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Abstract—The unsupervised segmentation evaluation (USE)
method has been commonly used for remote sensing segmentation
parameter (SP) determinations to produce good segmentation re-
sults, due to its objectiveness and high efficiency. Existing studies
have used different criteria to measure homogeneity and hetero-
geneity and have used certain combination strategies to form over-
all evaluations. However, different criteria have unique statistical
characteristics. The differentiated statistical characteristics main-
tained in homogeneity and heterogeneity calculations may result
in inherent instability in the USE results, leading to unsuitable SP
selections. Moreover, few studies have focused on the simultaneous
determination of a single optimal SP and multiple optimal SPs.
In this article, double-variance (DV) measures were proposed for
recognizing more suitable SPs. Then, two combination strategies,
F-measure and local peak (LP), were applied to test the poten-
tial of using DV measures to determine a single SP and multiple
SPs, respectively. The multiresolution segmentation algorithm and
Gaofen-1 data were used to test the proposed method. The com-
parative results indicated that the DV is a more promising internal
homogeneity and external heterogeneity metric for segmentation
evaluation and optimal SP determination compared to conventional
methods. The F-measure-based DV method could produce better
overall goodness of segmentation for differently sized natural geo-
objects, compared with the competing methods. The LP-based DV
method could obtain multiple optimal scales that produced better
segments for the identification of small, natural geo-objects to large,
semantic geo-objects, compared to the competitive methods.

Index Terms—Double-variance (DV), geographic-object-based
image analysis (GEOBIA), image segmentation, parameter
optimization, unsupervised evaluation.

I. INTRODUCTION

T
HE detailed information on geographical objects provided

by high-resolution satellite imagery raises a new challenge

for traditional pixel-based image analysis [1], [2], since the

phenomenon of capturing the same geo-object with different
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spectra and different geo-objects with the same spectrum occurs

in high-resolution satellite imagery. To address this problem,

geographic-object-based image analysis (GEOBIA) has been

developed to yield better accuracy [3], [4] because of its lower

sensitivity to strong spectral variability within a geo-object

[5]. In addition, GEOBIA can generate textural features and

shape concepts of geo-objects to improve the accuracy of image

analysis [6]–[8].

Image segmentation is a key issue in GEOBIA since it can

provide objects to GEOBIA by partitioning remote sensing

images into meaningful groups of pixels [9], and the objects

are considered the minimum units of GEOBIA. Therefore,

many scholars have paid attention to obtaining good objects

for GEOBIA and have developed segmentation methods, such

as the multiresolution segmentation (MRS) [10], mean-shift

segmentation [11], machine learning methods [12]–[14], and hy-

brid segmentation [8], [15]–[19]. However, defining appropriate

segmentation parameters (SPs) for good segmentation results is a

major challenge [20], [21], since the aforementioned algorithms

almost entirely use certain user-defined parameters to control the

segmentation quality [22]. In most cases, inappropriate SPs will

result in bad segmentation, which will cause low accuracy in the

subsequent image analysis [23]. Hence, segmentation quality

evaluation is a prerequisite for obtaining appropriate SPs and

fine segmentation results.

Segmentation quality evaluation methods can be grouped into

the subjective trial-and-error method and objective criterion-

based method. The trial-and-error method allows the specialist

to obtain appropriate SPs for fine segmentation by visually

comparing multiple segmentation results [24]. However, this

method is time- and labor-consuming and is inevitably affected

by subjectivity. The criterion-based method includes the su-

pervised and unsupervised evaluation methods, in which the

difference lies in whether or not reference polygons are needed.

The former allows the specialist to obtain fine segmentation

by computing the dissimilarity between the segmentation re-

sults and the reference polygons [25]–[28]. However, generat-

ing reference polygons is subjective and time-consuming [29].

Inappropriately generated reference polygons will cause false

evaluation results. The latter method allows the specialist to

obtain more efficient and less subjective segmentation evaluation

results without needing reference polygons [25], [30]–[34]. At

the moment, the unsupervised evaluation method can achieve

automation in selecting appropriate SPs [31]. Thus, much effort
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has been put into unsupervised segmentation evaluation (USE)

methods in recent years.

The USE method commonly supports the idea that good seg-

mentation should be homogeneous in the intrasegment area and

heterogeneous in the intersegment area [32], [40], [41]. Some

mathematical criteria have been proposed and applied to com-

pute intrasegment homogeneity and intersegment heterogeneity

in existing studies [2], [24]–[26], [31], [32], [34]–[37]. Never-

theless, the consideration of the impact of different mathematical

criteria applied to intrasegment homogeneity and intersegment

heterogeneity calculations based on segmentation assessment

results has rarely been reported in the existing literature. Most

methods use different mathematical criteria to measure intraseg-

ment homogeneity and intersegment heterogeneity, such as the T

and D metrics [35], area-weighted variance (WV), and Moran’s

I metrics [32], [37]. Although these metrics have been demon-

strated to be effective for evaluating segmentation quality and de-

termining the appropriate SPs for good segmentation results, the

impact of the characteristics of different mathematical criteria

on segmentation evaluation results has remained obscure until

now. Different mathematical criteria have unique statistical char-

acteristics. If using different mathematical criteria to indicate

the intrasegment homogeneity and intersegment heterogeneity,

the differentiated statistical characteristics between the criteria

may result in inherent instability in the segmentation evaluation

results, leading to unsuitable SP selections and poor goodness

of segmentation results. Therefore, it is interesting to study

whether segmentation evaluation accuracy would be improved if

the mathematical criteria with the same statistical characteristics

are used to calculate both homogeneity and heterogeneity.

Some specific combination strategies, applied to integrate

the intrasegment homogeneity and intersegment heterogeneity

into a comprehensive indicator, are required for the segmenta-

tion quality evaluation and suitable SP selection. Early studies

mainly focused on examining combination strategies for single

optimal SP determinations [2], [32], [33], [37]–[39]. However,

it is impossible for every geo-object to be segmented well in

the segmentation of high-resolution satellite imagery obtained

by a single optimal SP. Thus, some studies have paid attention

to combination strategies for determining multiple optimal SPs

to segment high-resolution satellite imagery for more accurate

image analyses [2], [37], [40], [41]. We need to decide to rec-

ognize single or multiple optimal SPs according to the specific

application requirements. If we want to produce one overall good

segmentation result, we can tradeoff the small geo-objects and

the large geo-objects well by determining a single SP. If we want

to recognize differently sized geo-objects well, multiple SPs are

required.

In this article, a new USE method that incorporates double-

variance (DV) measures for homogeneity and heterogeneity

calculations was developed to obtain more reasonable SPs.

Then, two integrated strategies were applied to combine the

intrasegment homogeneity and intersegment heterogeneity into

one comprehensive indicator for the overall segmentation qual-

ity assessment, one of which could achieve the determination

of a single optimal SP and the other could achieve multiple

optimal SPs.

II. METHODS

A schematic of the application of the proposed new USE

method for remote sensing image analysis is displayed in Fig. 1.

First, we used the MRS algorithm [42] to produce a set of

segmentation results by setting different SPs. Then, we calcu-

lated the area WV and area-weighted relative variance (WRV)

to indicate the intrasegment homogeneity and intersegment

heterogeneity, respectively. Finally, two combination strategies

were used to assess the segmentation quality and determine the

appropriate SPs, in which the F-measure strategy and local peak

(LP) strategy determined the single and multiple optimal SPs,

respectively. More details of the proposed method are described

in Fig. 1 and the following sections.

A. Intrasegment Homogeneity and Intersegment Heterogeneity

of Segments Measured by the Area WV and Area WRV Methods

A commonly accepted opinion in most studies incorporating

the USE method considers that good segmentation should have

good internal homogeneity and external heterogeneity [32].

Using some mathematical criteria to indicate what is univer-

sally accepted as a satisfactory segmentation result has become

popular [29]. In this study, we used a similar approach to assess

segmentation quality and developed DV measures (i.e., WV and

WRV) while maintaining the same statistical characteristics to

indicate internal homogeneity and external heterogeneity.

1) Intrasegment Homogeneity Indicator: WV: We use WV

as the intrasegment homogeneity indicator in this article. Good

intrasegment homogeneity is indicated by a low WV value. The

calculation of WV can be divided into the following two steps.

First, the variance of each segment in a given segmentation

result is calculated as the mean across all bands of an image, as

follows:

vi =

∑m
j=1 vij

m
(1)

where m is the number of bands contained in an image, vij is

the variance in band j, and vi is the variance averaged across all

bands for segment i.

Second, the internal homogeneity is indicated by the area WV

and then defined as follows:

WV =

∑n
i = 1 ai · vi∑n

i = 1 ai
(2)

where ai represents the number of pixels in segment i and n

represents the number of segments in a segmentation.

The approach takes full advantage of the band information

contained in an image and the area information contained in each

segment, making the calculation of the internal homogeneity

more objective.

2) Intersegment Heterogeneity Indicator: WRV: Since the

variance can be used to quantify the spectral difference among

pixels within a segment and indicate internal homogeneity, it

is possible to apply it to indicate the external heterogeneity by

quantifying the spectral difference among segments. We develop

the WRV measure as the intersegment heterogeneity indicator

in this study. In contrast with the intrasegment homogeneity
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Fig. 1. Flowchart of the proposed new USE method using DV measures for remote sensing images.

indicator, good intersegment heterogeneity is indicated by a high

WRV value. The calculation of WRV can be partitioned into the

following five steps.

1) The region adjacency graph [43], [ [44] is applied to reveal

the relationship between every segment and its neigh-

boring segments for subsequent external heterogeneity

calculations.

2) The variance between each segment and one of its neigh-

boring segments in a given segmentation result is com-

puted using the following definition:

vik =
(µi − µik)

2 + (µk − µik)
2

2
(3)

where µi and µk are the mean of segments i and k,

respectively, µik is the mean among segments i and k, and

vik is the variance among segment i and its neighboring

segment k.

3) The product of the common border between each segment

and one of its neighbors and the area of that neighbor is

calculated as follows:

Qik = lik · ak (4)

where lik is the common border between segment i and

neighboring segment k, ak is the area of segment k, and

Qik is their product.

4) The relative variance (RV) between each segment and

all of its neighboring segments is calculated using the

following formula:

RVi =

∑Ω
k = 1 Qik · vik
∑Ω

k = 1 Qik

(5)

where Ω represents all of the neighboring segments of

segment i. The approach considers the contribution of

the common border between each segment and one of

its neighbors and the area of the neighbor in the formula

above, reducing the inherent instability in calculating the
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variance between each segment and all of its neighboring

segments.

5) The external heterogeneity is indicated by the area WRV

averaged across all bands as follows:

RVi =

∑m
j=1 RVij

m
(6)

WRV =

∑n
i = 1 ai · RVi∑n

i = 1 ai
(7)

where RVij represents the RV between each segment and

all of its neighboring segments in band j.

B. Determination of Appropriate SPs Using

Two Integrated Strategies

It is difficult to determine the appropriate SPs only accord-

ing to the two calculations of WV and WRV. To address the

problem, using a specific combination strategy to integrate the

WV and WRV measures to capture the tradeoff between them

for the determination of the appropriate SPs is critical. Different

combination strategies can achieve different purposes for the

determination of the appropriate SPs, such as the determination

of single or multiple optimal SPs. Accordingly, this article

selected two combination strategies (F-measure and LP) for the

determination of the single and multiple optimal SPs.

1) Single Optimal SP Determination: F-Measure: The first

combination strategy is the F-measure strategy [1], [37], which

helps determine a single optimal SP. To allow the intrasegment

homogeneity and intersegment heterogeneity measures to be

treated equally before implementing the F-measure strategy, the

WV and WRV values are normalized by the following formula:

WVnorm =
WVmax −WV

WVmax −WVmin

(8)

WRVnorm =
WRV −WRVmin

WRVmax −WRVmin

(9)

where WV and WRV are the values obtained by the WV and

WRV calculations performed with a set of segmentation results,

respectively. HighWVnorm andWRVnorm values indicate good

intrasegment homogeneity and intersegment heterogeneity.

Then, the normalized WV and WRV values are combined into

a global value by the F-measure, which can be used to determine

a single optimal parameter indicated by the highest value. The

F-measure is defined as follows:

F −measure =
2 ·WVnorm ·WRVnorm

WVnorm +WRVnorm

. (10)

2) Multiple Optimal SP Determination: LP: The second

combination strategy is the LP strategy [2], which can determine

multiple optimal SPs.

First, the ratio of the WV and WRV values is computed

with the purpose of simultaneous consideration in both internal

homogeneity and external heterogeneity, as follows:

RATIO =
WV

WRV
. (11)

When producing a segment that is essentially in agreement

with the corresponding geo-objects, the segment boundaries will

be retained in the segmentation results with some subsequent

SPs, whereas the internal homogeneity and external heterogene-

ity of that segment will remain the same [33]. Thus, the trend of

the RATIO value will become rather flat after the optimal SP is

reached. To find the change in a certain SP level, the derivative

of RATIO was computed using the following formula:

•

RATIO(l) =
dRATIO(l)

dl
=

RATIO(l)− RATIO(l −∆l)

∆l
(12)

where RATIO(l) is the ratio of WV and WRV at SP l and ∆l is

the increment of the SP.

According to the aforementioned statement,
•

RATIO(l) is

generally greater than
•

RATIO(l −∆l) and
•

RATIO(l +∆l)
if SP l is considered appropriate for obtaining good segments.

The difference in the derivative of RATIO between the scale

parameter l and its neighboring scales can be calculated as

follows.

Diffl = (
•

RATIO(l)−
•

RATIO(l −∆l))

+ (
•

RATIO(l)−
•

RATIO(l +∆l)). (13)

A greaterDiffl indicates a more suitable scale parameter l that

can be used to produce good segments. A histogram of Diffl is

then generated, and the set of the greatest relative Diffl values

are regarded as the LPs. The scales at the LPs are recognized

as the appropriate SPs in this article. Since differently sized

geo-objects occur in the same image, it is possible to identify

some LPs for segmentation.

C. Validation of the Proposed Method

Using Discrepancy Measures

To test the proposed method, the F-measure-based DV method

was visually compared with the overall goodness (OG) [37] and

Zhang (Z) methods [35], and the LP-based DV method was in

visually compared with the spectral angle (SA) [2] and energy

function (E) methods [31]. The F-measure-based DV method

and the OG method have the same combination strategy but

different heterogeneity measures, and the LP-based DV method,

the SA method, and the E method have the same combination

strategy but different homogeneity and heterogeneity measures.

The homogeneity and heterogeneity measures and combination

strategy are obviously different between the F-measure-based

DV method and the Z method. Note that the SP that produced

the highest OG value or lowest Z value was considered the single

optimal SP. The SPs that produced the greatest relative E values

were regarded as candidates for the multiple optimal SPs.

Then, to further validate the proposed method, some discrep-

ancy measures were used to assess the segmentation results

quantitatively. In this article, the following discrepancy mea-

sures were calculated: the quality rate (QR) [45], oversegmenta-

tion (OS), undersegmentation (US), Euclidean distance (ED) of

OS and US [27], and the precision (P), recall (R), and F-measure

(F) of P and R [1]. Note that all the discrepancy measures range

from 0 to 1, and lower values of QR, OS, US, and ED and

higher values of P, R, and F indicate less dissimilarity between

the segmentation results and reference polygons. The F-measure
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Fig. 2. Study images of (a) T1, an urban area located in Beijing, China and (b) T2, a farmland area located in Shenzhen, China, both of which were acquired by
the GF-1 sensor. These images are presented with a combination of near-infrared, red, and green bands (green polygons: the reference of the fine-scale level; blue
polygons: the reference of the medium-scale level; and yellow polygons: the reference of the coarse-scale level).

is similar to that seen in (10), but WVnorm and WVnorm are

replaced by P and R. More details on these discrepancy measures

can be seen in [1], [27], and [45].

III. RESULTS

A. Study Sites and Images

This study selected two remote sensing applications with

which to validate the SP optimization method, including ur-

ban geo-object identification and agricultural division. Both

images were acquired from the Gaofen-1 (GF-1) satellite and

differed in geo-object type and city. The GF-1 imagery contains

a four-band multispectral image of 8-m resolution with blue,

green, red, and infrared bands and a panchromatic image of

2-m resolution. Then, a multispectral image with a resolution of

2 m was produced using the nearest-neighbor diffusion-based

pansharpening method [46].

Efficient segmentation is a key issue for geo-object identi-

fication in high-resolution satellite imagery, such as building

recognition [47] and impervious surface extraction [48]. For this

application, we selected a typical urban area located in Beijing,

China and the GF-1 image used was acquired on May 8th, 2016

[see Fig. 2(a)]. Agricultural division is indispensable for efficient

and precise agricultural management [49]. In this experiment, a

GF-1 image that contains a farmland area located in Shenzhen,

China, was acquired on October 16th, 2015 [see Fig. 2(b)]. Two

subsets of 1.6× 1.6 km each were clipped from the two acquired

GF-1 images (see Fig. 2). The combined use of urban and rural

images ensures the effectiveness and objectivity of the proposed

DV method.

B. Analysis of DV Measures (WV and WRV)

For this study, the GF-1 images of urban and rural areas

were segmented by the MRS algorithm embedded in the eCog-

nition software, in which the shape and compactness param-

eters were fixed to 0.05 and 0.1, respectively, and the scale

parameter increased from 6 to 25 at an interval of 0.5 to

produce a set of segmentation results. Note that we chose the

shape and compactness parameters according to visual analysis

and according to the guideline that the segments matched the

geo-objects as far as possible; this article mainly studied the

parameter optimization of the scale parameters. In addition,

6 was determined as the starting scale that was least overseg-

mented and 25 was selected as the ending scale that was clearly

undersegmented.

To validate the effectiveness of WV and WRV, the two mea-

sures were computed for two sets of segmentation results of

urban and rural images, as plotted in Fig. 3. In the case of

oversegmentation, the WV and WRV values were relatively low,

indicating that the segmentation was internally homogeneous

but not externally heterogeneous. Moreover, in the case of

undersegmentation, the WV and WRV values were relatively

high, indicating an inverse situation to that of oversegmentation.

As the scale parameter increased, the WV and WRV values

had increasing trends, validating the potential of the proposed

DV method in measuring the internal homogeneity and external

heterogeneity. However, it is interesting to observe that the WRV

values had more variation along the changing trend with the

coarsening of the scale parameter than did the WV values. The

reason for this may be that when producing a segment essentially

in agreement with the corresponding geo-objects, the segment

boundaries will be retained in the segmentation results with some

subsequent scale parameters, and the external heterogeneity of

this segment will remain the same [33]. However, some other

segments will be wrongly merged into geo-objects, resulting

in the WRV decreasing with some subsequent scale parame-

ters. This phenomenon indicated that WRV is more sensitive

to undersegmentation than WV is and provides a theoretical

possibility for selecting multiple appropriate scale parameters

for subsequent image analysis. Thus, we concluded that the DV

(WV and WRV) method is a promising internal homogeneity

and external heterogeneity metric for segmentation evaluations

and optimal scale parameter determinations.
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Fig. 3. WV and WRV values calculated for two set of segmentation results of (a) T1 and (b) T2.

Fig. 4. Evaluation results of (a) T1 and (b) T2 obtained using the F-measure-based DV method, OG method, and Z method.

C. Comparative Analysis of the F-Measure-Based DV Method

1) Single Optimal SP Determination: The results of the F-

measure-based DV method, OG method, and Z method are

displayed in Fig. 4. As indicated by the highest values of the

F-measure-based DV and OG and the lowest value of Z, the

appropriate scale parameters obtained using the three single

optimal SP selection methods were set at 9.5, 11, and 15 for

the urban image and 12, 9.5, and 11.5 for the rural image,

respectively.

To demonstrate which of these calculated parameters is best,

visual and quantitative comparisons were conducted. For this

experiment, 60 reference polygons (green and blue polygons)

for each test image were generated to calculate the discrepancy

metrics mentioned in Section II-C (see Fig. 2).

2) Comparative Experimental Results of the Urban Image

(T1): Three subsets of the segmentation results of T1, obtained

by the three scale parameters 9.5, 11, and 15, are presented in

Fig. 5. For the first subset, the segmentation result obtained with

a scale parameter of 9.5 allowed the differently sized buildings

to be segmented well, whereas they were undersegmented to

varying degrees in the segmentation results obtained with the

scale parameters of 11 and 15. For the second subset, small

geo-objects could be distinguished well in the segmentation

results obtained with scale parameters of 9.5 and 11, but some

small geo-objects were wrongly merged into other geo-objects

Fig. 5. Subsets of segmentation results of T1 obtained by the three scale
parameters of 9.5, 11, and 15. (a) F-measure-based DV result: 9.5. (b) OG
result: 11. (c) Z result: 15.

in the segmentation result with a scale parameter of 15. For

the third subset, the large building segmentations in the three

segmentation results were similar. However, the tree cluster and
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TABLE I
DISCREPANCY MEASURES OF THE SEGMENTATION RESULTS OBTAINED BY THE THREE SCALE PARAMETERS OF 9.5, 11, AND 15 FOR THE T1 IMAGE

Fig. 6. Subsets of segmentation results of T2 obtained by the three scale
parameters of 12, 9.5, and 11.5. (a) F-measure-based DV result: 12. (b) OG
result: 9.5. (c) Z result: 11.5.

one small building were confused in the segmentation results

obtained with the scale parameters of 11 and 15. Moreover,

some medium-sized buildings were slightly and severely under-

segmented in the segmentation results obtained with the scale

parameters of 11 and 15, respectively. Overall, the single optimal

scale parameter obtained by the F-measure-based DV method

performed better than the other two methods in allowing good

segmentation.

Then, seven discrepancy metrics, QR, OS, US, ED, P, R, and F,

were computed for quantitative evaluations of the segmentation

results obtained by the three scale parameters of 9.5, 11, and

15 (see Table I). As discussed in Section II-C, low QR, OS,

US, and ED values and high P, R, and F values indicate good

segmentation. The lowest QR and ED values and highest F value

occurred in the segmentation result obtained by the F-measure-

based DV method, indicating that the proposed method had a

better overall performance in allowing good segmentation.

3) Comparative Experimental Results of the Rural Image

(T2): For the rural image (T2), visual interpretation was first

implemented, and subsets of the segmentation results at the scale

parameters of 12, 9.5, and 11.5 are shown in Fig. 6. For the first

subset, the segmentation results obtained with scale parameters

of 11.5 and 12 displayed segmenting of the tree clusters well,

but the road could not be identified in these two results. The

situation was inverse in the segmentation result obtained with

a scale parameter of 9.5. For the second subset, similar perfor-

mances in segmenting the cultivation hothouse were presented

in the segmentation results obtained with the scale parameters

of 11.5 and 12, which was better than that obtained with a scale

parameter of 9.5. However, varying degrees of oversegmentation

of the farmland were found in the segmentation results with

scale parameters of 9.5 and 11.5. For the third subset, the

single optimal scale parameters obtained by the three methods

produced similar segmentations of the buildings and a small

pond. However, some tree clusters were oversegmented in the

segmentation results obtained with the scale parameters of 9.5

and 11.5.

Similarly, the seven discrepancy measures were also calcu-

lated to quantitatively analyze the segmentation results obtained

by the three scale parameters of 12, 9.5, and 11.5 (see Table II).

The result showed a similar conclusion as Table I, indicating

that the F-measure-based DV method had the most potential

to obtain the single optimal scale parameter for producing the

highest OG of segmentation. Although the proposed method had

a better overall performance in determining the single optimal

SP and producing good segmentation, the fact cannot be ignored

that it is impossible to use a single optimal SP for segmenting

every geo-object well in a segmentation. Thus, multiple optimal

SP determination becomes critical in satisfying some remote

sensing applications for different purposes. This article devel-

oped an LP-based DV method for the determination of multiple

appropriate SPs, and detailed experimental results are presented

in the next section.

D. Comparative Analysis of the LP-Based DV Method

1) Multiple Optimal SP Determination: The results of the

LP-based DV method, E method, and SA method are shown in

Fig. 7. It was interesting to observe that when applied to the urban

image, the method produced the same number of measure values

(i.e., 12) as were obtained for the rural image using the LP-based

DV method, whereas the distribution had an obvious difference

[see Fig. 5(a) and (d)]. However, a similar phenomenon was not

observed in urban and rural results using the E method and SA

method [see Fig. 5(b) and (e), Fig. 5(c) and (f)]. For the urban re-

sult obtained by the LP-based DV method, four scale parameters

8.5, 15, 17.5, and 20.5 had the greatest relative measure values

and were thus the most likely candidates of the multiple optimal

scale parameters [see Fig. 5(a)]. However, 7.5, 14.5, and 19 were

considered the most likely multiple optimal scale parameters

using the E method [see Fig. 5(b)]. The parameters 12.5, 15,

and 21 were the likely candidates of the multiple optimal scale

parameters as indicated by the result obtained by the SA method

[see Fig. 5(c)]. For the rural image, the multiple optimal scale

parameters obtained by the proposed method were 8, 12.5, 16,

18.5, and 23.5 [see Fig. 5(d)], whereas 7, 10, 14.5, 18.5, and

23.5 were regarded as the appropriate scale parameters when

using the E method [see Fig. 5(e)]. The SA method determined
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TABLE II
DISCREPANCY MEASURES OF THE SEGMENTATION RESULTS OBTAINED BY THE THREE SCALE PARAMETERS OF 12, 9.5, AND 11.5 FOR T2 IMAGE

Fig. 7. Evaluation results using the LP-based DV method, E method, and SA method. (a) T1—LP-based DV result. (b) T1—E result. (c) T1—SA result.
(d) T2—LP-based DV result. (e) T2—E method. (f) T2—SA method.

9, 18.5, and 22.5 as suitable scale parameters [see Fig. 5(f)]. In

addition, an interesting phenomenon was observed: the single

optimal scale parameters determined by the F-measure-based

DV method, OG, and Z method were almost always among the

intervals of the multiple optimal scale parameters obtained by

the LP-based DV method, E method, and SA method.

To validate the proposed method, the scale parameters ranging

from 6–25 were divided into three levels: the fine-scale level (6–

12), medium-scale level (12–18), and coarse-scale level (18–25).

Then, 30 reference polygons were generated from each level at

each test image to calculate the discrepancy metrics mentioned

in Section II-C (see Fig. 2). At the fine-scale level, the land is

covered in small geo-objects, such as small buildings, flower

beds, and farm fields. At the medium-scale level, the land is

covered in residential buildings, workshops, grasslands, and tree

clusters. At the coarse-scale level, the land is mainly covered

in semantic geo-objects, including tree belts, industrial areas,

residential areas, and farming areas.

2) Comparative Experimental Results of the Urban Image

(T1): For the urban image (T1), the scale parameters of 8.5, 15,

17.5, and 20.5 obtained by the LP-based DV method, those of

7.5, 14.5, and 19 obtained by the E method, and those of 12.5,

15, and 21 obtained by the SA method were divided into three

levels, as follows: the fine-scale level, including 7.5 and 8.5;

the medium-scale level, including 12.5, 14.5, 15, and 17.5; and

the coarse-scale level, including 19, 20.5, and 21. This article

selected some subsets from each level to compare the segmen-

tation results obtained by the three methods (see Fig. 8). At the

fine-scale level [see Fig. 8(a)–(c)], for geo-objects, including

small buildings, the segmentation results at the scale parameters

of 8.5 and 7.5 were similar. However, the factories showed more

oversegmentation in the results obtained at the scale parameter

of 7.5. At the medium-scale level, similar segmentation results

for the workshops were shown at the scale parameters of 14.5

and 15, and these results were better than those obtained at

the scale parameters of 12.5 and 17. However, the grassland

was oversegmented in that at the scale parameters of 12.5 and

14.5 [see Fig. 8(d)]. Among the three segments, the factories

were delineated better in the segmentation obtained at the larger

scale [see Fig. 8(e)]. At the coarse-scale level, for the residential

area as a geo-object, the segmentation obtained at the scale

parameter of 20.5 was better than that obtained at the scale

parameter of 19 [see Fig. 8(f)]. For large geo-objects, such as

industrial areas, segmentation at the scale parameter of 20.5

was better for fitting the semantic objects [see Fig. 8(g)]. The

visual inspection indicated that the LP-based DV method had the

most potential to allow for good segmentation in the three scale

levels.
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Fig. 8. Subsets of the segmentation results of T1 obtained by the LP-based DV method, E method, and SA method. (a)–(c) Three subsets of the fine level.
(d) and (e) Two subsets of the medium level. (f) and (g) Two subsets of the coarse level.

TABLE III
DISCREPANCY MEASURES OF THE SEGMENTATION RESULTS OBTAINED BY THE LP-BASED DV METHOD, E METHOD, AND SA METHOD AT THE

THREE LEVELS FOR THE T1 IMAGE

The seven discrepancy measures were computed at each

scale level to further validate the LP-based DV method (see

Table III). As indicated by the lowest QR and ED values, the

scale parameters of 8.5, 15, and 20.5 obtained by the LP-based

method could be used to produce segmentation results at each

scale level that achieved the best match between the reference

polygons and corresponding segments. However, the SA method

produced the highest F value at the medium-scale level, and the

E method obtained the highest F value at the coarse-scale level.

The observed changes in the OS and P values at the fine-scale

level were larger than those at the medium-scale and coarse-

scale levels, indicating that the image was more sensitive to

oversegmentation at the fine-scale level since the fine-scale level

mainly focused on the recognition of small geo-objects. The

observed changes in the US and R values at the medium-scale

level were the largest among the three levels, indicating the most

sensitivity to undersegmentation at the medium-scale level. A

possible explanation for this result is that the medium-scale level

is the transition phase between natural geo-objects and semantic

geo-objects. A smaller scale parameter produced segmentation

that delineated natural geo-objects well, whereas a larger scale

parameter resulted in segmentation that identified semantic geo-

objects [see Fig. 8(c) and (f)].

3) Comparative Experimental Results of the Rural Image

(T2): For the rural image (T2), similarly, the scale parameters of

8, 12.5, 16, 18.5, and 23.5 obtained by the LP-based DV method,

those of 7, 10, 14.5, 18.5, and 23.5 obtained by the E method, and

those of 9, 18.5, and 22.5 obtained by the SA method were also

grouped into three scale levels: the fine-scale level, including 7,

8, 9, and 10; the medium-scale level, including 12.5, 14.5, and

16; and the coarse-scale level, including 18.5, 22.5, and 23.5.

Then, selected samples of the segmentation results obtained at

the three scale levels are shown in Fig. 9. At the fine-scale level,

segments obtained from the two scale parameters of 8 and 7

were similar and were better than those obtained from the scale

parameters of 9 and 10 for individual paddy fields [see Fig. 9(a)].

The small buildings were segmented well in the segmentation

results obtained by the four scale parameters, whereas the scale
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Fig. 9. Subsets of the segmentation results of T2 obtained by the LP-based DV method, E method, and SA method. (a) and (b) Two subsets of the fine level. (c)
and (d) Two subsets of the medium level. (e) and (f) Two subsets of the coarse level.

TABLE IV
DISCREPANCY MEASURES OF THE SEGMENTATION RESULTS OBTAINED BY THE LP-BASED DV METHOD, E METHOD, AND SA METHOD AT THE THREE LEVELS

FOR THE T2 IMAGE

parameters of 8 and 7 oversegmented the tree clusters and that of

10 undersegmented the road [see Fig. 9(b)]. At the medium-scale

level, the building rooftops and tree clusters were recognized

well at the scale parameter of 12.5, whereas undersegmentation

was recognized at the other two scale parameters [see Fig. 9(c)

and (d)]. However, if the group of building rooftops was consid-

ered a geo-object, the segments obtained at the scale parameters

of 14.5 and 16 would be less oversegmented [see Fig. 9(d)]. At

the coarse-scale level, the small building was delineated well

because of the strong spectral contrast to the surroundings [see

Fig. 9(e)]. The segmentation obtained at the scale parameter of

23.5 recognized the residential area better than that obtained at

the scale parameters of 18.5 and 22.5 [see Fig. 9(e)]. The farming

areas were identified well in the segmentation results at the scale

parameter of 23.5 [see Fig. 9(f)]. The results indicated that the

coarse-scale parameters obtained by the LP-based DV method

had the most potential for segmenting semantic geo-objects and

small geo-objects with strong spectral contrast to neighboring

geo-objects.

Similar to those calculated for the urban image, the discrep-

ancy measures calculated at each level are presented in Table IV

and were used to quantitatively analyze the segmentation re-

sults obtained by the LP-based DV method, E method, and SA

method for the rural image. The differences in QR, ED, and F

indicated that the segmentation results at the scale parameters

of 7, 12.5, and 23.5 had the highest segmentation quality at the

fine-scale, medium-scale, and coarse-scale levels, respectively.

The LP-based DV method performed better than the E method at

the medium-scale and coarse-scale levels, but performed more

poorly at the fine-scale level. However, the optimal scales ob-

tained by the two methods were very close at the fine level (scale:

8 versus 7), and the performances shown in Fig. 9(a) and (b) were

similar. The LP-based DV method had better performance than

the SA method at every level.

IV. DISCUSSION

This article developed DV measures for recognizing more

reasonable SPs to produce segments that best fit the geo-objects.

The primary contribution of this work is the area WRV model,

which is used jointly with the area WV metric. In the WRV

model, the process is as follows: first, the variance between
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each segment and one of its neighboring segments is calcu-

lated, and the contributions of the common border between

each segment and one of its neighbors and the area of the

neighbor are considered to form the RV of each segment. Then,

the contribution of the area of each segment is considered to

calculate the external heterogeneity. The process of calculating

WRV is the same as the process of calculating WV, ensuring

the same statistical characteristics regarding homogeneity and

heterogeneity. In addition, the considerations of the contribu-

tion of the common border between each segment and one of

its neighbors and the area of that neighbor is likely to add

inherent stability in the WRV calculation, thus determining

a more reasonable SP. The comparative experiment showed

that the proposed method had a better overall performance

than the competing methods, demonstrating the potential of

DV-based measures in improving the accuracy of segmentation

evaluations.

This article adopted two combination strategies to determine

the single optimal parameter and a set of useful scale parame-

ters. The F-measure-based DV method is suitable for obtaining

good segmentation in which there is a good compromise for

recognizing differently sized natural geo-objects. The LP-based

DV method is more likely to be used to obtain good segments

of small, natural geo-objects to large, semantic geo-objects.

Compared with the F-measure-based DV method, the LP-based

method could help produce segments, including semantic geo-

objects. However, LP-based strategy, when used for multiple

optimal scale parameter identification, leads to a set of scale

parameters that do not include the scale determined by using the

F-measure strategy. The possible reason for this result is that

the F-measure is a global approach that considers the OG of

segmentation to determine the optimal scale parameter. In con-

trast, LP is a local approach that finds the change in a certain SP

level to recognize a set of useful scale parameters. It is unlikely

that the LP method will identify the same scale parameter as the

F-measure method due to the difference between the methods in

determining the optimal scale parameter idea. In addition, com-

bining the segmentation results obtained by the different optimal

SPs was the main difficulty for subsequent image analysis. Thus,

future work will focus on the approach of producing an ultimate

segmentation result in which the best-delineated geo-objects are

chosen from the corresponding segmentation obtained by the

multiple optimal SPs.

Accuracy and efficiency are two critical factors for selecting

which combination strategy should be used to determine the

optimal SPs, and these two factors must be carefully weighted to

satisfy different types of applications [50]. The massive number

of different sizes and spectral features of geo-objects that occur

in high-resolution satellite imagery make it impossible that every

geo-object is segmented well in a given segmentation obtained

by a certain optimal SP. From this perspective, a group of optimal

SPs, rather than a single parameter, is required to obtain good

segments for the identification of small, natural geo-objects to

large, semantic geo-objects. Thus, accuracy is considered the

most important factor, and the LP-based DV method is thus

a good alternative to conventional methods. However, if we

want to classify a specific type of natural geo-object, such as

a building, the F-measure-based DV method may be a more

suitable selection. The large factories were oversegmented in

the segmentation results obtained using the fine- and medium-

scale parameters [see Fig. 8(c) and (e)], whereas the small and

medium buildings were delineated well with these parameters

[see Fig. 8(a), (b), and (d)]. The classification accuracy would not

be reduced if this segmentation result, obtained by using fine- or

medium-scale parameters, was used to classify the natural geo-

objects of the buildings. From this perspective, the consideration

of efficiency should be given more weight than that of accuracy.

The F-measure-based DV method is a better alternative than the

LP-based DV method since it provides a good compromise for

segmenting differently sized natural geo-objects. It is not appro-

priate to say which of the two methods is better since they each

have their unique application advantages. It is instead a matter for

researchers to choose suitable segmentation evaluation methods

according to different application purposes.

The rule of selecting validating reference polygons is different

between the F-measure-based DV method and the LP-based

DV method. The geo-objects recognized by the single optimal

scale parameter are natural geo-objects in the urban and rural

images, and differently sized natural geo-objects occur in the

segmentation results obtained with scales at the fine-scale and

medium-scale levels. Thus, the union of reference polygons at

the fine-scale and medium-scale levels was used for validating

the segmentation results of the F-measure-based DV method.

The geo-objects identified by the multiple optimal scales vary

from small, natural geo-objects to large, semantic geo-objects.

Thus, the reference polygons at the fine-scale, medium-scale,

and coarse-scale levels need to be used to validate the segmen-

tation results of the LP-based DV method. However, different

people have different opinions on the definition of semantic

geo-objects. It may be slightly subjective to generate the refer-

ence polygons of semantic geo-objects in this study. However,

we have determined the reference polygons of semantic geo-

objects from the perspective of common knowledge as much as

possible.

The visual and quantitative results (see Figs. 5 and 6 and

Tables I and II) demonstrated that the F-measure-based DV

method has more potential to obtain a single optimal SP than

other methods, and this optimal parameter could produce good

segmentation in which there is a good compromise for dif-

ferently sized natural geo-objects. However, the performance

of the LP-based DV method was not as good as that of the

F-measure-based DV method, especially in the rural image. The

quantitative results obtained at the fine-scale level, shown in

Table IV, showed that the E method performed better than the

proposed method, as indicated by its lowest QR and ED values

and highest F value. Even so, the proposed method still showed

good performance at the fine-scale level in the rural image. This

result revealed that no single measure indicator performed the

best at any scale level. In the future, the measurement indicator

will be further studied and improved to obtain more objective

SPs. It was also observed that the SA method could not be used

to determine the optimal scale at the fine-scale level in the urban

image (see Table III), or at the medium-scale level in the rural

image (see Table IV). The possible reason for this result may be
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that the SA method only considers homogeneity in determining

multiple optimal scales.

In addition, the WRV measure showed different changing

trends between the urban and rural images (see Fig. 3). There was

a trend of first increasing and then decreasing in the urban image,

whereas the trend was increasing in the rural image. The possible

reason for this result may be that the spectral contrast between

the geo-objects and surrounding geo-objects in the rural image is

lower than that in the urban image, reducing the advantage of the

WRV measure in the heterogeneity calculations. The different

changes in the OS and P and the US and R indicators shown

in Tables III and IV also demonstrated this opinion. The large

changes observed in the OS and P at the fine-scale level and

those in the US and R at the medium-scale level indicated the

high spectral contrast present in the urban image (see Table III).

The similar changes observed in the OS and P and the US and

R at the three scale levels indicated the low spectral contrast

present in the rural image (see Table IV).

V. CONCLUSION

In this article, a USE method that uses DV measures to

calculate homogeneity and heterogeneity was proposed for rec-

ognizing more a reasonable SP to produce segments that best

fit the geo-objects. Then, the F-measure and LP combination

strategies were used to determine single and multiple optimal

scale parameters. To validate the proposed method, the MRS

algorithm was applied to segment GF-1 images, and a series of

segmentation results at a certain range of scale parameters was

obtained. The comparative results indicated that the DV (WV

and WRV) method is a more promising internal homogeneity

and external heterogeneity metric for segmentation evaluations

and optimal scale parameter determinations. The F-measure-

based DV method could produce better OG of segmentation for

differently sized natural geo-objects compared with the OG and

Z methods. The LP-based DV method could obtain multiple

optimal scales that produced better segments for the identifica-

tion of small, natural geo-objects to large, semantic geo-objects

compared to the E and SA methods. In the future, the further

improvement of the DV measures and the approach of combining

the segmentation results obtained by multiple optimal scales into

one ultimate segmentation result will be our focus.
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