by ChIP was quantitated (bottom panels) by gel densitometry for three PCRs with error bars indicating the standard error. (B)
Changes in ChIP results at the TK site with SIRT1 knockdown. Using ChIP samples from (A), PCR was performed using primers in the body of the gene
labeled TK with representative gels (top panels) and quantitation of results as in (A) (bottom panels). (C) DNMT3B localization to the cut site is lost
when SIRT1 is knocked down. Cells were treated as in (A). ChIP was performed using antibodies against DNMT1 and DNMT3B. Representative gels are
shown for PCR using primers in the SCE promoter region (top panels). The average change in recruitment to the promoter over input as measured by
ChIP was quantitated by gel densitometry for three to four PCRs with error bars indicating the standard error (bottom panels). (D) Using ChIP samples
from (C), PCR was performed using primers in the body of the gene labeled TK with representative gels (top panels) and quantitation of results as in
(C) (bottom panels).
doi:10.1371/journal.pgen.1000155.g004
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DNMT recruitment we have outlined above, we saw no evidence

during the acute period of DSB repair of any induction of the

cancer-related gene silencing events (i.e. loss of TK expression-

Figure 1C and/or DNA methylation-data not shown). However,

models for how these events may take place in native cancer

evolution [52,53], and experimental models for acute, transient

silencing of genes [40,54,55] suggest that the transient state of

silent chromatin in the gene promoter region results in rare

instances wherein the silenced chromatin is maintained to produce

seeding of DNA methylation and permanent silencing of the

downstream gene. We thus tested this hypothesis for our model.

To look for selection of long term silencing events, we induced

our DSB by treating the cells with tet for either 4 hours or

24 hours and then negatively selected the cells for HSVTK

silencing via treatment with ganciclovir. Cells that silence the E-

cad promoter do not express HSVTK and therefore are not

sensitive to ganciclovir, unlike the parental, uncut cell line. After

selecting one thousand cells that were either uncut or cut with

ganciclovir, no clones from the uncut cells survived whereas ten

clones from the 1000 cells plated from the cut cells survived. As an

additional control experiment, a cell line containing the inducible

I-SceI enzyme and an E-cad promoter without an I-SceI

consensus cut site driving the expression of the HSVTK gene

was treated with tetracycline followed by ganciclovir as above. No

clones survived from this cell line (data not shown). By RTPCR

expression levels, HSVTK was transcriptionally silent in the

ganciclovir resistant clones from above (Figure 5A). Interestingly,

one out of the ten silent clones had a portion of the promoter or

gene deleted (data not shown), indicating that improper repair

may result in deletion events. The rest of the silent clones appeared

to have intact sequences as examined by PCR. Therefore, the

frequency of silencing without deletion of HSVTK in our system is

0.9%. We examined the promoters in two of these silent clones by

ChIP at passage 5 after ganciclovir selection. There was no

enrichment of SIRT1 or change in H4K16ac in the clones as

compared to uncut, unselected cells (P), but there was a significant

enrichment of DNMT1, DNMT3B and EZH2, along with the

silent chromatin marks dimethyl and trimethyl H3K9 and

H3K27me3 (Figure 5B). Interestingly, when the promoters were

examined by ChIP at a later passage (p34 to p36 after ganciclovir

selection) DNMT1 was still enriched at the promoter, but

localization of DNMT3B was lost (Figure 5C). These findings

suggest that the chromatin in the promoter is indeed in a silent

state and that this silent state is accompanied in later passages by

the presence DNMT1 but not DNMT3B.

Using a PCR that was specific for the I-SceI containing E-cad

promoter, we bisulfite sequenced the promoter to examine the

DNA methylation status of the HSVTK silent clones. The

parental cell line was almost completely unmethylated

(Figure 5D). The HSVTK silent clones showed a varying degree

of methylation. HSVTK silent clones originally treated with tet for

4 hours showed very little CpG methylation (data not shown),

however, the majority of those treated with tet for 24 hours

showed an increase in CpG methylation 39 to the break site

(Figure 5D and 6B). To examine how methylation might change

with time in the silenced clones, we bisulfite sequenced increasing

passages of two HSVTK silent clones, one without and one with

initial DNA methylation (Figure 5D). Clone 1B, which initially had

very little methylation continued to have only a scattered change

in methylation with passage. Clone 8B had initial methylation just

39 to the break site and methylation spread with passage towards

the actual break site and became quite prominent by passage 30

(Figure 5D). Interestingly, this methylation occurs in the region

that is flanked by the ChIP PCR primers in the promoter (SCE),

demonstrating that the DNA methylation enzymes are recruited to

the region where the methylation is occurring (Figure 5D). To

further demonstrate how the DNA methylation changes with cell

passage, we calculated the mean number of methylated CpGs per

bisulfite-sequenced clone per passage of selected HSVTK silent

clones (Figure 5E). Clones with little initial methylation (clones 1B

and 6B) showed almost no increase in the mean number of

methylated CpGs per bisulfite sequenced clone (Figure 5E).

However the HSVTK silent clones with an initial methylation of

3–4 CpGs (clones 3B and 8B) gained methylation with increasing

passage (Figure 5E).

To further look at the nature of the relationships between

silencing and DNA methylation, we treated one unmethylated and

one DNA methylated clone with the DNA demethylation agent 5-

deoxy-azacytidine (DAC) or with Trichostatin A (TSA), a type I/II

histone deacetylase inhibitor. DAC treatment inhibits DNMT

activity and causes re-expression of genes silenced with DNA

methylation [56,57]. It will sometimes cause this response in low

expression genes which have no proximal promoter DNA

methylation [57]. However, we and others have previously shown

that TSA treatment is generally ineffective for re-expression of

such silent genes, particularly when the CpG island is densely

DNA methylated [56]. TSA can be more effective when the DNA

methylation in such genes is partial or minimal [56]. Interestingly,

when the HSVTK silent clones are treated with TSA or DAC, the

clone that has silent chromatin but no methylation (clone 1B) has

re-expression of HSVTK by either treatment (Figure 5F).

However, clone 8B, which has silent chromatin and increased

DNA methylation, has HSVTK re-expressed by DAC treatment

but to a much lesser degree with TSA. These findings suggest that

at this later passage of clone 8B the partial DNA methylation plays

at least some role in maintaining the silencing of the HSVTK

gene.

As demonstrated above, a DSB in the promoter of a gene that is

associated with transient recruitment of silencing proteins can, in

occasional cells, cause long term silencing of the involved gene.

Some partial DNA methylation can also be associated with such

silencing and is possibly maintained by the persistence of the

maintenance DNMT, DNMT1, in the region. Because we

observed in the acute DSB induction studies a transient

recruitment of the de novo DNMT, 3B—which would be the

best candidate to initiate any DNA methylation—and evidence

that SIRT1 may play a role in this recruitment, we sought to

determine the significance of these dynamics in long term

silencing. To study this, we performed our siRNA knock down

of SIRT1 by treating cells with NT or SIRT1 siRNA, followed by

treatment with tet for 24 hours, then selection with ganciclovir.

Global SIRT1 knockdown levels were similar after tet treatment to

those in the studies described earlier (Figure 3A). Both NT and

SIRT1 siRNA treated cells had similar numbers of surviving,

silenced clones (9 and 8 out of approximately 1000 cells selected,

respectively) suggesting that the amount of reduction achieved for

SIRT1 recruited to the promoter during DNA damage did not

alter silencing of the promoter. Next, the DNA from clones that

survived ganciclovir treatment was bisulfite treated and sequenced

as above. NT treated HSVTK silent clones showed a similar

pattern to non-siRNA treated cells (untreated) both in terms of

how many bases were DNA methylated per clone and the position

where the methylation occurred (Figure 6A and 6B). Thus, CpGs

39 to the cut site were methylated in 8 out of 9 of the clones with a

mean of 3.1 methylated CpGs per clone (Figure 6A and 6C). In

HSVTK silent clones from SIRT1 siRNA treated cells, only 2 out

of 8 clones had methylated CpGs in numbers greater than those

for uncut cells. This difference in the number of HSVTK silent
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Figure 5. Inducing a DSB in a promoter can lead to silencing and the seeding of methylation. (A) Cells were untreated (P) or treated for
4 hours (named A) or 24 hours (named B) with tetracycline. Silencing of HSVTK was then selected for by ganciclovir treatment. Clones that survived
selection were analyzed by RTPCR for HSVTK and GAPDH expression. (B) Early passages of HSVTK silent clones have an enrichment of DNMT1,
DNMT3B, EZH2 and silent chromatin marks at the SCE promoter. ChIP assays for all marks in the figure were performed on cells where no DSB was
induced and no cell selection was initiated (P) and two HSVTK silent clones five passages after selection with ganciclovir (1B and 3B). Representative
gels are shown for PCR using primers in the SCE promoter region. (C) Late passages (p34 to p36 after selection with ganciclovir) of HSVTK silent
clones show enrichment for DNMT1 but not DNMT3B. ChIP was performed with cells as in (B). Representative gels are shown for PCR using primers in
the SCE promoter region. (D) Bisulfite sequencing data for DNA methylation status of clones. DNA was isolated from uncut, unselected cells (parental)
and two HSVTK silent clones (1B and 8B) at passages 1, 10, 20 and 30 after ganciclovir selection. Bisulfite sequencing was performed using primers on
either side of the cut site with the 39 primer being specific for the exogenous E-cad promoter. Open circles indicate unmethylated CpGs and closed
circles indicate methylated CpGs. The location of the Sce cut site, the transcription start site, the SCE primers used for ChIP, and the well-characterized
E-cad E-boxes (E1, E2, and E3) are indicated. (E) CpG methylation spreads with passage. The E-cad promoters containing the cut site were bisulfite
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clones with methylated CpGs versus those with unmethylated

CpGs was significantly different between the SIRT1 knockdown

cells and either the NT or the untreated cells (Figure 6B). Also, the

mean number of methylated CpGs per HSVTK silent clone in

SIRT1 knockdown cells, 1.3, is significantly different from the

number in both the NT knockdown cells, 3.1 methylated CpGs,

and the cells not treated with siRNA, 3.4 methylated CpGs with

p,.05 by Student’s T-test (Figure 6C). The above results suggest

that the reduced levels of SIRT1 recruited to the break site during

repair do not affect silencing of the promoter. However, possibly

by playing a role in transient recruitment of DNMT3B to the DSB

region, SIRT1 does appear to play a role in seeding of methylation

in the promoter CpG island in occasional cells, which can then be

perpetuated and expanded by the persistent presence of DNMT1.

Discussion

In the present study our data emphasize, as has been shown for

some chromatin constituents by others [19,24,29,30], that during

normal repair of a DSB, silencing proteins are recruited to the site

of DNA damage along with enrichment of their corresponding

histone marks. We substantially add to these previous data by

showing the involvement of the principal long term silencing

complex PcG. In the ARR model of DSB repair SIRT1 and the

PcG protein, EZH2, most likely play a role in the restoration phase

of repair by returning chromatin back to its original more

condensed state or making chromatin even more condensed

(Figure 6D). We hypothesize that following DNA damage in our

particular model involving a gene promoter region, the EZH2

catalyzed trimethylation of H3K27, plus the enrichment of the

additional silencing marks, H3K9me2 and H3K9me3, may all

lead to a transient silencing of the gene in order to make sure the

DNA repair is complete before transcription can resume and/or to

a compaction of the chromatin that blunts the DNA damage

signaling stimulated by the initial opening of the chromatin [23].

During the normal process of DSB repair the association of the

above proteins and histone marks with the DSB appears to be

transient for most cells, returning to low or absent baseline levels

after repair has occurred. This is true in our exogenous gene

promoter region, even in a tumor cell which involves a promoter

sequence that frequently is DNA hypermethylated and abnormal-

ly, heritably silenced in cancer. However, and important to the

model for how abnormal CpG island DNA hypermethylation and

gene silencing might occur in cancer, we have demonstrated that

induction of a break in the promoter of a gene can infrequently

lead to long term silencing of that gene. Silencing could occur

because, occasionally, there is permanent association of the

silencing factors to the break or at least proteins that are important

for establishing an epigenetic memory for silencing. Additionally,

in cells with such retained silenced promoters, there appears to be

an early seeding of CpG methylation that spreads over time and

which potentially can, then, contribute to a more stable silencing

of the promoter.

This work suggests that a DSB occurring in the promoter of a

gene may be an initiating event for the silencing of the promoter,

leading to a mechanism by which oxidative or other DNA damage

can induce epigenetic silencing, including promoter CpG island

DNA hypermethylation of tumor suppressor genes. In this regard,

SIRT1 is a key stress response and cell survival protein [35,38].

This protein has now been associated in stem/precursor and

cancer cells with silencing chromatin [40] including PcG

complexes [43,58], with DNA damage repair in multiple settings

[59,60], and, in our own studies, with maintenance of gene

silencing for DNA hypermethylated cancer genes [39]. We [61]

and others [62,63] have recently reported that there is an

association of embryonic stem cell like repressive chromatin

patterns for large groups of such cancer genes, and particularly

PcG components and the corresponding histone modification,

H3K27me3. Furthermore, we have hypothesized from studies of

cancer progression, including the very early appearance of many

DNA hypermethylated genes, that this PcG component is

particularly important for the vulnerability of genes to the

abnormal DNA methylation during cancer evolution [64]. In

turn, we have wondered whether settings that are high risk for

cancer development, such as chronic inflammation which exposes

cells to a significant amount of DNA damage, collaborate with the

PcG chromatin for such DNA methylation recruitment. Our

present study further points to this possibility and links SIRT1 to

the process, especially to recruitment of DNA methylation. The

findings suggest that a DSB occurring in the promoter of a gene

may initiate epigenetic silencing in occasional cells and this

silencing, in turn, could contribute risk of tumor development.

Our present link of SIRT1 and PcG to the DNMTs during

DNA damage repair brings up important issues regarding whether

these proteins form a complex during DNA repair or are recruited

independently to the break site. A PcG complex, termed PRC4,

containing SIRT1 and EZH2, has previously been identified [43].

Additionally, SIRT1 has been found to co-localize and to be co-

immunoprecipitated with DNMT1 at rRNA [65]and it has been

hypothesized that the DNMTs may be recruited to DNA through

interaction with PcG [62,66]. Although SIRT1 and EZH2 appear

to be recruited to the break site in the same time frame, EZH2 is

still recruited, and possibly even more so, when SIRT1 is knocked

down, suggesting that its recruitment is not dependent on SIRT1.

There are higher levels of EZH2 enrichment in the TK gene in the

SIRT1 knockdown cells in contrast to relatively low EZH2

enrichment in the TK gene in the non-target knock down cells.

The presence of higher levels of EZH2 and H3K27me3 may be an

attempt to further compact the DNA in the absence of high levels

of SIRT1 or to turn off the DNA damage signal which may have

been initiated by histone acetylation and therefore maintained in

the SIRT1 knockdown cells. Intriguingly, an important and novel

finding in our studies is that the seeding of the DNA methylation

appears highly dependent on SIRT1 presence during the acute

DNA damage and repair interval and seems likely to involve a role

for SIRT1 in the transient localization of the de novo DNMT, 3B,

during repair. It is unclear from this work whether this recruitment

of DNMT3B is because of a direct interaction with SIRT1. After

DNA damage, the earliest time points of SIRT1 recruitment (4

and 4+4 hours-Figure 2B) correspond to the time points where we

sequenced in HSVTK silent clones at passages 1, 10, 20 and 30 after ganciclovir selection. A mean number of methylated CpGs per bisulfite
sequenced clone is reported. A minimum of 6 bisulfite clones were sequenced per HSVTK silenced clone. The means presented are determined from
the data shown in (D) plus additional unmethylated clone 6B and methylated clone 3B. (F) Effects of DAC and TSA treatment on expression of HSVTK
as analyzed by realtime RT-PCR. In the lesser DNA methylated clone, 1B, both drugs lead to increased TK expression, while in the more DNA
methylated clone, 8B (see panels D and E), DAC induces more increased expression than TSA treatment. Parent clones, or passage 30 of HSVTK silent
clones, were treated with 1 mM deoxyazacytidine once a day for three days or once with 300 nM TSA for 16 hours. Realtime RT-PCR was performed
for HSVTK expression. The mean HSVTK expression is shown in relation to expression in untreated parental cells with error bars indicating the
standard error for three independent experiments.
doi:10.1371/journal.pgen.1000155.g005
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Figure 6. Reduction of SIRT1 during DNA damage decreases the number of silent clones that have methylation. (A) Cells were treated
for three consecutive days with non-target (NT) or SIRT1 siRNA followed by 24 hours of tetracycline. Cells were then selected for silencing of the
HSVTK gene by treatment with ganciclovir. DNA was isolated from clones that survived ganciclovir treatment. Bisulfite sequencing was performed as
outlined in Figure 5. One representative bisulfite sequenced clone is presented for each HSVTK silent clone. (B) A dot plot of the mean number of
CpGs methylated per HSVTK silenced clone from either un-siRNA treated cells (untreated) (Figure 5D & E), non-target siRNA treated cells (NT), or SIRT1
siRNA treated cells (SIRT1). The number of clones without methylation versus the number with methylation is significantly different between the
SIRT1 knockout cells and the non-target cells (the asterisk indicates p,.05 by chi-square test). (C) The mean number of methylated CpGs per all
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demonstrate enrichment of DNMT3B (Figure 2D). However,

DNMT3B is not enriched at later time points where SIRT1

recruitment is the greatest. As an alternative to a direct physical

interaction between SIRT1 and DNMT3B, SIRT1 could affect

DNMT3B localization to the cut site indirectly by playing a critical

role in a complex that forms at the break site or by modifying

another protein that plays a role in DNMT3B recruitment. For

example, SIRT1 knockdown appears to have the greatest effect on

the persistence of H4K16ac after damage. Acetyl H4K16 is a

critical residue for chromatin formation, with deactylation of this

residue being associated with tight compaction of chromatin [67].

Its status could influence other histone modifications through

composition of the complex formed at the break site that could

potentially contain HATs, HDACs, HMTs, and/or histone

demethylases. A change in these other histone modifications could

in turn influence DNMT3B recruitment. Unlike DNMT3B,

DNMT1 localization is independent of SIRT1, suggesting that

DNMT1 is recruited through a different mechanism. Further

studies need to be performed to identify how silencing complexes

formed at sites of DNA damage precisely involve interactions

between SIRT1, EZH2 and other PcG components, and the

DNMTs and whether such interactions are operative in other

transcriptional silencing processes.

Recently Cuozzo et al also demonstrated that DNMT1 is

associated with chromatin, after DNA damage, specifically after

repair by HR [68]. After HR, some DNA methylation occurs that

plays a role in silencing the recombined genes. This silencing is

dependent on DNMT1 and reversed by treatment with DAC.

Interestingly, this paper showed induced methylation localized 200

to 300 bp 39 of the break site, similar to the degree and relative

localization of DNA methylation in our model cut site [68]. We

extend these findings by showing that with passage this

methylation can be expanded, increasing from approximately 4

methylated CpGs to 10–13 methylated CpGs in 30 passages. We

suggest that our current findings provide molecular support for our

previous model [64] concerning how this expansion occurs in

tumors. An event occurs in a cell that causes an initial seeding of

methylation at a promoter, and over time during tumor

progression, this methylation spreads and contributes to progres-

sive stable silencing of the involved promoter. A similar model

exists for transient ‘‘hit and run’’ silencing of a promoter construct

by a transcription repression complex leading to cell clones with

retained silencing, even in the absence of the original complex,

and progressive spread of DNA methylation [54].

Another intriguing finding from our work is the different potential

roles of DNMT1 and DNMT3B in silencing. Both are found to be

transiently recruited to the site of DNA damage, albeit with slightly

different timing. In terms of normal DNA repair, this transient

recruitment of DNMT1 and DNMT3B to the break site may be

part of a universal mechanism used during DNA damage repair to

restore the correct DNA methylation code to the area around the

break. However, this may be more for areas widely flanking the

break in our model situation since the CpG island of gene promoters

like the one we are using are generally maintained free of DNA

methylation in normal cells. Alternatively, in the transient setting,

these proteins could perform a silencing role without using their

DNA methylating capacity since multiple studies suggest these

proteins have transcriptional repression potential independent of

their ability to catalyze DNA methylation [69–71]. Although

DNMT1 is predominantly a maintenance DNMT, it has been

demonstrated to have some de novo methyltransferase activity

[72,73], while DNMT3A and DNMT3B are thought to be the

predominate de novo methyltransferases [74]. Our present work

supports the thought that these enzymes can work together at

different phases of methylation initiation, maintenance, and

spreading. We only detect seeding of methylation when DNMT3B

is present at the cut site and do not observe seeding when only

DNMT1 is present. Additionally, at early passages of the clones that

have silenced the promoter containing the cut site, both DNMT1

and DNMT3B are present. However, at later passages, enrichment

of DNMT3B is lost even though the methylation is still expanding.

We were not able to detect enrichment of DNMT3A either

transiently or in our silent clones. It is unclear however whether

these results are due to a lack of recruitment or a sensitivity issue for

the antibody used for ChIP. These findings suggest that DNMT3B

is important for the initial seeding of methylation, while DNMT1 is

needed for de novo activity in expanding and maintaining the sites

of DNA methylation.

With respect to DNA repair, chromatin modifications are

important in the specific steps of repair of DSBs. Phospho-H2AX

is required for the recruitment of the chromatin remodeling

complex INO80 that most likely plays a role in repositioning

nucleosomes around the break [75–77]. Phospho-H2AX is also

necessary for the stable, concentrated recruitment of DNA repair

proteins to the site of the break [48,78]. In addition to H2AX

modifications, it has been demonstrated by using a pan-acetyl

lysine H4 antibody that lysine residues of histone H4 are

acetylated by the human TIP60 histone acetyltransferase complex

in response to DNA damage [33]. Our work supports these

findings because at the 4 hour time point we see an increase in

H4K16ac when compared to uncut cells. Adding to this process,

we show that this initial acetylation of histone H4, specifically at

lysine 16, is followed by the deacetylation of the same residue

concomitant with recruitment of SIRT1 to the break site. We

hypothesize that this deacetylation is important to return the

chromatin back to its original state following DNA repair.

Although we did not see a change in DNA repair following

knockdown of SIRT1 and prolonged acetylation of H4K16, it has

been demonstrated in yeast that a lack of deacetylation of H4K16

after DNA damage affects repair by the NHEJ pathway [79].

In mammalian cells it is hard to separate a role for SIRT1 in

DNA damage repair from its role in p53 regulation. SIRT1

HSVTK silent clones from either un-siRNA treated cells, NT siRNA treated cells, or SIRT1 siRNA treated cells. Error bars indicate the standard error. The
difference in the mean for the SIRT1 siRNA treated cells is significantly different from that of the NT siRNA treated cells (the asterisk indicates p,.05
by Student’s T-test). (D) Model for double strand break induced silencing of a gene. Initially after a DSB occurs in the promoter of a gene H2AX is
phosphorylated (orange circles) and H4K16 is acetylated (green circles) causing the chromatin to open, allowing access to the break by repair factors
and a stimulation of DNA damage signaling. Then SIRT1, EZH2, DNMT1, and DNMT3B are recruited to the area around the break site resulting in a
decrease in H4K16ac and an increase in H3K27me3 (purple circles). These modifications result in compaction of the chromatin around the break site
possibly causing a reduction in DNA damage signaling initiated by the prior decondensation of the chromatin or preventing transcription of
unrepaired DNA. In the majority of cells (99.1%) the DNA is repaired and the chromatin returns to its original state. In a small fraction of the cells
(0.9%) the promoter becomes silenced and gene expression is lost possibly due to the persistent localization of EZH2, DNMT1, and DNMT3B to the
area of the break site and the prolonged condensed chromatin. Additionally, there is a seeding of DNA methylation in the area 39 to the break site
(white circles – unmethylated CpGs; black circles – methylated CpGs). After passage, DNMT3B is no longer localized to the promoter but EZH2 and
DNMT1 are retained. The DNA methylation continues to spread further stabilizing the silencing of the downstream gene.
doi:10.1371/journal.pgen.1000155.g006
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deacetylates p53 and therefore decreases transcriptional activity of

the protein. Inhibition of SIRT1 has been shown to induce

apoptosis and enhance radiation sensitization, most likely because

p53 acetylation is increased [80]. Loss of SIRT1 has also been

shown to allow cells to bypass senescence and allow cell division

without repair of DNA [81]. While it is unclear in these previous

studies how much of the effect of SIRT1 on damage sensitization

and cell cycle check points is dependent on p53, our system looks

at the role of this protein in DNA damage repair independent of

p53. In MDA-MB-231 cells p53 is mutated so, although SIRT1

knock down causes an increase in acetyl p53, the p53 protein is

non-functional [51]. Our work then directly demonstrates that

SIRT1, in the absence of functional p53, is localized to the

chromatin near a DSB and plays a role in recruiting DNMT3B to

the vicinity.

In summary, the system of Jasin et al [46] used here uniquely

allows us to determine if induction of a DSB in a promoter can

lead to transcriptional silencing. In a transient setting, several

factors that play a role in gene silencing are recruited to the break

and, occasionally, retention of some of these factors can lead to

sustained silencing, which can be associated with initiation and

spreading of DNA methylation to further stabilize the silencing.

Our model is important to understanding how DNA damage

occurring at gene promoter sites may be one key factor in

initiating abnormal epigenetic gene silencing in association with

abnormal CpG island DNA methylation. In terms of cancer

prevention, targeting the series of events suggested by our model at

sites of chronic inflammation may be beneficial to reducing tumor

formation by decreasing the silencing of the large number genes

which we now know become aberrantly silenced during neoplastic

progression [45,52,64]. Our findings suggest new molecular events

to consider for cancer prevention targeting and the need for a

further understanding of the complex that initiates DNA silencing

and how it is recruited to promoters.

Materials and Methods

Cell Culture and Creation of Stable Cell Lines
MDA-MB-231 cells (ATCC, www.atcc.org) were cultured in

Dulbecco’s modified Eagle’s medium supplemented with 10%

tetracycline-tested fetal bovine serum (Hyclone, www.hyclone.

com). The homing endonuclease I-SceI, along with the NLS and

HA epitope tag, was amplified from the pCMV-ISceI vector [46]

(a gift from M. Jasin) and inserted into the pcDNA4-TO vector

(Invitrogen, www.invitrogen.com). The pEGFP1-E-cad vector

contains genomic DNA corresponding to the human E-cad

promoter inserted into the EcoRI/SalI sites of the pEGFP-1

vector. The consensus I-SceI cut-site was inserted into the E-cad

promoter at the unique MluI restriction site that is located at

2171 in relation to the transcription start site. This insertion

avoids all characterized Ebox and Sp1 elements within the E-cad

promoter. The EGFP coding sequence was removed and replaced

with HSV thymidine kinase sequence that was amplified from the

BaculoDirect N-terminal linear DNA Gateway Cassette (Invitro-

gen). MDA-MB-231 cells were co-transfected with pcDNA6-TR

(Invitrogen) and pcDNA4-TO-HA-I-SceI and dual integration

was selected for using Zeocin and Blasticidin treatment. Stable

clones were isolated and screened for tetracycline induced

expression of HA-I-SceI and no background expression without

tetracycline. The clone with highest inducible expression was then

transfected with the pCDH1-I-SceI-HSVTK vector. Clones with

stable integration were selected for with G418 treatment. Clones

were screened by two PCRs with linear amplification for single

copy insertion of the entire sequence. To verify the copy number

in the final clone selected (ROS8) we prepared copy standards

using a known amount of pCDH1-I-SceI-HSVTK plasmid DNA

combined with 50 mg genomic DNA from non-transgenic MDA-

MB-231 cells or pGAPDH plasmid DNA only. By realtime PCR

for a primer set in the TK gene or in the GAPDH gene we used

the copy standards to develop two standard curves. The TK copy

number in 50 mg genomic DNA from the pCDH1-I-SceI-

HSVTK containing clone was normalized so the GAPDH copy

number was 2 (Figure S1) [82].

Tetracyline Treatment
For tet-induced expression of the HA-I-SceI enzyme, tet (Sigma,

www.sigmaaldrich.com) was added to the culture media to a final

concentration of 1 mg/ml. After 4 hours the media was removed

and the cells were washed twice with PBS. Then cells were either

collected (4 hour time point) or fresh media was added and the

cells were incubated at 37uC for an additional 4 hours (4+4 hour

time point), 16 hours (4+16 hour time point), 24 hours (4+24 hour

time point), or 48 hours (4+48 hour time point). For the

generation of silent clones, cells were treated with tet for 4 hours

or 24 hours followed by being sub-cultured at a density of

1000 cells per 100 mm dish (cell numbers were determined by

counting with a hemocytometer). Ganciclovir (Sigma) was added

to the dish at a final concentration of 50 mM. Media was changed

bi-weekly until single clones were observed. Silent clones were

continually grown in the presence of ganciclovir. Clones

originating from cells treated with 4 hours of tet were labeled A

and those originating from cells treated with 24 hours tet were

labeled B.

RNA Preparation and Analysis
Total RNA was extracted (Qiagen, www.qiagen.com) according

to the manufacturer’s instructions and subjected to reverse

transcription using Superscript II RNAse H Reverse Transcriptase

(Invitrogen) followed by semi-quantitative polymerase chain

reaction or quantitative real-time polymerase chain reaction. For

real-time analyses, the QuantiTect SYBR Green PCR kit (Qiagen)

and a BioRad iCycler (Biorad, www.bio-rad.com) were used.

Values reported were based on a standard curve generated by

serial dilution of the untreated parental sample, and expression

was reported as a fraction of the expression in the untreated

parental samples. The sequences of the primers used are listed in

Table S1.

Western Blot Preparation and Analysis
Part of the sonicated samples collected for ChIP was used for

western blot. Protein concentrations were measured by BCA

(Pierce Biotechnology, www.piercenet.com). Protein extracts were

subjected to polyacrylamide gel electrophoresis using the 4%–12%

NuPAGE gel system (Invitrogen), transferred to PVDF (Millipore,

www.millipore.com) membranes, and immunoblotted using anti-

bodies that specifically recognize SIRT1 (DB083, Delta Biolabs,

www.deltabiolabs.com), HA (sc-805, Santa Cruz Biotechnology,

www.scbt.com, Figure 2), HA-HRP (12013819001, Roche Ap-

plied Science, www.roche-applied-science.com, Figure 3), phos-

pho-H2AX (05-636, Millipore Corporation), and acetylated lysine

382 p53 (Cell Signaling Technology, www.cellsignal.com).

ChIP
ChIP analysis was performed as described previously [83] with a

few modifications. Culture medium was removed, the cells were

washed once with PBS, and then an additional 10 ml of PBS was

added to the plate. Proteins were cross-linked to proteins by
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addition of disuccinimidyl glutarate (DSG, Pierce) to the PBS to a

final concentration of 0.5 mM for 30 min at room temperature.

Proteins were then cross-linked to DNA by addition of

formaldehyde to a final concentration of 1% for 10 min at room

temperature. Antibodies to SIRT1 (05-707, Figure 2B & 5B),

phospho-H2AX (07-164), and H4K16ac (07-329) were obtained

from Millipore. Antibodies to SIRT1 were also obtained from

Delta Biolabs (DB083, Figure 3B & C). Antibodies to EZH2 were

from Cell Signaling Technologies (4905). Antibodies to DNMT1

(IMG-261A) and DNMT3B (IMG-184A) were from Imgenex

(www.imgenex.com). Antibodies to H3K9me2, H3K9me3, and

H3K27me3 were generous gifts from T. Jenuwein. Immune

complexes were collected with 100 ml of 3:1 Protein A and Protein

G magnetic Dynabeads (Invitrogen) for 2 hours at 4uC. Primers

were used to amplify the promoter region of the inserted E-cad

promoter (SCE). The sense primer was specific for the E-cad

promoter and the anti-sense primer was specific for the E-cad

promoter containing the cut site. A different set of primers was

used to amplify a region in the HSVTK gene (TK). Sequences of

the primers are listed in Table S1. Ten microliters of PCR product

were size fractionated by PAGE and were quantified using Kodak

Digital Science 1D Image Analysis software. Enrichment was

calculated by taking the ratio between the net intensity of the gene

promoter PCR products from each primer set for the bound,

immunoprecipitated sample and the net intensity of the PCR

product for the non-immunoprecipitated input sample. Values for

enrichment were calculated as the average from at least three

independent PCR analyses. Each ChIP experiment was performed

twice. The data presented is from one representative experiment.

SIRT1 Knockdown
Cells were transiently transfected with 25 nM non-target siRNA

(D-001210-05, Dharmacon, www.dharmacon.com) or SIRT1

siRNA (L-003540-00, Dharmacon) using lipofectamine 2000

(Invitrogen) for three consecutive days following the manufactur-

er’s suggested protocol. On the fourth day, the tet treatment

schedule was started either for collection of samples at different

time points or tet treatment prior to ganciclovir selection.

5-Aza-dC and TSA Treatments
Cells were treated with mock, 1 mM 5-Aza-dC (Sigma) for

72 hours, or with 300 nM TSA (Wako, www.wakousa.com) for

16 hours, as described previously [56].

Bisulfite Sequencing
Bisulfite sequencing was performed as previously described [84]

on DNA from parental uncut cells or clones that were ganciclovir

resistant and had silenced HSVTK. Primers that are specific for

bisulfite treated DNA and are methylation non-specific were used

(Table S1). The sense primer is specific for the E-cad promoter.

The anti-sense primer is specific for the E-cad promoter

containing the cut site.

Supporting Information

Figure S1 Clone ROS8 contains one inserted copy of pCDH1-

SCE-HSVTK. (A) Gel based PCR was performed on genomic

DNA collected from the parental MDA-MB-231 cell line, three

different passages of the clone ROS8 (p9, p30 and p50), and serial

dilutions of copy number standards using a known amount of

pCDH1-I-SceI-HSVTK or GAPDH plasmid DNA. Genomic

DNA primers specific for the HSVTK gene (TK), the SCE

containing CDH1 promoter (SCE), or GAPDH were used. (B)

Realtime PCR was performed on DNA used in (A). Two standard

curves were generated using the copy number standards, one for

the TK and one for the GAPDH primers from (A). The TK copy

number in the genomic DNA was normalized so the GAPDH

copy number was two. The means plotted are the calculated TK

copy number from three independent real time experiments with

error bars indicating standard error.

Found at: doi:10.1371/journal.pgen.1000155.s001 (1.16 MB EPS)

Table S1 Forward and reverse primers used in this work for RT-

PCR, ChIP, and bisulfite sequencing.

Found at: doi:10.1371/journal.pgen.1000155.s002 (0.03 MB

DOC)
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